Project Manual

Orange County - Fire Station #30 HVAC Replacement

PO Number: C17902C020

SGM Engineering, Inc. 935 Lake Baldwin Lane Orlando, FL 32814

Issue: 100% Permit Documents February 07, 2019

Volume No. 1 of 1

PONumber: C17902C020

TABLE OF CONTENTS

Division	Section Title
	CENEDAL DECLUDEMENTS
01 10 00	- GENERAL REQUIREMENTS SUMMARY
01 33 00	SUBMITTALS
01 40 00	QUALITY REQUIREMENTS
01 73 29	CUTTING AND PATCHING
01 77 00	CLOSEOUT PROCEDURES
01 78 23	OPERATION AND MAINTENANCE DATA
01 78 39	PROJECT RECORD DOCUMENTS
DIVISION 02	- EXISTING CONDITIONS
02 41 13	DEMOLITION AND ALTERATIONS
DIVISION 06	- WOODS, PLASTICS & COMPOSITES
06 10 00	ROUGH CARPENTRY
DIVISION 07	- THERMAL AND MOISTURE PROTECTION
07 21 00	THERMAL INSULATION
07 42 93	SOFFIT PANELS
07 62 00	SHEET METAL FLASHING AND TRIM
07 42 93	
07 81 10	
07 92 10	JOINT SEALANTS
DIVISION 08	- OPENINGS
08 31 13	ACCESS DOORS AND FRAMES
DIV//010N1 00	FINIOUEO
DIVISION 09 09 21 16	GYPSUM BOARD ASSEMBLIES
09 53 23	ACOUSTICAL CEILINGS
09 91 00	PAINTING
	- HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)
23 05 00	COMMON WORK RESULTS FOR MECHANICAL
23 05 01	INVESTIGATION OF EXISTING MECHANICAL SYSTEMS
23 05 10	BASIC MECHANICAL MATERIALS AND METHODS
23 05 13	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
23 05 17	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
23 05 29	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
23 05 48	VIBRATION CONTROLS FOR HVAC EQUIPMENT
23 05 53	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
23 07 13	DUCT INSULATION
23 05 93	TESTING, ADJUSTING, AND BALANCING
23 07 19	HVAC PIPING INSULATION

PONumber: C17902C020

23 09 00	INSTRUMENTATION AND CONTROL FOR HVAC
23 31 13	METAL DUCTS
23 33 00	DUCT ACCESSORIES
23 63 13	AIR-COOLED SPLIT SYSTEM
DIVISION 26	– ELECTRICAL
26 05 00	COMMON WORK RESULTS FOR ELECTRICAL
26 05 01	INVESTIGATION OF EXISTING ELECTRICAL SYSTEMS
26 05 19	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
26 05 26	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
26 05 29	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
26 05 33	RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
26 05 53	IDENTIFICATION FOR ELECTRICAL SYSTEMS
26 27 26	WIRING DEVICES
26 28 13	FUSES
26 28 16	ENCLOSED SWITCHES AND CIRCUIT BREAKERS

DIVISION 32 - EXTERIOR IMPROVEMENTS

32 31 13 CHAIN LINK FENCING AND GATES

PONumber: C17902C020

SECTION 01 10 00 - SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Work covered by the Contract Documents.
 - 2. Use of premises.
 - 3. Owner's occupancy requirements.
 - 4. Work restrictions.
 - 5. Specification formats and conventions.

1.3 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work consists of the following:
 - 1. The HVAC work includes but not limited to: replacing the (2) existing HVAC split systems with new HVAC systems with hot gas reheat and new condenser locations, miscellaneous renovations to support the HVAC systems, balancing of the entire system and providing new controls for new systems and communication with existing BMS including with new graphic updates to existing front end controls.
 - 2. Provide new architectural renovations to support the new HVAC systems including but not limited to: removing existing insulation and existing ceilings and install new insulation on the underside of the roof level, closing off all attic openings to create an airtight area above the ceiling with respect to the exterior environment and providing new ceiling as indicated.
 - 3. Electrical work includes but not limited to: powering new HVAC systems and replacing all existing lenses in light fixtures with new lenses to match existing.
 - 4. Provide a phased construction approach to allow for the building to be occupied at all times on a 24 hour/ 7 day occupation. HVAC equipment shall be replaced individually to allow for relocation of occupants to an area for usage of areas for sleeping and use of facility restrooms during construction.

1.4 TYPE OF CONTRACT

A. Project will be constructed under a single prime contract.

SUMMARY 01 10 00 - 1

PONumber: C17902C020

1.5 USE OF PREMISES

- A. General: Contractor shall have limited use of premises for construction operations as indicated on Drawings by the Contract limits. See phasing plans and notes for occupancy requirements.
- B. Use of Site: Limit use of premises to work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Owner Occupancy: Allow for Owner occupancy of Project site and use by the public.
 - 2. Driveways and Entrances: Keep driveways, parking areas, loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 - a. Schedule deliveries to minimize use of driveways and entrances.
 - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
- C. Use of Existing Building: Building shall remain occupied and shall be scheduled to allow for relocation of furniture and appertances as required for occupying the portion of the building not being constructed during the phased construction.

1.6 OWNER'S OCCUPANCY REQUIREMENTS

- A. Full Owner Occupancy: Owner will occupy site and existing building during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits, unless otherwise indicated.
 - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction.
 - 2. Provide not less than 72 hours' notice to Owner of activities that will affect Owner's operations.

1.7 WORK RESTRICTIONS

- A. On-Site Work Hours: Work shall be generally performed inside the existing building during normal work hours
- B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than 3 days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Owner's written permission.

PART 2 - EXECUTION (Not Used)

END OF SECTION 01 10 00

SUMMARY 01 10 00 - 2

PONumber: C17902C020

SECTION 01 33 00 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. Related Sections include the following:
 - 1. Division 01 Section "Closeout Procedures" for submitting warranties.
 - 2. Division 01 Section "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
 - 3. Division 01 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 4. Divisions 23 through 26 Sections for specific requirements for submittals in those Sections.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information that requires Owner's responsive action.
- B. Informational Submittals: Written information that does not require Engineer's and Owner's responsive action. Submittals may be rejected for not complying with requirements.

1.4 SUBMITTAL PROCEDURES

- A. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Owner and Engineer's reserve the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- B. Submittals Schedule: All submittals shall be received by the Owner within 14 days of notice to proceed. Submittals shall be approved prior to commencement of work.
- C. Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineers receipt of submittal. No extension of

PONumber: C17902C020

the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

- 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. The Owner will advise Contractor when a submittal being processed must be delayed for coordination.
- 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
- 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
- 4. Sequential Review: Where sequential review of submittals by Architect's consultants, Owner, or other parties is indicated, allow 21 days for initial review of each submittal.
- D. Identification: Place a permanent label or title block on each submittal for identification.
 - 1. Indicate name of firm or entity that prepared each submittal on label or title block.
 - 2. Include the following information on label for processing and recording action taken:
 - a. Project name.
 - b. Date.
 - c. Name and address of Engineer.
 - d. Name and address of Contractor.
 - e. Name and address of subcontractor.
 - f. Name and address of supplier.
 - g. Name of manufacturer.
 - h. Submittal number or other unique identifier, including revision identifier.
 - 1) Submittal number shall use Specification Section number followed by a decimal point and then a sequential number (e.g., 06100.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., 06100.01.A).
- E. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
- F. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

PART 2 - PRODUCTS

2.1 ACTION SUBMITTALS

- A. General: Prepare and submit Action Submittals required by individual Specification Sections.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard printed data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.

PONumber: C17902C020

- 3. Include the following information, as applicable:
 - a. Manufacturer's written recommendations.
 - b. Manufacturer's product specifications.
 - c. Manufacturer's installation instructions.
 - d. Standard color charts.
 - e. Manufacturer's catalog cuts.
 - f. Wiring diagrams showing factory-installed wiring.
 - g. Printed performance curves.
 - h. Operational range diagrams.
 - i. Mill reports.
 - j. Standard product operation and maintenance manuals.
 - k. Compliance with specified referenced standards.
 - I. Testing by recognized testing agency.
 - m. Application of testing agency labels and seals.
 - n. Notation of coordination requirements.
- 4. Submit Product Data before or concurrent with Samples.
- 5. Number of Copies: Submit 7 copies of Product Data, unless otherwise indicated. Engineer will return 6 copies. Mark up and retain one returned copy as a Project Record Document.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Dimensions.
 - b. Identification of products.
 - c. Fabrication and installation drawings.
 - d. Roughing-in and setting diagrams.
 - e. Wiring diagrams showing field-installed wiring, including power, signal, and control wiring.
 - f. Shopwork manufacturing instructions.
 - g. Templates and patterns.
 - h. Schedules.
 - i. Design calculations.
 - j. Compliance with specified standards.
 - k. Notation of coordination requirements.
 - I. Notation of dimensions established by field measurement.
 - m. Relationship to adjoining construction clearly indicated.
 - n. Seal and signature of professional engineer if specified.
 - o. Wiring Diagrams: Differentiate between manufacturer-installed and field-installed wiring.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer.

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

Approval Stamp: Stamp each submittal with a uniform, approval stamp. B.

3.2 **ENGINEER'S ACTION**

- A. General: Engineer will not review submittals that do not bear Contractor's approval stamp and will return them without action.
- Action Submittals: Engineer will review each submittal, make marks to indicate corrections or B. modifications required, and return it.
- C. Partial submittals are not acceptable, will be considered nonresponsive, and will be returned without review.
- D. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 01 33 00

PONumber: C17902C020

SECTION 01 40 00 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Engineer or authorities having jurisdiction are not limited by provisions of this Section.

C. Related Sections include the following:

- 1. Division 01 Section "Cutting and Patching" for repair and restoration of construction disturbed by testing and inspecting activities.
- 2. Divisions 23 through 26 Sections for specific test and inspection requirements.

1.3 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Engineer.
- C. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with industry standards.
- D. Source Quality-Control Testing: Tests and inspections that are performed at the source, i.e., plant, mill, factory, or shop.

PONumber: C17902C020

E. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

- F. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- G. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespeople of the corresponding generic name.

1.4 CONFLICTING REQUIREMENTS

- A. General: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer uncertainties and requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.5 SUBMITTALS

- A. Schedule of Tests and Inspections: Prepare in tabular form and include the following:
 - 1. Specification Section number and title.
 - 2. Description of test and inspection.
 - 3. Identification of applicable standards.
 - 4. Identification of test and inspection methods.
 - 5. Number of tests and inspections required.
 - 6. Time schedule or time span for tests and inspections.
 - 7. Entity responsible for performing tests and inspections.
 - 8. Requirements for obtaining samples.
 - 9. Unique characteristics of each quality-control service.
- B. Reports: Prepare and submit certified written reports that include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - Complete test or inspection data.

PONumber: C17902C020

- 9. Test and inspection results and an interpretation of test results.
- 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
- 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
- 12. Name and signature of laboratory inspector.
- 13. Recommendations on retesting and reinspecting.
- C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.6 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this Article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- C. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar to those indicated for this Project in material, design, and extent.
- F. Specialists: Certain sections of the Specifications require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 - Requirement for specialists shall not supersede building codes and regulations governing the Work.
- G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 548; and with additional qualifications specified in individual Sections; and where required by authorities having jurisdiction, that is acceptable to authorities.
 - 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 - 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.
- H. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of

PONumber: C17902C020

manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

- I. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens, assemblies, mockups, and laboratory mockups; do not reuse products on Project.

1.7 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
 - 2. Payment for these services will be made from testing and inspecting allowances, as authorized by Change Orders.
 - 3. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.
- B. Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 2. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 3. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 4. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

PONumber: C17902C020

C. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 01 Section "Submittal Procedures."

- D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- E. Testing Agency Responsibilities: Cooperate with Engineer and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Engineer and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform any duties of Contractor.
- F. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible.
 - 2. Comply with the Contract Document requirements for Division 01 Section "Cutting and Patching."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 01 40 00

PONumber: C17902C020

SECTION 01 73 29 - CUTTING AND PATCHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes procedural requirements for cutting and patching.
- B. Related Sections include the following:
 - 1. Divisions 23 through 26 Sections for specific requirements and limitations applicable to cutting and patching individual parts of the Work.

1.3 DEFINITIONS

- Cutting: Removal of in-place construction necessary to permit installation or performance of other Work.
- B. Patching: Fitting and repair work required to restore surfaces to original conditions after installation of other Work.

1.4 QUALITY ASSURANCE

- A. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.
- B. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
- C. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety
- D. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch construction exposed on the exterior or in occupied spaces in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- E. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential

PONumber: C17902C020

interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.

1.5 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during cutting and patching operations, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. General: Comply with requirements specified in other Sections.
- B. In-Place Materials: Use materials identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.
 - 1. If identical materials are unavailable or cannot be used, use materials that, when installed, will match the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces to be cut and patched and conditions under which cutting and patching are to be performed.
 - 1. Compatibility: Before patching, verify compatibility with and suitability of substrates, including compatibility with in-place finishes or primers.
 - 2. Proceed with installation only after unsafe or unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- B. Adjoining Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.
- C. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

PONumber: C17902C020

3.3 PERFORMANCE

A. General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

- 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots as small as possible, neatly to size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
 - 4. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations.
 - 5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
 - 6. Proceed with patching after construction operations requiring cutting are complete.
- C. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other Work. Patch with durable seams that are as invisible as possible. Provide materials and comply with installation requirements specified in other Sections.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will eliminate evidence of patching and refinishing.
 - Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors: Where floors are removed extend one finished area into another, patch and repair floor surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance.
 - a. Where patching occurs in a painted surface, apply primer and intermediate paint coats over the patch and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition.

PONumber: C17902C020

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
 - 5. Repair of the Work.
 - 6. All Closeout Deliverables shall be submitted to Owner in electronic format unless specifically noted otherwise herin.

B. Related Requirements:

- 1. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.
- 2. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 DEFINITIONS

- A. Closeout Manuals: Manuals containing documentation required for closeout procedure verification. Three (3) separate PDF manuals, as follows: Architectural, Mechanical/Plumbing and Electrical.
- B. Environmental Closeout Manual: Collection of PDF documents certifying to OWNER that Project was permitted, constructed, and inspected in compliance with all regulatory requirements, the required disposals and/or recycling activities were documented and certified, all inspections and final clearances required by AHJs have been issued/filed, MSDS information has been submitted, and all notable environmental occurrences related to Project are documented and filed.
 - 1. Due from A/E at Substantial Completion. CM/GC shall submit to A/E prior to Substantial Completion for A/E's review and approval.

PONumber: C17902C020

2. Separate PDF files are required for each document listed in the Environmental Closeout Checklist. Each category and all subcategories of files must be bookmarked.

- 3. Once manual is approved by A/E, CM/GC shall complete and submit the Environmental Affairs Project Closeout Checklist to PM. PM shall submit to OWNER Director of Environmental Compliance for review/approval.
- 4. OWNER Environmental Compliance will review and provide final signature of approval on the Environmental Affairs Project Closeout Checklist.
- 5. CM/GC to provide written, signed statement that delineates any major environmental divisions that are not applicable to the project. If all divisions apply, the Contractor shall so state.
- C. Warranties & Guarantees Manual, Hard Copy: One (1) hard-copy binder including originals of each Warranty and/or Guarantee as required by Architect's Project Specification Sections.
- D. A/E Consolidated Punch List Sign-Off: Master Consolidated Punch List includes all Punch Lists from OWNER Maintenance and each OWNER Stakeholder, PM Team, along with each Engineer, Designer, and Sub-Consultant. Each item on the Final Punch List must be initialed/dated by the Author as "COMPLETE", and merged into (1) final PDF document.
- E. General Requirements Sign-Off: Listing of every item procured with General Requirements funding by CM/GC at \$75 or more, including date and signature of OWNER representative authorized to assume possession of item at completion of Project.
- F. As-Built Drawings: During Construction, kept at Project site and updated on a weekly basis to reflect ASIs, Bulletins, PRs, RFIs, and all other field adjustments.
- G. As-Built Manuals: During Construction, kept at Project site and updated on weekly basis with selected/approved/installed manufacturers and model numbers circled. Unused items are stricken-through.
- H. Certificate of Occupancy: Issued by the Building Code Compliance Office (BCCO) documenting, "the described structure or portion of the structure has been inspected for compliance with the requirements of the FBC for the occupancy and division of occupancy and the use for which the occupancy is classified."
- I. Certificate of Substantial Completion: Four (4) originals of OWNER Form "CP 1510" to be signed by CM/GC, A/E, and OWNER, which states that the Architect/Engineer has inspected the subject property, and the Work is found to be substantially and sufficiently complete in accordance with the approved Contract documents so that the Owner can occupy or utilize the Work for its intended use. Date of Substantial Completion signifies initial commencement of the Warranty Period, and date on which OWNER Maintenance becomes responsible for continuing care, maintenance and warranty protection. Four (4) originals shall be distributed as follows: OWNER A/E, CM/GC, spare.
- J. Record Drawings and Record Project Manuals: Final version of Construction Documents (Drawings and Project Manuals) which incorporate all As-Built information provided by the CM/GC to the Architect and verified by the PM Team.
- K. Final OWNER Pay Application: One (1) signed/notarized packet, including insurance certificates, contractor's affidavit of payment of debts and claims, contractor's affidavit of release of Liens, consent of surety to final payment, evidence that claims have been settled, final

PONumber: C17902C020

liqui-dated damages settlement statement, final M/WBE report, identify GR Savings, identify Buy-out Savings, identify self-perform work.

1.4 ACTION SUBMITTALS

- A. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- B. Certified List of Incomplete Items: Final submittal at Final Completion.

1.5 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Closeout Process:

1. Pre-Closeout Meeting:

a. Shall be held a minimum of 30-days in advance of the projected Substantial Completion inspection. Purpose of the meeting is to review all Closeout deliverables, and establish a tentative date for the Substantial Completion Inspection. PM shall provide 2-weeks advance notification to all invited attendees.

2. Review of Closeout Deliverables:

- a. CM/GC submits to Architect: For each Closeout Deliverable, CM/GC shall submit to Architect per the due dates listed in enclosed "Closeout Deliverable Schedule". 1. After submitting the set due at 50% Construction Completion, partial submittals shall not be accepted, with the exception of Phased Projects which have individual Contrac-tual Substantial Completion dates.
- b. Architect performs review: Architect shall review each Closeout Deliverable within the allotted time frame required by the OWNER/Architect contract for "Submittal Review Time".
- c. Architect submits to PM Team: Architect will then attach transmittal with review stamp and date to the Closeout deliverable, upload to OWNER' FTP site, and send email notification to Design.Construction@OWNER.net, the PM, and the PM Team's Closeout Manager.
- d. PM Team performs review: Once reviewed by Architect, the PM Team's Closeout Manager will review with PM staff and forward review comments to Architect and CM/GC.
- e. PM Team submits to OWNER: After PM Team reviews and approves each Closeout Deliverable, PM Team shall submit deliverable with transmittal to OWNER. Transmittal will clearly identify location of item on OWNER Facilities Server.
- f. NOTE: When Architect uploads Closeout Deliverables to PM Team, Architect shall clearly identify item as Closeout.
- 3. Confirmation of Approval for Closeout Deliverables:

PONumber: C17902C020

- a. The Project Closeout Checklist shall serve as the final confirmation of OWNER' acceptance of all Closeout Deliverables.
- b. The PM Team will insert completion dates on this checklist as progress is made.
- c. Once all deliverables are satisfied, the PM Team will circulate for electronic signatures. 1. Order of signatures is as follows: a. CM/GC
- b. Architect of Record
- c. PM (PM Team's Closeout Manager to Initial)
- d. Facilities Project Manager, P&D (Planning/Archives Team Member to Initial)
- e. Facilities Program Director, Construction
- f. Senior Director Facilities, Construction
- d. Fully executed "Project Closeout Checklist" is required to be presented with CFI during Document Review meeting.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.7 CLOSE OUT DOCUMENTATION AND PROCEDURES

- a. Initial Submittal of all Closeout Manuals are due at 50% Construction Completion.
- b. Electronic Manual Submittals: One (1) PDF file is required for each of the following manuals:
 - 1. Architectural
 - 2. Mechanical / Plumbing
 - 3. Electrical
- c. For Electronic Manual Submittals, page 1 of each PDF shall be "Project Information Sheet". Each PDF file shall be bookmarked per Specification Section (number and name). Each bookmarked section shall contain five (5) bookmarks for each of the five (5) documents listed below. Note: If a particular Specification Section does not require one or more of the five (5) documents listed below, insert a placeholder sheet stating, "Not Required per Specification Section".
 - 1. Specification Section Information Sheet
 - 2. O&M Material (required for each type of product/equipment)
 - a. Manufacturer's Recommended Care and Cleaning
 - b. Installation Instructions

PONumber: C17902C020

- c. Manufacturer's parts lists including parts numbers
- d. Filter Lists including sizes, locations and replacement schedule
- e. Lubrication charts and schedules
- f. Valve charts and schedules
- g. Schematic piping and wiring diagrams
- h. Pertinent diagrams of equipment with main parts identification
- i. Special instructions
- j. Any testing procedures for operating tests
- k. Preventative Maintenance Instructions
- 1. Emergency instructions
- m. Inspection Procedures

3. Copy of Warranties & Guarantees

- a. In the event warranties require Owner signature, the Facilities Program Director shall sign only after receiving:
 - 1. Summary from the PM stating where the warranty is referenced in the contract documents.
 - 2. Confirmation from the AE that said warranty meets the intent of the contract documents.
 - 3. Confirmation from the PM that the warranty complies with the contract documents with recommendation to execute.

4. Spare Parts / Maintenance Stock

- a. Submittal Register shall include required quantities and types for all spare parts / maintenance stock.
- b. At minimum (2) weeks in advance of delivery date, draft Exhibit Ds listing the following information shall be submitted to Architect and PM Team for pre-approval: quantity and type of each item listed on Equipment Schedule and/or Finish Schedule. Form must be approved by Architect and PM Team in advance of delivering attic stock to OWNER.
- c. During Pre-Closeout Meeting, PM shall define OWNER delivery address for each item (information provided by Area O&M Manager).
- d. CM/GC shall secure signature of PM in advance of delivering attic stock to OWNER.
- f. Coordinate delivery dates/times in advance with OWNER Maintenance Representative Recipient.
- g. CM/GC shall deliver to OWNER Area Maintenance at Substantial Completion.
- h. When possible, label each package/box/container with description or ID tag from Architect's Finish Schedule or Equipment Schedule.
- i. CM/GC to include completed/signed Exhibit Ds (transmittal sheet) in each Closeout Manual, which is due to the PM Team from A/E within (30) calendar days of Substantial Completion. When possible, include description or ID tag from Architect's Finish Schedule on Exhibit D.

5. Performance Verification/Demonstration to Owner

- a. CM/GC to include all training requirements within Closeout Submittal Register, due to A/E within (30) days of NTP.
- b. During Pre-Closeout Meeting, define requirements of each training session.
- c. Coordinate dates/times with each required Attendee, including; OWNER, Maintenance, and all related OWNER Stakeholders.
- d. The manufacturer's representative and system consultant shall be present
- e. Submit proof of start-up/final testing of systems.
- f. CM/GC to include Exhibit E's (sign-in sheets) in each Closeout Manual, which is due to the PM Team from A/E within (30) calendar days of Substantial Completion.

PONumber: C17902C020

- g. CM/GC to submit video documentation of each training session to A/E within (30) calendar days of Substantial Completion. Video must be in mpg format.
- 6. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures
- 7. Operations: Include the following, as applicable:
 - a. Startup procedures
 - b. Equipment or system break-in procedures
 - c. Routine and normal operating instructions
 - d. Regulation and control procedures
 - e. Control sequences
 - f. Safety procedures
 - g. Instructions on stopping
 - h. Normal shutdown instructions
 - i. Operating procedures for emergencies
 - j. Operating procedures for system, subsystem, or equipment failure
 - k. Seasonal and weekend operating instructions
 - 1. Required sequences for electric or electronic systems
 - m. Special operating instructions and procedures
- 8. Adjustments: Include the following:
 - a. Alignments
 - b. Checking adjustments
 - c. Noise and vibration adjustments
 - d. Economy and efficiency adjustments
- 9. Troubleshooting: Include the following:
 - a. Diagnostic instructions
 - b. Test and inspection procedures
- 10. Maintenance: Include the following:
 - a. Inspection procedures
 - b. Types of cleaning agents to be used and methods of cleaning
 - c. List of cleaning agents and methods of cleaning detrimental to product
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance
 - f. Procedures for routine maintenance
 - g. Instruction on use of special tools
- 11. Repairs: Include the following:
 - a. Diagnosis instructions
 - b. Repair instructions
 - c. Disassembly; component removal, repair, and replacement; and reassebly instructions
 - d. Instructions for identifying parts and components

PONumber: C17902C020

- e. Review of spare parts needed for operation and maintenance
- 12. Due from A/E at Substantial Completion. CM/GC shall submit to A/E prior to Substantial Completion for A/E's review and approval.
- 13. Separate PDF files are required for each document listed in the Environmental Close-out Manual Checklist (Exhibit J). Each category and all subcategories of files must be bookmarked.
- 14. Once manual is approved by A/E, CM/GC shall complete and submit the Environmental Affairs Project Closeout Checklist (Exhibit I) to PM. PM shall submit to OWNER Director of Environmental Compliance for review/approval.
- 15. OWNER Environmental Compliance' will review and provide final signature of approval on the Environmental Affairs Project Closeout Checklist (Exhibit I).
- 16. CM/GC to provide written, signed statement that delineates any major environmental divisions that are not applicable to the project. If all divisions apply, the Contractor shall so state.
- d. Original Copy Submittals for Warranties & Guarantees: Organize submittal as follows:
 - 1. Due from A/E within (30) calendar days of Substantial Completion.
 - 2. In addition to including copy of Warranty in the (5) Closeout Manuals listed above (Arch/Civil; Mechanical/Plumbing; Electrical; Fire; Kitchen), CM/GC shall also submit (1) hard copy binder of all original Warranties & Guarantees.
 - 3. Binder shall include Table of Contents, inclusive of the following:
 - a. Warranties & Guarantees in order of Specification Section number.
 - b. Product Name
 - c. Type of Warranty
 - d. Number of Years included with Warranty
 - e Subcontractor Name
 - f. Subcontractor Telephone Number
 - 4. NOTE: In the event warranties require Owner signature, the Facilities Program Director shall sign only after receiving:
 - a. Summary from the PM stating where the warranty is referenced in the contract documents.
 - b. Confirmation from the AE that said warranty meets the intent of the contract documents.

PONumber: C17902C020

c. Confirmation from the PM that the warranty complies with the contract documents with recommendation to execute.

- 5. Binder shall be clear vinyl covered, 3-ring binder, 3" maximum
 - a. Use additional binder if needed.
 - b. Sparco "Standard Vue Binders", Series SPR 057 Series, up to 1-1/2", or equivalent; SPR 062 Series/D-Ring 2" to 3", or equivalent.
 - c. Each section shall be divided by 8-1/2" x 11" reinforced white blank indexes, 3-hole punched, with clear tab labels for laser printing, 5-tab dividers.
 - 1. Avery Series AVE 11446, or equivalent.
 - 2. See Exhibits B and C for cover layout.
 - 3. Tab labels shall be clearly marked with Division Number.

6. A/E Master Consolidated Punch List Sign-Off

- a. Conduct Pre-Inspection of Punch List Walk-Through with OWNER and Opening Team Members.
- e. Ensure CM/GC has pre-punched prior to requesting A/E & Client walk-through.
- f. Require CM/GC to notify A/E in writing upon CM/GC's completion of Punch List items.
- g. Send meeting invitations to each OWNER Stakeholder identified on "Punch List Checklist" no later than 2-weeks prior to inspection date.
- h. PM to participate in each inspection, and forward all OWNER lists to A/E.
- i. PM to ensure OWNER Stakeholders' lists are included in A/E's Master Consolidated Punch List.
- j. PM to schedule and participate in re-inspections.
- k. PM to ensure CM/GC completion of Punch List within time allotted by Contract (typically within 30 days of Substantial Completion) to minimize occurrence of extending Conditional Certificates of Occupancy (CCOs).
- 1. PM to monitor OWNER Commissioning Server, to track OWNER Maintenance' sign-off on all Punch List items.
- m. Each line of Consolidated Punch List must be signed /dated by Author of Punch List Item.

7. General Requirements Sign-Off

- a. Upon receipt of Contractor's initial Pay Application, and applicable for each Pay Application thereafter, Project Manager shall maintain a log of items purchased by Contractor with General Requirements (GR) funding. This log shall be referred to as "GR Inventory Log".
- b. Criteria for determining if items qualify for inclusion in GR Inventory Log are as follows:

PONumber: C17902C020

- 1. Items valued at \$75 or above
- 2. Items must have pre-qualified as an allowable purchase per contract language
- c. GR Inventory Log shall include the following criteria:
 - 1. Pay Application number
 - 2. GR Schedule of Values (SOV) line item number
 - 3. Description of item
 - 4. Manufacturer or retail outlet
 - 5. Amount paid by Contractor (exclusive of sales tax)
- d. Project Manager shall share GR Inventory Log with Contractor on a monthly basis in an ef-fort to maintain agreement and eliminate issues in reconciliation at time of Project Close-out.
- e. At time of Project Closeout, Contractor shall be required to account for each item listed in GR Inventory Log, as follows:
 - 1. Return to OWNER all items listed in GR Inventory Log in working order & good condition.
 - 2. Contractor shall create transmittal for all items to be returned to OWNER.
 - 3. Ensure all titles for each item, if available, or properly and thoroughly transferred to OWNER.
 - 4. Contractor shall secure signed and dated transmittal from OWNER for each item re-turned.
 - 5. Project Manager shall verify each printed name on all transmittals are legible, and shall ensure all transmittals are properly included in OWNER Closeout files.
 - f. Provide credit to OWNER from amounts realized from sale of unused or excess materials or items.
 - g. In the event a Project Manager is assigned to a Project after OWNER' processing of initial and subsequent Pay Applications, Project Manager shall retrieve copies of all past Pay Applications and use this historic information to populate GR Inventory Log.
- 8. As-Built Drawings & As-Built Manuals:
 - a. CM/GC shall be responsible for recording daily deviations of construction on a copy of the Conformed Construction Documents kept at the project site.
 - b. CM/GC shall maintain a clean, undamaged set of Conformed Contract Documents (blue or black line prints of drawings and Project Manuals) and ensure they are regularly and promptly marked to show the actual conditions where actual installation, material, equip-ment or location varies from the Work as shown in the Conformed Documents.

PONumber: C17902C020

1. All such variations shall be marked in red on the As-Built Drawings and the As-Built Project Manual(s) at the time of occurrence to ensure accuracy.

- 2. Mark drawings and pages that are the most capable of showing conditions fully and accurately.
- 3. Particular attention shall be given to concealed elements that would be difficult to measure and record at a later date.
- 4. Record information on the Work that is shown only schematically
- 5. Post RFI's, ASI's, Change Orders, Addenda, etc. continuously during Construction.
- 6. Mark actual products installed in Project (Specification) Manuals for A/E to highlight in Record Set.
- 7. Schedule review session at 50% Construction Completion to review As-Built documents with all Engineers and Sub-Consultants.
- 8. Discuss turnover of As-Built documents during Pre-Closeout Meeting, and at 30-days prior to scheduled date of Substantial Completion.
- 9. "As-Built Documents" shall be reviewed by the Architect and Project Manager at Project Meetings, at least monthly to insure they are being kept up to date.
- c. CM/GC shall submit their As-Built Conformed Contract Documents to the Architect as color scanned PDF files with each PDF file named per Architect sheet name at Substantial Completion.
- 1. Meet with A/E and PM Team to page-turn to ensure complete/clear information is being provided.
- d. A/E shall upload As-Built Documents to OWNER' FTP site. Electronic color copies are required; hard copies are accepted but not required.
- 9. Certificate of Occupancy (fully executed certificate issued by BCCO)
 - a. CM/GC shall ensure all requirements for requesting Certificate of Occupancy are satisfied/inspected (reference BCCO website for current requirements), and all conditions previously listed on Conditional Certificate(s) of Occupancy have been completed.
 - b. CM/GC shall forward request for Certificate of Occupancy to the BCCO, ensuring all fields of form are completed with required information (Project information, construction type, square footage, occupant load, description of each structure, contact information, permit information, final inspection dates, etc).
 - c. BCCO will review, process, and issue (email) completed forms (signed/dated by the Building Official).
 - d. CM/GC shall provide copies of all Certificate of Occupancy forms to the PM Team for filing in the Project folder of the OWNER Facilities Server.

PONumber: C17902C020

10. Certificate of Substantial Completion (4 Originals)

- a. CM/GC shall prepare and submit the following documentation to the Architect prior to re-questing inspection for certification of Substantial Completion. Architect shall review, approve/stamp, and upload to OWNER' FTP site (notify design.construction@Owner.net). Partial submittals shall not be accepted, except for Projects with multiple contractual Substantial Completion dates.
- 1. Certificate(s) of Occupancy (or CCO) issued by BCCO
- 2. CM/GC's Completion Punch List (List of items to be completed or corrected)
- 3. Environmental Affairs Project Closeout Checklist
- 4. As-Built Drawings & As-Built Project
- a. Upon receipt of the CM/GC's written request for inspection, Architect shall verify that the CM/GC has submitted all required Closeout Deliverables which are due at time of Substantial Completion (see enclosed "Closeout Deliverables Schedule"), or notify CM/GC of noncompliance and failure to demonstrate readiness for Substantial Completion inspection.
 - 1. Once Architect is in agreement with CM/GC's readiness for Substantial Completion inspection, PM shall establish date, and distribute invite to OWNER attendees.
 - a. The following parties shall attend: PM, CM/GC and Primary Sub-Contractors, Architect, Primary Engineering Consultants and Designers, and OWNER Maintenance.
 - 2. At such time as the Work has been deemed Substantially Complete, Architect shall prepare the Certificate of Substantial Completion (*OWNER Form "CP 1510"; four originals*), stating that the Architect/Engineer has inspected the subject property, and the Work is found to be substantially and sufficiently complete in accordance with the approved Contract documents so that the Owner can occupy or utilize the Work for its intended use.
 - a. Prior to executing the Certificate of Substantial Completion (*OWNER Form "CP 1510"*), Architect shall submit Master Consolidated Punch List.
 - 1. Shall include all Punch List inspection items received from all Sub-Consultants, Engineers/Designers, CM/GC, OWNER Maintenance, and all OWNER Stakeholders (see OWNER Punch List Checklist for listing of OWNER Punch Lists).
 - 2. Shall be prepared within five (5) days of the last inspection performed.
 - 3. Cover sheet shall be the OWNER Punch List Checklist, provided by PM and completed/signed by the Architect.
 - b. Punch List Checklist shall be attached to each of the (4) original Certificate of Substantial Completion forms. It is not necessary to attach the entire Master Consolidated Punch List to the Certificate of Substantial Completion forms.

PONumber: C17902C020

c. PM shall review, approve, and initial each of the (4) original Certificate of Substantial Completion packets, and submit to Senior Director of Construction for final signature.

- d. Once fully executed, PM shall scan/email copies of the Certificate of Substantial Completion to Architect and CM/GC, save scanned copy to the Project Files on the OWNER Facilities Server, and transmit originals to Architect, CM/GC, and OWNER Archives. When transmitting files, PM shall use the PM Transmittal template.
- e. Certificate of Substantial Completion does not authorize occupancy of any kind. Occupancy may only be obtained through a BCCO-issued Certificate of Occupancy (CO), or Conditional Certificate of Occupancy (CCO).
- f. Certificate of Occupancy (CO), or Conditional Certificate of Occupancy (CCO), does not guarantee the Project has achieved Substantial Completion. This determination is made by the Architect in conjunction with the PM Team and ultimately approved by OWNER Senior Director of Construction.
- 3. At such time as the Work has been deemed Substantially Complete, the PM shall pre-pare an OWNER Maintenance Receipt for Project Turnover (Exhibit G) signifying that OWNER Area Maintenance received the above project on a certain date and became responsible for its continuing care, maintenance and warranty protection.
- 11. Certificate of Final Inspection (4 Originals)
 - a. Certificate of Final Inspection serves as verification of the following:
 - 1. Architect of Record documents the Work required by the Contract has been inspected, and has been completed in accordance with approved Contract documents.
 - 2. Building Official documents the Project has been inspected, and is complete and in accordance with applicable statutes, rules and codes.
 - 3. OWNER Board has accepted the referenced Project upon the recommendation of the Project Architect and in accordance with Chapter 1013 of Florida Statute.
 - b. A/E Generates Certificate of Final Inspection (4 originals).
 - c. BCCO Confirms and Signs CFI (4 originals).
 - d. PM Prepares Board Resolution paperwork, and attaches (4) original CFIs.
 - e. PM submits Board Resolution packet with request to be placed on Agenda.
 - f. Ensure the proper Board Resolution cover sheet is utilized when preparing paperwork.
 - 1. All dollar amounts must be rounded to the nearest dollar.
 - 2. Include Pre-Construction Fees in "Final Construction Contract Amount".

PONumber: C17902C020

3. Final paperwork must be submitted to PM Team Leadership 3 weeks prior to Board Resolution date. PM Team Leadership will forward to OWNER CFO (2) full weeks prior to Board Resolution date.

- g. CFI is not required to be presented to CPSC.
- h. Regardless of the existence of multiple contractual Substantial Completion dates, only one (1) CFI is required for each Project.
- i. Regardless of the number of GMP Amendments, only one (1) CFI is required for each Project.
 - 1. For example, this shall apply in the event an additional Amendment was issued for construction of separate Classroom building; however both Amendments share same Project Number and Project Budget.
 - 2. The financial portion of the CFI (typically second page) shall be divided into multiple sections to allow for each Amendment to be shown individually.
- j. Final payment to CM/GC
 - 1. Final payment to CM/GC shall occur approximately 2 weeks after CFI is approved.
- k. Upon fully executed CFI, OWNER submits for DOE release.
- 1. OWNER Maintenance has responsibility for Warranty and continuing maintenance for facilities beginning with the date of Substantial Completion.
- 12 .Record Drawings & Record Manuals:
 - a. A/E and CM/GC are required to attend a review session with the PM Team to validate each sheet of submittal.
 - b. A/E shall upload to OWNER' FTP site within thirty (30) days of Substantial Completion, and prior to the issuance of CFI.
 - 1. Must be in .dwg format.
 - 2. Can also submit in .dwf format.
 - 3. Each drawing sheet must read, "Record Drawings" with date.
 - 4. Record Manuals must be highlighted by A/E indicating final product approved/installed.
 - 5. It is not necessary for A/E to submit hard copy of Record Manuals. Electronic, bookmarked copies are required.
 - 6. Record Drawings & Record Manuals are essentially 'cleaned up' copies of As-Built Drawings & Manuals. Ensure information from As-Builts is thoroughly captured in Record Drawings. Include the following, at minimum:
 - a. Dimensional changes to Drawings
 - b. Revisions to details shown on Drawings

PONumber: C17902C020

- c. Depths of foundations below first floor
- d. Revisions to routing of piping and conduits
- e. Revisions to electrical circuitry
- f. Actual equipment locations
- g. Duct size and routing
- h. Changes made by Change Order or Construction Change Directive
- i. Changes made following Architect's written orders
- j. Details not on the original Contract Drawings
- k. Field records for variable and concealed conditions
- l. Location and depths of interior and exterior underground utilities and appurte-nances, pull boxes, valves, shut offs, dimensionally referenced to permanent and visible surface improvements
- m. Final vertical elevations of all underground storm sewer, sanitary, water and gas systems referenced to permanent above ground surfaces
- n. Final perimeters and depths of all water retention areas sufficient for the calculation of as-built retention volume by A/E.
- o. CM/GC shall retain and pay for the services of a professionally licensed surveyor to certify elevations, locations, perimeters and depths.
- 13. Certified Final Payment Application (1 Original)
 - a. Originals must be submitted to OWNER Fiscal; scanned copies of originals are placed in the Closeout file.
 - 1. Final MWBE Form
 - 2. Final Release of Liens from all Subcontractors/Suppliers
 - 3. Release & Affidavit Original from CM/GC, for the full and final contract amount.
 - 4. Consent of Surety with Power of Attorney (Original)
 - 5. Certificate(s) of Insurance (Original Certificate(s) for a Period of one (1) Year after Date of Substantial Completion). Terms of insurance shall be in conformance with specific requirements of the Contract documents.

PONumber: C17902C020

1.8 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

- B. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems.
 - 6. Advise Owner of changeover in heat and other utilities.
 - 7. Participate with Owner in conducting inspection and walkthrough.
 - 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 9. Complete final cleaning requirements, including touchup painting.
 - 10. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- C. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
 - 2. Results of completed inspection will form the basis of requirements for final completion.

1.9 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 - 1. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
- B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for

PONumber: C17902C020

Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.10 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
 - 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect and Construction Manager.
 - d. Name of Contractor.
 - e. Page number.
 - 4. Submit list of incomplete items in the following format:
 - a. MS Excel electronic file. Architect, through Construction Manager, will return annotated file.
 - b. PDF electronic file. Architect, through Construction Manager, will return annotated file.
 - c. Three paper copies. Architect, through Construction Manager, will return two copies.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.
 - 1. Use cleaning products that comply with Green Seal's GS-37, or if GS-37 is not applicable, use products that comply with the California Code of Regulations maximum allowable VOC levels.

PONumber: C17902C020

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 - c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 - d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - e. Remove snow and ice to provide safe access to building.
 - f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - h. Sweep concrete floors broom clean in unoccupied spaces.
 - i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 - j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
 - k. Remove labels that are not permanent.
 - l. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
 - m. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
 - n. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
 - o. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
 - 1) Clean HVAC system in compliance with latest NADCA Standards. Provide written report on completion of cleaning.

PONumber: C17902C020

- p. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
- q. Leave Project clean and ready for occupancy.

3.2 REPAIR OF THE WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
 - 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
 - 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700

PONumber: C17902C020

SECTION 01 78 23 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation manuals for systems, subsystems, and equipment.
 - 2. Maintenance manuals for the care and maintenance of products, materials, and finishes systems and equipment.
- B. Related Sections include the following:
 - 1. Division 01 Section "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
 - 2. Divisions 02 through 32 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 SUBMITTALS

- A. Initial Submittal: Submit 2 draft copies of each manual at least 15 days before requesting inspection for Substantial Completion. Include a complete operation and maintenance directory. Engineer will return one copy of draft and mark when general scope and content of manual are acceptable.
- B. Final Submittal: Submit 3 copies of each manual in final form.

1.5 COORDINATION

A. Where operation and maintenance documentation include information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 MANUALS, GENERAL

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - Manual contents.
- B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - Date of submittal.
 - 5. Name, address, and telephone number of Contractor.
 - 6. Name and address of Architect.
 - 7. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
 - 1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Crossreference other binders if necessary, to provide essential information for proper operation or maintenance of equipment or system.
 - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
 - 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
 - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.
 - 4. Supplementary Text: Prepared on 8-1/2-by-11-inch white bond paper.

PONumber: C17902C020

- 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions.
 - 2. Performance and design criteria if Contractor is delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- B. Descriptions: Include the following:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.
 - 9. Complete nomenclature and number of replacement parts.
- C. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

PONumber: C17902C020

2.3 PRODUCT MAINTENANCE MANUAL

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Product Information: Include the following, as applicable:
 - Product name and model number.
 - Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.4 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard printed maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.

PONumber: C17902C020

- 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training videotape, if available.
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- B. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- C. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a

PONumber: C17902C020

tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

- 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- D. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original Project Record Documents as part of operation and maintenance manuals.
 - 2. Comply with requirements of newly prepared Record Drawings in Division 01 Section "Project Record Documents."
- E. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 01 78 23

PONumber: C17902C020

SECTION 01 78 39 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes administrative and procedural requirements for Project Record Documents and As-Build Documents, including the following:
 - 1. Record Drawings.
 - 2. Record Product Data.
 - 3. As-Built Documents are copies of the Contract Documents kept at the project site used to record deviations on a daily basis. As-Built Documents include Drawings, Project Manual(s), including administrative instructions and technical specifications, Addenda, Change Orders, Field Directives, ASI's, RFI's, and other modifications.
- B. Related Sections include the following:
 - 1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
 - 2. Divisions 02 through 32 Sections for specific requirements for Project Record Documents of the Work in those Sections.

1.3 SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set(s) of marked-up Record Prints and one Electronic Set in color.
 - 2. Number of Copies: Submit copies of Record Drawings as follows:
 - a. Initial Submittal: Submit one set(s) of plots from corrected Record CAD Drawings and one set(s) of marked-up Record Prints. Engineer will initial and date each plot and mark whether general scope of changes, additional information recorded, and quality of drafting are acceptable. Engineer will return plots and prints for organizing into sets, printing, binding, and final submittal.
 - b. Final Submittal: Submit one set(s) of marked-up Record Prints. Print each Drawing, whether or not changes and additional information were recorded. Provide electronic copy of the set in color.
- B. Record Product Data: Submit one copy of each Product Data submittal and one Electronic copy.
 - 1. Where Record Product Data is required as part of operation and maintenance manuals, submit marked-up Product Data as an insert in manual instead of submittal as Record Product Data.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 AS-BUILT and RECORD DOCUMENT PREPARATION (Contractor/CM and A/E Joint Responsibility)

- 1. Contractor/CM shall be responsible for recording daily deviations of construction on a copy of the Conformed Construction Documents kept at the project site. Ultimately, this job-site set known as "As-Built Documents" shall be reviewed by the Architect and incorporated into and become known as "Record Documents".
- 2. Contractor/CM shall maintain a clean, undamaged set of Conformed Contract Documents (blue or black line prints of drawings and Project Manuals) and ensure they are regularly and promptly marked to show the actual conditions where actual installation, material, equipment or location varies from the Work as shown in the Conformed Documents. All such variations shall be marked on the As-Built Drawings and the As-Built Project Manual(s) at the time of occurrence to ensure accuracy. Mark drawings and pages that are the most capable of showing conditions fully and accurately. Particular attention shall be given to concealed elements that would be difficult to measure and record at a later date. "As-Built Documents" shall be re-viewed by the Architect and Project Manager at Project Meetings, at least monthly to insure they are being kept up to date.
- 3. Contractor/CM shall submit their As-Built Conformed Contract Documents to the Architect as color scanned PDF files at Substantial Completion.
- 4. A/E shall promptly review the Contractor/CM's set of marked-up As-Built Conformed Documents for compliance with this Section and shall use them in making revisions to the offi-cial Record Documents.
- Record Documents (Drawings and Project Manual) shall be prepared by the A/E and provided to the OCPS Project Manager prior to the issuance of the Certificate of Final Inspection. The Project shall not be finalized, closed out or a Certificate of Final Inspection issued until the Record Documents have been delivered to OCPS.RECORD DRAWINGS
- 6. Record Document Content
 - a. Record Project Manual shall be boldly marked with "RECORD DOCUMENT PROJECT MANUAL" and the revision date.
 - b. Organize Record Documents into manageable, electronic sets, cover sheets, with suitable titles, dates, and other identification (Vol. X of XX, for multiple part sets) noted on the cover of each set. EVERY PAGE of the Record Drawings shall be boldly marked with "RECORD DRAWING" and the revision date.
 - c. Provide significant changes in location and material selections made during the construction process. Include all field changes and document modifications responding to Requests for Information, Architectural Supplemental Instructions and Change Orders.
 - d. Show location of interior and exterior underground utilities and appurtenances, pull boxes, valves, shut offs, dimensionally referenced to permanent and visible surface improve-ments; final vertical elevations of all underground storm sewer, sanitary, water and gas systems referenced to permanent above ground surfaces; final perimeters and depths of all water retention areas sufficient for the calculation of as-built retention

PONumber: C17902C020

volume by the Architect. Contractor shall retain and pay for the services of a professionally licensed sur-veyor to certify elevations, locations, perimeters and depths.

- e. State actual manufacturer and model number of equipment installed noted in the Project Manual.
- f. Meet with Architect and Project Manager to page-turn (ensure complete/clear information) prior to Record Documents submittal.
- B. As-Built Drawings: Maintain one set of blue- or black-line white prints of the Contract Drawings and Shop Drawings.
 - 1. Preparation: Mark As-Built Drawingsto show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an understandable drawing technique.
 - c. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations.
 - 2. Record Drawings and Project Manuals that have been revised by the A/E to in-clude the site-recorded deviations from the Conformed Documents plus all ASI's, Change Or-ders, Field Directives and other modifications. Record Drawings shall include the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below first floor.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order.
 - k. Changes made following Enineer's written orders.
 - I. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings or Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If Shop Drawings are marked, show cross-reference on the Contract Drawings.
 - 4. Mark As-built Drawings with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
 - 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

PONumber: C17902C020

C. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Drawings: Organize Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2.2 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

2.3 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project.
- B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Engineerss's reference during normal working hours.

END OF SECTION 01 78 39

PONumber: C17902C020

SECTION 23 05 00 - COMMON WORK RESULTS FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Mechanical equipment coordination and installation.
 - 2. Common mechanical installation requirements.

1.3 GENERAL REQUIREMENTS

- A. Carefully examine General Conditions, other specification sections, and other drawings (in addition to DIVISION 23), in order to be fully acquainted with their effect on mechanical work. Additions to the contract cost will not be allowed due to failure to inspect existing conditions.
- B. Do all work in compliance with 2017 Florida Building Code, and the Codes adopted therein and latest addition of the Florida Fire Prevention Code. Obtain and pay for any and all required permits, inspections, certificates of inspections and approval, and the like, and deliver such certificates to the Architect/Engineer.
- C. Cooperate and coordinate with all other trades. Perform work in such manner and at such times as not to delay work of other trades. Complete all work as soon as the condition of the structure and installations of equipment will permit. Patch, in a satisfactory manner and by the proper craft, any work damaged by mechanical workmen.
- D. Furnish, perform, or otherwise provide all labor (including, but not limited to, all planning, purchasing, transporting, rigging, hoisting, storing, installing, testing, chasing, channeling, cutting, trenching, excavating and backfilling), coordination, field verification, equipment installation, support, and safety, supplies, and materials necessary for the correct installation of complete and functional mechanical systems (as described or implied by these specifications and the applicable drawings).

1.4 DRAWINGS:

- A. Indicate only diagrammatically the extent, general character, and approximate location of work. Where work is indicated, but with minor details omitted, furnish and install it complete and so as to perform its intended functions.
- B. DIVISION 23 work called for under any section of the project specifications, shall be considered as included in this work unless specifically excluded by inclusion in some other branch of the work. This shall include roughing-in for connections and equipment as called for or inferred. This would include connection and ductwork required for all fans, dryers, diffusers etc as required for a functional installation, whether shown on the drawings or not. Check all drawings

PONumber: C17902C020

and specifications for the project and shall be responsible for the installation of all DIVISION 23 work

- C. Take finish dimensions at the job site in preference to scale dimensions. Do not scale drawings where specific details and dimensions for DIVISION 23 work are not shown on the drawings, take measurements and make layouts as required for the proper installation of the work and coordination with all drawings and coordination with all other work on the project. In case of any discrepancies between the drawings and the specifications that have not been clarified by addendum prior to bidding, it shall be assumed by the signing of the contract that the higher cost (if any difference in costs) is included in the contract price, and perform the work in accordance with the drawings or with the specifications, as determined and approved by the Architect/ Engineer, and no additional costs shall be allowed to the base contract price.
- D. Carefully check the drawings and specifications of all trades and divisions before installing any of the work. Contractor shall in all cases consider the work of all other trades, and shall coordinate his work with them so that the best arrangements of all equipment, piping, conduit, ducts, rough-in, etc., can be obtained. The avoidance of any beams, joist or bracing that is an obstruction to ductwork, shall be included in the bid. This includes the reroute of ductwork or dimension revisions required to obtain the intended function of the ductwork. Bring all obstructions to the attention of the A/E during the shop drawing preparation and prior to fabrication of any ductwork. No cost will be paid by the owner for these modifications that can be identified by reviewing all sets of drawings prior to bid.
- E. Coordinate mechanical equipment voltage requirements with electrical drawings. Notify the A/E of any discrepancies prior to bid. Make all revisions required to coordinate with no additional cost to the owner.
- F. Obtain manufacturer's data on all equipment, the dimensions of which may affect mechanical work. Use this data to coordinate proper service characteristics, entry locations, etc., and to ensure minimum clearances are maintained.

1.5 QUALIFICATIONS OF CONTRACTOR:

- A. DIVISION 23 Contractor shall have had experience of at least the same size and scope as this project, on at least two other projects within the last five years in order to be qualified to bid this project.
- B. Contractor performing any part of this scope of work shall be a Florida State Certified Mechanical Contractor (Type CMC)

1.6 SITE VISIT/CONDITIONS

- A. Visit the site of this contract and thoroughly familiarize with all existing field conditions and the proposed work as described or implied by the contract documents. During the course of his site visit, verify every aspect of the proposed work and the existing field conditions in the areas of construction which might affect his work. No compensation or reimbursement for additional expenses incurred due to failure or neglect to make a thorough investigation of the contract documents and the existing site conditions will be permitted.
- B. Install all equipment so that all Code required and Manufacturer recommended servicing clearances are maintained. Coordinate the proper arrangement and installation of all equipment within any designated space. If it is determined that a departure from the Contract Documents is necessary, submit to the A/E, for approval, detailed drawings of the proposed

PONumber: C17902C020

changes with written reasons for the changes. No changes shall be implemented without the approval of the engineer.

- C. Submission of a proposal will be construed as evidence that such examination has been made and later claims for labor, equipment or materials required because of difficulties encountered will not be recognized.
- D. Existing conditions and utilities indicated are taken from existing construction documents, surveys, and field investigations. Unforeseen conditions probably exist and existing conditions shown on drawings may differ from the actual existing installation with the result being that new work may not be field located exactly as shown on the drawings. Field verify dimensions of all site conditions prior to bidding and include any deviations in the contract. Notify A/E if deviations are found.
- E. Locate all existing utilities and protect them from damage. Pay for repair or replacement of utilities or other property damaged by operations in conjunction with the completion of this work.
- F. Work is in connection with existing buildings with tenant areas which must remain in operation while work is being performed. Work shall be in accord with the schedule required by the Contract. Schedule work for a minimum shut down to Owner. Notify Owner 72 hours in advance of any shut-down of existing systems. Perform work as not to interrupt other tenants during operating hours unless otherwise accepted by Owner. Protect existing buildings and equipment during construction.

PART 2 - PRODUCTS 2.1 NOT USED

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR MECHANICAL INSTALLATION

- A. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- B. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- C. All work shall be executed in a workmanship manner and shall present a neat mechanical appearance upon completion.
- D. Care shall be exercised so that Code clearance is allowed for all panels, controls. etc., requiring it. Do not allow other trades to infringe on this clearance.
- E. The electrical circuits, components and controls for all equipment are selected and sized based on the equipment specified. If substitutions are proposed, furnish all materials and data required to prove equivalence.

END OF SECTION 23 05 00

SECTION 26 05 01 - INVESTIGATION OF EXISTING MECHANICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including Contractual conditions and Division 1 Specification sections apply to this section.

1.2 SUMMARY

A. This section includes the requirements for investigation and reporting on conditions of existing mechanical systems.

1.3 DESCRIPTION

- A. Test the essential features of existing mechanical systems.
- B. Each system shall be tested once only, and after completion of testing, results given to the Owner. Point out any non-operational function noticed during testing.
- C. Document the existing conditions and operation of the existing mechanical systems prior to any work.
- D. Contractor shall be responsible for all non-working systems and their components unless non-working status is verified prior to work on system.

1.4 COORDINATION

A. The testing shall be held at a date to be agreed upon in writing by the Owner.

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION

3.1 MEMO OF INVESTIGATION (TESTING)

A. Submit Existing Facilities Investigation Memo and advise Owner of all deficiencies in system(s) prior to Work. All systems will be assumed to be fully operational if Memo is not received by Owner prior to work on system.

END OF SECTION 26 05 01

PONumber: C17902C020

SECTION 23 05 10 - BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping instructions.
 - 2. Mechanical sleeve seals.
 - 3. Sleeves.
 - 4. Grout.
 - 5. Mechanical demolition.
 - 6. Equipment installation requirements.
 - 7. Concrete bases.
 - 8. Supports and anchorages.

1.3 DEFINITIONS

- A. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- B. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- C. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- D. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Product Data: For the following:

Mechanical sleeve seals.

1.5 QUALITY ASSURANCE

A. Electrical Characteristics for Mechanical Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PONumber: C17902C020

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

 Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

2.3 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- C. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

PONumber: C17902C020

2.4 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

- Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 3. Pressure Plates: Plastic. Include two for each sealing element.
- 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Galvanized Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.6 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 MECHANICAL DEMOLITION

- A. Refer to Division 1 Sections "Cutting and Patching" and "Selective Demolition" for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove mechanical systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.

PONumber: C17902C020

- 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
- 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
- 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
- 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
- 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
- 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).
 - b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level. Refer to Division 7 Section "Sheet Metal Flashing and Trim" for flashing.

PONumber: C17902C020

- 1) Seal space outside of sleeve fittings with grout.
- 3. Seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.
- F. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 - Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- G. Verify final equipment locations for roughing-in.

3.3 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.4 PAINTING

- A. Painting of mechanical systems, equipment, and components is specified in Division 9.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.

PONumber: C17902C020

- 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
- 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
- 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 3 Section "Cast-in-Place Concrete."

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 5 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.8 GROUTING

- A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 23 05 10

PONumber: C17902C020

SECTION 23 05 13 - COMMON MOTOR REQUIREMENTS FOR HVAC FQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections. Comply with NEMA MG 1 unless otherwise indicated. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Premium Efficiency: Use premium energy efficient motors, as defined in NEMA MG 1.

PONumber: C17902C020

- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating. Insulation: Class F.
- H. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- I. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
 - 5. Provide VFD driven motors with shaft grounding.
- B. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be permanent-split capacitor. Motors 1/20 HP and Smaller: Shaded-pole type.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13

SECTION 23 05 17 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - Sleeve-seal systems.
 - 3. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- B. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- C. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- D. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.

PONumber: C17902C020

- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

PONumber: C17902C020

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
 - 2. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-pipe sleeves.
 - 4. Interior Partitions:
 - a. Piping Smaller Than NPS 6 (DN 150): Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 23 05 17

PONumber: C17902C020

SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND FOUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEL7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

PONumber: C17902C020

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. Non-MFMA Manufacturer Metal Framing Systems:
 - Manufacturers: Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to,
 the following:
 - a. Anvil International; a subsidiary of Mueller Water Products Inc.
 - b. Empire Industries, Inc.
 - c. ERICO International Corporation.
 - d. Haydon Corporation; H-Strut Division.
 - 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 - 3. Standard: Comply with MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Coating: Zinc.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries. Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.

PONumber: C17902C020

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support piping.
- B. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support.Base: Stainless steel.
 - Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuousthread rods.
 - 3. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- C. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more: plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

PONumber: C17902C020

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth surface.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

PONumber: C17902C020

- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

PONumber: C17902C020

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and attachments for general service applications.
- F. Use thermal-hanger shield inserts for insulated piping and tubing.
- G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. C-Clamps (MSS Type 23): For structural shapes.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- K. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- L. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- M. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29

PONumber: C17902C020

SECTION 23 05 48 - VIBRATION CONTROLS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Freestanding and restrained spring isolators.
 - 4. Spring hangers.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 120 MPH.
 - 2. Building Classification Category: III.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device
 - 2. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

PONumber: C17902C020

B. Delegated-Design Submittal: For vibration isolation restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, wind forces required to select vibration isolators, wind restraints, and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 22 Sections for equipment mounted outdoors.
- 2. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
- C. Qualification Data: For professional engineer.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
 - 4. BRD Noise and Vibration Control, Inc.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

PONumber: C17902C020

2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

- D. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- E. Restrained Spring Isolators: Freestanding, steel, open-spring isolators or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- (6-mm-) thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- F. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 FACTORY FINISHES

PONumber: C17902C020

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.

- 1. Powder coating on springs and housings.
- 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
- 3. Baked enamel or powder coat for metal components on isolators for interior use.
- 4. Color-code or otherwise mark vibration isolation control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL RESTRAINT DEVICE INSTALLATION

- A. Equipment Restraints:
 - 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
- B. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

3.3 ADJUSTING

- A. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- B. Adjust active height of spring isolators.
- C. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 23 05 48

PONumber: C17902C020

SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

SUMMARY

- B. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.

ACTION SUBMITTALS

- C. Product Data: For each type of product indicated.
- D. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

COORDINATION

- E. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- F. Coordinate installation of identifying devices with locations of access panels and doors.
- G. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).

PONumber: C17902C020

6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules).
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

PIPE LABELS

- D. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- E. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- F. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches ((38 mm) high).

PART 3 - EXECUTION

PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

EQUIPMENT LABEL INSTALLATION

- B. Install or permanently fasten labels on each major item of mechanical equipment.
- C. Locate equipment labels where accessible and visible.
- D. When equipment is located above the ceiling install label on the ceiling grid T-bar below the equipment.

PIPE LABEL INSTALLATION

PONumber: C17902C020

- E. Piping Color-Coding: Painting of piping is specified in Division 09.
- F. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 2. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 3. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 4. Near major equipment items and other points of origination and termination.
 - 5. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 6. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- G. Pipe Label Color Schedule:
 - 1. Refrigerant Piping:
 - a. Background Color: Black.
 - b. Letter Color: White

END OF SECTION 23 05 53

PONumber: C17902C020

SECTION 23 05 93- TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems: Constant-volume air systems.
 - 2. HVAC equipment quantitative-performance settings.
 - 3. Vibration measuring.
 - 4. Verifying that automatic control devices are functioning properly.
 - 5. Reporting results of activities and procedures specified in this Section.

1.3 DEFINITIONS

- A. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.
- B. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- C. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- D. Report Forms: Test data sheets for recording test data in logical order.
- E. TAB: Testing, adjusting, and balancing.
- F. Test: A procedure to determine quantitative performance of systems or equipment.
- G. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 30 days from Contractor's Notice to Proceed, submit 2 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 45 days from Contractor's Notice to Proceed, submit 6 copies of the Contract Documents review report as specified in Part 3.

PONumber: C17902C020

C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 2 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.

- D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- E. Sample Report Forms: Submit two sets of sample TAB report forms.
- F. Warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.
- B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems."
- D. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems."
- E. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.6 PROJECT CONDITIONS

- A. Owner Occupancy: Owner will not occupy the building during entire TAB period. T&B reports shall be finalized and approved prior to owner occupancy.
- B. T&B firm shall be independent from the mechanical contractor.

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air distribution systems have been satisfactorily completed.

PONumber: C17902C020

1.8 WARRANTY

A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:

- 1. The certified TAB firm has tested and balanced systems according to the Contract Documents
- 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - Contract Documents are defined in the General and Supplementary Conditions of Contract.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 1 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- I. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

PONumber: C17902C020

- J. Exmine equipment for installation and for properly operating safety interlocks and controls.
- K. Examine automatic temperature system components to verify the following:
 - Dampers and other controlled devices are operated by the intended controller.
 - 2. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 3. Sensors are located to sense only the intended conditions.
 - 4. Sequence of operation for control modes is according to the Contract Documents.
 - 5. Controller set points are set at indicated values.
 - 6. Interlocked systems are operating.
 - 7. Changeover from heating to cooling mode occurs according to indicated values.
- L. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Automatic temperature-control systems are operational.

3.3 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- D. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling unit components.
- K. Check for proper sealing of air duct system.

3.4 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

PONumber: C17902C020

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

- 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
- 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
- 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
- 5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
- 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.

3.5 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.

3.6 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

PONumber: C17902C020

3.7 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.8 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- C. Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Check free travel and proper operation of control devices such as damper operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations.
- L. Contractor shall make note in the final test and balance report if there are any issues regarding doors unable to close due to pressurization issue.

3.9 TOLERANCES

- A. Set HVAC system airflow flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus10 percent.

3.10 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to

PONumber: C17902C020

HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.11 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Engineer's name and address.
 - 6. Contractor's name and address.
 - 7. Report date.
 - 8. Signature of TAB firm who certifies the report.
 - 9. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 10. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 11. Nomenclature sheets for each item of equipment.
 - 12. Test conditions for fans performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Settings for supply-air, static-pressure controller.

PONumber: C17902C020

- E. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Duct, outlet, and inlet sizes.
- F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - j. Number of belts, make, and size.
 - k. Number of filters, type, and size.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Cooling coil static-pressure differential in inches wg.
 - g. Outside airflow in cfm.
 - h. Return airflow in cfm.
 - i. Outside-air damper position.
 - j. Return-air damper position.
- G. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft..
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):

PONumber: C17902C020

- a. Airflow rate in cfm.
- b. Average face velocity in fpm.
- c. Air pressure drop in inches wg.
- d. Outside-air, wet- and dry-bulb temperatures in deg F.
- e. Return-air, wet- and dry-bulb temperatures in deg F.
- f. Entering-air, wet- and dry-bulb temperatures in deg F.
- g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- h. Refrigerant expansion valve and refrigerant types.
- i. Refrigerant suction pressure in psig.
- j. Refrigerant suction temperature in deg F.
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btuh.
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Airflow rate in cfm.
 - i. Face area in sq. ft..
 - j. Minimum face velocity in fpm.
 - 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btuh.
 - b. Airflow rate in cfm.
 - c. Air velocity in fpm.
 - d. Entering-air temperature in deg F.
 - e. Leaving-air temperature in deg F.
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Sheave make, size in inches, and bore.
 - g. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts. phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches.
 - g. Number of belts, make, and size.
 - 3. Test Data (Indicated and Actual Values):

PONumber: C17902C020

- a. Total airflow rate in cfm.
- b. Total system static pressure in inches wg.
- c. Fan rpm
- d. Discharge static pressure in inches wg.
- e. Suction static pressure in inches wg.

J. Instrument Calibration Reports:

- Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.12 INSPECTIONS

A. Initial Inspection:

- After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
- 2. Randomly check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - c. Measure sound levels at two locations.
 - d. Measure space pressure of at least 10 percent of locations.
 - e. Verify that balancing devices are marked with final balance position.
 - f. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:

- 1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
- 2. TAB firm test and balance engineer shall conduct the inspection in the presence of Owner
- 3. Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- 6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.

END OF SECTION 23 05 93

PONumber: C17902C020

SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

PONumber: C17902C020

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- F. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

PONumber: C17902C020

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.: FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

PONumber: C17902C020

- a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
- b. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 TAPES

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.

PONumber: C17902C020

- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

- A. Insulation Pins and Hangers:
 - Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
 - 4. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

PONumber: C17902C020

- 1) GEMCO.
- 2) Midwest Fasteners, Inc.
- B. EXAMINATION Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. For any ductwork that has insulation, apply vapor-barrier mastic over staples and follow manufacturer recommended installation instructions.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

PONumber: C17902C020

- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For any ductwork that has insulation, apply vapor-barrier mastic over staples and follow manufacturer recommended installation instructions.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts.
 - d. Do not over-compress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by

PONumber: C17902C020

removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- b. Install vapor stops for ductwork operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts. Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts.
 - d. Do not over-compress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover

PONumber: C17902C020

insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.4 DUCT INSULATION SCHEDULE, GENERAL

- A. Ducts Requiring Insulation:
 - 1. Indoor, concealed supply, return and outdoor air.
 - 2. Indoor, exposed supply, return and outdoor air.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated access panels and doors.

3.5 INDOOR DUCT INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- D. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- E. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- F. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- G. Exposed, round and flat-oval, supply-air duct insulation shall be the following:

PONumber: C17902C020

- 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- H. Exposed, round and flat-oval, return-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- I. Exposed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
 - 2. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- J. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- K. Exposed, rectangular, return-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.
- L. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches thick and 2-lb/cu. ft. nominal density.

END OF SECTION 23 07 13

PONumber: C17902C020

SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors.
 - 2. Refrigerant piping, indoors and outdoors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

PONumber: C17902C020

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.

PONumber: C17902C020

- C. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Dow Corning Corporation; 739, Dow Silicone.
 - b. Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Speedline Corporation; Polyco VP Adhesive.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

PONumber: C17902C020

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
 - 5. Color: White.

2.5 SEALANTS

- A. Joint Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - 4. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

PONumber: C17902C020

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas Number 10.

2.8 FIELD-APPLIED CLOTHS

- A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd. (271 g/sq. m).
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Alpha Associates, Inc.; Alpha-Maritex 84215 and 84217/9485RW, Luben 59.

2.9 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

- b. P.I.C. Plastics, Inc.; FG Series.
- c. Proto Corporation: LoSmoke.
- d. Speedline Corporation; SmokeSafe.
- 2. Adhesive: As recommended by jacket material manufacturer.
- Color: White.
- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - Shapes: 45- and 90-degree, short- and long-radius elbows, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for layatories.

C. Metal Jacket:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
- 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) End caps.
 - 5) Beveled collars.
 - 6) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

PONumber: C17902C020

- 2. Width: 3 inches (75 mm).
- 3. Thickness: 11.5 mils (0.29 mm).
- 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.11 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

PONumber: C17902C020

A.

- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, for outdoor pipe apply a corrosion coating to insulated surfaces as follows:
 - Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F (0 and 149 deg C) with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:

PONumber: C17902C020

- 1. Draw jacket tight and smooth.
- 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

PONumber: C17902C020

- 1. Seal penetrations with flashing sealant.
- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

PONumber: C17902C020

B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.8 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended UV protective coating for exterior installation.
- B. Do not field paint aluminum or stainless-steel jackets.

3.9 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch (19 mm) thick.
- B. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- C. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1 inch (25 mm) thick.
- D. Refrigerant Liquid Lines below 60 Deg F
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 1/2 inch thick

PONumber: C17902C020

3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Suction and Hot-Gas Piping:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 2 inches (50 mm) thick.
- B. Refrigerant Suction and Hot-Gas Flexible Tubing:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 2 inches (50 mm) thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. PVC: 20 mils (0.5 mm) thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.020 inch (0.51 mm) thick.

END OF SECTION 23 07 19

PONumber: C17902C020

SECTION 23 09 00 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes Bacnet DDC control equipment for HVAC systems. New DDC components shall integrate with existing Metasys Control System.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. Bacnet: ASHRAE Standard 135/2016 open protocol standards
- D. MS/TP: Master slave/token passing. Bacnet standard for 485 communications

1.4 SYSTEM PERFORMANCE

- A. Comply with the following performance requirements:
 - Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - Electrical: Plus or minus 5 percent of reading.

1.5 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Written description of sequence of operation.
 - a. Written description of sequence of operation including schematic diagram.
 - b. Points list.
- C. Data Communications Protocol Certificates: Certify that proposed DDC system component complies with ASHRAE 135 and that system is Bacnet.
- D. Operation and Maintenance Data: For HVAC instrumentation and control system to include in operation, and maintenance manuals.

PONumber: C17902C020

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with ASHRAE 135 (Bacnet) for DDC system components.

PART 2 - PRODUCTS

2.1 CONTROL SYSTEM

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.
- B. Manufacturers:
 - 1. JCI.
 - 2. Automated Logic Controls (ALC)
 - Trane

2.2 SYSTEM SOFTWARE

A. General:

- Contractor shall provide all software required for efficient operation of all functions required by this specification as required to be programmed into the existing Metasys control system. Software shall, as a minimum, include:
 - a. Configuration of existing system to provide the sequence of operation indicated including updating existing graphics for the new variable primary flow controls..
 - b. Alarm limits and alarm messages for all critical and non-critical alarms.
- 2. System software shall be complete such that each control loop shall function as specified in the Sequence of Operation.
- 3. Software upgrades shall be provided as required for the existing Metasys system to associate with current Metasys requirements for new programming and components.

2.3 ELECTRONIC SENSORS

- A. Pressure Transmitters/Transducers:
 - 1. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

2.4 STATUS SENSORS

A. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.

PONumber: C17902C020

B. Electronic Valve Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.5 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that power supply is available to control units.

3.2 INSTALLATION

- A. Integrate with existing system. Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Install labels and nameplates to identify control components according to Division 23 Section "Identification for HVAC Piping and Equipment."

3.3 FLECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.

PONumber: C17902C020

- 2. Test and adjust controls and safeties.
- 3. Test each point through its full operating range to verify that safety and operating control set points are as required.
- 4. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
- 5. Test each system for compliance with sequence of operation.
- 6. Test software and hardware interlocks.

C. DDC Verification:

- 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
- 2. Check instruments for proper location and accessibility.
- 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
- 4. Check instrument tubing for proper fittings, slope, material, and support.
- 5. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
- 6. Check temperature instruments and material and length of sensing elements.
- 7. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that spare I/O capacity has been provided.
 - c. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.5 ADJUSTING

A. Calibrating and Adjusting:

- 1. Calibrate instruments.
- 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
- Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
- 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliamp meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.

5. Flow:

- a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
- b. Manually operate flow switches to verify that they make or break contact.

Pressure:

- a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
- Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

PONumber: C17902C020

- a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
- calibrate temperature switches to make or break contacts.
- 8. Provide diagnostic and test instruments for calibration and adjustment of system.
- 9. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

3.6 DEMONSTRATION AND SUPPORT

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."
- B. Engage a factory-authorized service representative to perform commissioning functional performance tests through the BAS operator's workstation for CxA witnessing. Provide a minimum of 40 man hours.

END OF SECTION 23 09 00

PONumber: C17902C020

SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall round ducts and fittings.
- Sheet metal materials.
- 4. Sealants and gaskets.
- 5. Hangers and supports.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Sealants and gaskets.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.

PONumber: C17902C020

- 8. Seam and joint construction.
- 9. Equipment installation based on equipment being used on Project.
- 10. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 11. Hangers and supports, including methods for duct and building attachmentand vibration isolation.

C. Delegated-Design Submittal:

- 1. Sheet metal thicknesses.
- 2. Joint and seam construction and sealing.
- 3. Reinforcement details and spacing.
- 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- 5. Design Calculations: Calculations for selecting hangers and supports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

PONumber: C17902C020

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

PONumber: C17902C020

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches .

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg , positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

PONumber: C17902C020

- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal

PONumber: C17902C020

flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

PONumber: C17902C020

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 2. Test for leaks before applying external insulation.
 - Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 4. Give seven days' advance notice for testing.
- B. Duct system will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.8 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

- A. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.

- PONumber: C17902C020
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.

B. Return Ducts:

- 1. Ducts Connected to Heat Pumps Units and blower coil units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.

C. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
- D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
- E. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.
- F. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.
- G. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13

PONumber: C17902C020

SECTION 23 33 00 - DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Backdraft dampers.
 - 2. Manual-volume dampers.
 - 3. Flexible ducts.
 - 4. Flexible connectors.
 - 5. Duct accessory hardware.
 - 6. Flange Connectors
 - 7. Duct Mounted Access Door

1.3 SUBMITTALS

- A. Product Data: For the following:
 - 1. Backdraft dampers.
 - 2. Manual-volume dampers.
 - 3. Flexible ducts.
 - 4. Flange Connector
 - 5. Duct Mounted Access Door
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loadings, required clearances, method of field assembly, components, location, and size of each field connection. Detail the following:
 - 1. Special fittings and manual- and automatic-volume-damper installations.
- C. Product Certificates: Submit certified test data on dynamic insertion loss; self-noise power levels; and airflow performance data, static-pressure loss, dimensions, and weights.

1.4 QUALITY ASSURANCE

- A. NFPA Compliance: Comply with the following NFPA standards:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

- A. Galvanized, Sheet Steel: Lock-forming quality; ASTM A 653, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.
- B. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets, commercial quality, with oiled, exposed matte finish.
- C. Aluminum Sheets: ASTM B 209, Alloy 3003, Temper H14, sheet form; with standard, one-side bright finish for ducts exposed to view and mill finish for concealed ducts.
- D. Extruded Aluminum: ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized steel reinforcement where installed on galvanized, sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for 36-inch length or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT DAMPERS

- A. Description: Suitable for horizontal or vertical installations.
- B. Frame: 0.052-inch thick, galvanized, sheet steel, with welded corners and mounting flange.
- C. Blades: 0.050-inch thick aluminum sheet.
- D. Blade Seals: Vinyl 01, Neoprene.
- E. Blade Axles: Galvanized steel.
- F. Tie Bars and Brackets: Galvanized steel.
- G. Return Spring: Adjustable tension.

2.3 MANUAL-VOLUME DAMPERS

- A. General: Factory fabricated with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
 - 1. Pressure Classifications of 3-Inch wg or Higher: End bearings or other seals for ducts with axles full length of damper blades and bearings at both ends of operating shaft.
- B. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.

PONumber: C17902C020

- C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, and suitable for horizontal or vertical applications.
 - 1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 16 gauge, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 16 gauge, galvanized, sheet steel.
 - 3. Blade Axles: Plated steel.
 - 4. Tie Bars and Brackets: Galvanized steel.
- D. Low-Leakage Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, low-leakage rating, with linkage outside of the airstream and suitable for horizontal or vertical applications.
 - 1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 16 gauge, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 16 gauge, galvanized, sheet steel, air foil shaped.
 - 3. Blade Seals: Neoprene.
 - 4. Blade Axles: Plated steel.
 - 5. Tie Bars and Brackets: Galvanized steel.
- E. Jackshaft: 1-inch diameter, galvanized steel pipe rotating within a pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - Length and Number of Mountings: Appropriate to connect linkage of each damper of a multiple-damper assembly.
- F. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch thick zincplated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operatingrod size. Include elevated platform for insulated duct mounting.

2.4 FLEXIBLE CONNECTORS

- A. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
- B. Standard Metal-Edged Connectors: Factory fabricated with a strip of fabric 3-1/2 inches wide attached to two strips of 2-3/4-inch wide, 0.028-inch thick, galvanized, sheet steel or 0.032-inch aluminum sheets. Select metal compatible with connected ducts.
- C. Conventional, Indoor System Flexible Connector Fabric: Glass fabric double coated with polychloroprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp, and 360 lbf/inch in the filling.
- D. Conventional, Outdoor System Flexible Connector Fabric: Glass fabric double coated with a synthetic-rubber, weatherproof coating resistant to the sun's ultraviolet rays and ozone environment.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 530 lbf/inch in the warp, and 440 lbf/inch in the filling.

PONumber: C17902C020

2.5 FLEXIBLE DUCTS

- A. General: Comply with UL 181, Class 1.
- B. Flexible Ducts, Insulated: Factory-fabricated, insulated, round duct, with an outer jacket enclosing 1-1/2-inch thick, glass-fiber insulation around a continuous inner liner.
 - 1. Reinforcement: Steel-wire helix encapsulated in inner liner.
 - 2. Outer Jacket: Glass-reinforced, silver Mylar with a continuous hanging tab, integral fibrous-glass tape, and nylon hanging cord.
 - 3. Inner Liner: Polyethylene film.
 - 4. Flexible Duct: Technaflex, Flexmaster.
- C. Flexible Duct Acoustical: Factory-fabricated insulated round duct with an outer jacket enclosing 1-1/2 inch thick, glass-fiber insulation around an acoustically transparent nylon inner liner.
 - 1. Reinforcement: Steel-wire helix encapsulated in inner liner.
 - 2. Outer Jacket: Glass-reinforced, silver Mylar with a continuous hanging tab, integral fibrous-glass tape, and nylon hanging cord.
 - 3. Inner Liner: Acoustically transparent nylon fabric.
 - 4. Acoustical flexible duct shall be Flexmaster Type 6 or equal.
- D. Pressure Rating: 6-inch wg positive, 1/2-inch wg negative.

2.6 ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments, and length to suit duct insulation thickness.
- B. Splitter Damper Accessories: Zinc-plated damper blade bracket; 1/4-inch, zinc-plated operating rod; and a duct-mounted, ball-joint bracket with flat rubber gasket and square-head set screw.
- C. Flexible Duct Clamps: Neoprene flex draw bands installed in accordance to SMACNA guidelines.
- D. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.7 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.

PONumber: C17902C020

D. Gage and Shape: Match connecting ductwork.

2.8 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Elgen Manufacturing.
 - 5. Flexmaster U.S.A., Inc.
 - 6. Greenheck Fan Corporation.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2 (7-2M), "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm)butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Continuous hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Continuous hinges and two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Continuous hinges and two compression latches with outside and inside handles.

4.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and NAIMA's "Fibrous Glass Duct Construction Standards" for fibrous-glass ducts.
- B. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

PONumber: C17902C020

- C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- D. Set dampers to fully open position before testing, adjusting, and balancing.
- E. Install volume dampers in lined duct; avoid damage to and erosion of duct liner.
- F. Provide test holes at fan inlet and outlet and elsewhere as indicated.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct electric heater.
 - 2. Upstream from duct filters.
 - 3. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 4. At each change in direction and at maximum 50-foot (15-m) spacing.
 - 5. Control devices requiring inspection.
 - 6. Elsewhere as indicated.

H. Access Door Sizes:

- 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
- 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
- 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
- 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
- 5. Body Access: 25 by 14 inches (635 by 355 mm).
- 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- I. Install flexible connectors to connect ducts to equipment.
- J. Install supports for flexible ducts to prevent kinks and or hard turns.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00

PONumber: C17902C020

SECTION 236313 - AIR-COOLED SPLIT SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, air-cooled refrigerant condensers for outdoor installation.

1.3 ACTION SUBMITTALS

A. Product Data: For each air-cooled refrigerant condenser. Include rated capacities, operating characteristics, furnished specialties, and accessories. Include equipment dimensions, weights and structural loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members to which air-cooled refrigerant condensers will be attached.
 - 2. Liquid, vapor pipe and hot gas reheat sizes.
 - 3. Refrigerant specialties.
 - 4. Piping including connections, oil traps, and double risers.
 - 5. Evaporators.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-cooled refrigerant condensers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fabricate and label refrigeration system according to ASHRAE 15, "Safety Standard for Refrigeration Systems."

PONumber: C17902C020

C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in
- B. Coordinate location of refrigerant piping and electrical rough-ins.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Aaon or approved equal.

2.2 MANUFACTURED UNITS

- A. Description: Factory assembled and tested; consisting of casing, condenser coils, condenser fans and motors, and unit controls.
- B. Refrigerant: R-410A.
- C. Cabinets Air Handler: B Cabinet FC
 - 1. Indoor air handling unit with DX coil to provide cooling and heating capability when matched with an RC Series R410A condensing unit or heat pump and electric or hot water heating options. The unit shall consist of unitary single-wall cabinet with closed cellular insulation and galvanized sheet metal liner. The DX coil is designed for a single refrigerant circuit. Connections for ductwork, refrigerant piping and electric power are provided. Airflow Configuration horizontal supply and horizontal return or outside air.
- D. Evaporator Motor Type:
 - 1. Motor(s) shall be premium efficiency, open drip proof, nominal 1800 or 3600 RPM.
- E. Heating Types: Electric Heat:
 - 1. Heater includes nichrome element type, open wire coils with 0.375 in. inside diameter, insulated with ceramic bushings, frame and control panel mounted in the unit discharge. Coil ends shall be staked and welded to terminal screw slots. Control panel includes hinged access door, fuses, airflow switch, disconnecting contactors and safeties. A terminal block is included for single point power termination with the blower motor. Power and control wiring is field-furnished.
- F. Compressor Type: Scroll
 - 1. Compressors shall include overload, short cycle and reverse rotation protection with minimum on and off timers and shall be installed in an insulated compartment isolated from the treated air stream. Compressors shall be mounted on rubber in shear isolators and refrigerant

PONumber: C17902C020

lines to include reaction torque loops. Crankcase heaters shall only be activated during compressor off mode. Unit sizes 480 and larger the compressors are tandem type. The control system shall be capable of unloading the digital compressor in an unlimited number of steps from 100% down to 10% capacity.

- G. Refrigeration Controls: Hot Gas Reheat, Modulating (Single Circuit)
 - 1. A one-row hot gas heat coil shall be mounted downstream of DX coil in the air handler. The condensing unit shall include the modulating valve to direct hot gas to the coil for reheat as required and a variable speed condenser fan head pressure control with VFD
- H. Condenser Coil: Factory tested at 425 psig.
 - 1. Tube: 1/2-inch-diameter seamless copper.
 - 2. Coil Fin: Aluminum.
 - 3. Circuit: To match compressors.
- I. Condenser Fans and Drives: Propeller fans with aluminum or galvanized-steel fan blades, for vertical air discharge; permanently lubricated ball-bearing motors with integral current- and thermal-overload protection.
 - 1. Weather-proof motors with rain shield and shaft slinger.
 - 2. Extend grease lines to outside of casing.
- J. Operating and Safety Controls: Include condenser fan motor thermal and overload cutouts; 115-V control transformer, if required; magnetic contactors for condenser fan motors and a nonfused factory-mounted and -wired disconnect switch for single external electrical power connection.
 - 1. Fan Cycling Control: Head pressure switches.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 1. Enclosure Type: Totally enclosed, fan cooled.
 - 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven loads will not require motor to operate in service factor range above 1.0.
 - 3. Mount unit-mounted disconnect switches on exterior of unit.

2.4 CONTROLS

- A. The control system shall consist of a low voltage communication network of unitary built-in controllers with on-board communications and a web-based operator interface. A web controller with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.
- B. System controls and control components shall be installed in accordance with the manufacturer's written installation instructions.

PONumber: C17902C020

C. System shall provide direct and reverse-acting on and off algorithms based on an input condition or group conditions to cycle a binary output or multiple binary outputs.

- D. Provide capability for future system expansion to include monitoring and use of occupant card access, lighting control and general equipment control.
- E. System shall be capable of email generation for remote alarm annunciation.
- F. Control system start-up shall be a required service to be completed by the manufacturer or a duly authorized, competent representative that has been factory trained in Mitsubishi Electric controls system configuration and operation. The representative shall provide proof of certification for Mitsubishi Electric Controls Applications Training indicating successful completion of no more than two (2) years prior to system installation. This certification shall be included as part of the equipment and/or controls submittals. This service shall be equipment and system count dependent and shall be a minimum of one (1) eight (8) hour period to be completed during normal working hours.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of air-cooled refrigerant condensers.
- B. Coordinate air handling requirements for proper condensate trap drainage and provide AHU stand or concrete house pad as required to allow for proper trap size. Coordinate with existing conditions to locate AHU to allow for reconnection to existing ductwork. Reconnect to existing ductwork and condensate piping. Provide duct flex connection off AHU.
- C. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.
- D. Examine walls, floors, and roofs for suitable conditions where air-cooled condensers will be installed.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install unit's level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.
- B. Equipment Mounting:
 - Comply with requirements for vibration isolation devices specified in Section 230548"Vibration Controls for HVAC."
- C. Maintain manufacturer's recommended clearances for service and maintenance.
- D. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

PONumber: C17902C020

3.3 CONNECTIONS

A. Piping installation requirements are specified in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Install piping adjacent to machine to allow service and maintenance.
- C. Refrigerant Piping: Connect piping to unit with pressure relief, service valve, filter-dryer, and moisture indicator on each refrigerant-circuit liquid line.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform electrical test and visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Complete manufacturer's starting checklist.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 5. Verify proper airflow over coils.
- C. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- D. Air-cooled refrigerant condensers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - a. Inspect for physical damage to unit casing.
 - b. Verify that access doors move freely and are weather-tight.
 - c. Clean units and inspect for construction debris.
 - d. Verify that all bolts and screws are tight.
 - e. Adjust vibration isolation and flexible connections.
 - f. Verify that controls are connected and operational.
 - 2. Lubricate bearings on fan motors.

PONumber: C17902C020

- 3. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.
- 4. Adjust fan belts to proper alignment and tension.
- 5. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.
- 6. Measure and record airflow and air temperature rise over coils.
- 7. Verify proper operation of capacity control device.
- 8. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.
- 9. After startup and performance test, lubricate bearings.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-cooled refrigerant condensers.

END OF SECTION 236313

PONumber: C17902C020

SECTION 26 05 00 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Electrical equipment coordination and installation.
- 2. Sleeves for raceways and cables.
- Sleeve seals.
- 4. Grout.
- 5. Common electrical installation requirements.
- 6. Commissioning requirements.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

B. NBR: Acrylonitrile-butadiene rubber.

1.4 GENERAL REQUIREMENTS

- A. Carefully examine General Conditions, other specification sections, and other drawings (in addition to DIVISION 26), in order to be fully acquainted with their effect on electrical work. Additions to the contract cost will not be allowed due to failure to inspect existing conditions.
- B. Do all work in compliance with 6th Edition Florida Building Code 2017, and the Codes adopted therein, including NFPA 70 (2014 NEC), 6th Edition Florida Fire Prevention Code and the regulations of the local power utility, cable television and telephone companies. Obtain and pay for any and all required permits, inspections, certificates of inspections and approval, and the like, and deliver such certificates to the Architect/Engineer.
- C. Cooperate and coordinate with all other trades. Perform work in such manner and at such times as not to delay work of other trades. Complete all work as soon as the condition of the structure and installations of equipment will permit. Patch, in a satisfactory manner and by the proper craft, any work damaged by electrical workmen.
- D. Furnish, perform, or otherwise provide all labor (including, but not limited to, all planning, purchasing, transporting, rigging, hoisting, storing, installing, testing, chasing, channeling, cutting, trenching, excavating and backfilling), coordination, field verification, equipment installation, support, and safety, supplies, and materials necessary for the correct installation of complete and functional electrical systems (as described or implied by these specifications and the applicable drawings).

PONumber: C17902C020

E. Coordinate and verify power and telephone company service requirements prior to bid. Bid to include all work required.

F. Circuiting and connection of all items using electric power shall be included under this division of the specifications, including necessary wire, conduit, circuit protection, disconnects and accessories. Secure rough-in drawings and connection information for equipment involved to determine the exact requirements. See all divisions of drawings or specifications for electrically operated equipment. If the connection of an item is not shown on the electrical drawings and it is unclear how to provide for the circuiting and connection, notify the engineer of record in writing prior to bidding project. Submission of a bid indicates that the bidder has included these requirements as part of the scope of work.

1.5 DRAWINGS:

- A. Indicate only diagrammatically the extent, general character, and approximate location of work. Where work is indicated, but with minor details omitted, furnish and install it complete and so as to perform its intended functions.
- B. DIVISION 26 work called for under any section of the project specifications, shall be considered as included in this work unless specifically excluded by inclusion in some other branch of the work. This shall include roughing-in for connections and equipment as called for or inferred. Check all drawings and specifications for the project and shall be responsible for the installation of all DIVISION 26 work.
- C. Take finish dimensions at the job site in preference to scale dimensions. Do not scale drawings where specific details and dimensions for DIVISION 26 work are not shown on the drawings, take measurements and make layouts as required for the proper installation of the work and coordination with all drawings and coordination with all other work on the project. In case of any discrepancies between the drawings and the specifications that have not been clarified by addendum prior to bidding, it shall be assumed by the signing of the contract that the higher cost (if any difference in costs) is included in the contract price, and perform the work in accordance with the drawings or with the specifications, as determined and approved by the Architect/ Engineer, and no additional costs shall be allowed to the base contract price.
- D. Carefully check the drawings and specifications of all trades and divisions before installing any of his work. He shall in all cases consider the work of all other trades, and shall coordinate his work with them so that the best arrangements of all equipment, piping, conduit, ducts, rough-in, etc., can be obtained.
- E. Review the specific equipment (such as mechanical, plumbing, kitchen, FFE, etc) minimum circuit ampacity and maximum over current protection requirements of equipment provided by others to confirm it is properly coordinated with the devices being purchased. Notify the AE team immediately upon discovery of discrepancies. This shall be done at the submittal stage prior to purchasing over current protection or installation of conduit, wire, disconnects, breakers, etc. No cost will be allowed for changes to coordinate.
- F. Locations designated for outlets, switches, equipment, etc., are approximate and shall be verified by instruction in these specifications and/or notes on the drawings. Where instructions or notes are insufficient to convey the intent of the design, consult the Architect/Engineer prior to installation.
- G. Obtain manufacturer's data on all equipment, the dimensions of which may affect electrical work. Use this data to coordinate proper service characteristics, entry locations, etc., and to ensure minimum clearances are maintained.

PONumber: C17902C020

1.6 QUALIFICATIONS OF CONTRACTOR:

A. DIVISION 26 Contractor shall have had experience of at least the same size and scope as this project, on at least two other projects within the last five years in order to be qualified to bid this project.

- B. Contractor performing any part of this scope of work shall be a State Certified (Type E.C. License) electrical contractor
- C. Provide field superintendent who has had a minimum of four (4) years previous successful experience on projects of comparable size and complexity. Superintendent shall be on the site at all times during construction and must have an active Journeyman's Electrical License.

1.7 SITE VISIT/CONDITIONS

- A. Visit the site of this contract and thoroughly familiarize with all existing field conditions and the proposed work as described or implied by the contract documents. During the course of his site visit, verify every aspect of the proposed work and the existing field conditions in the areas of construction which might affect his work. No compensation or reimbursement for additional expenses incurred due to failure or neglect to make a thorough investigation of the contract documents and the existing site conditions will be permitted.
- B. Install all equipment so that all Code required and Manufacturer recommended servicing clearances are maintained. Coordinate the proper arrangement and installation of all equipment within any designated space. If it is determined that a departure from the Contract Documents is necessary, submit to the A/E, for approval, detailed drawings of the proposed changes with written reasons for the changes. No changes shall be implemented without the issuance of the required drawings, clarifications, and/or change orders.
- C. Submission of a proposal will be construed as evidence that such examination has been made and later claims for labor, equipment or materials required because of difficulties encountered will not be recognized.
- D. Existing conditions and utilities indicated are taken from existing construction documents, surveys, and field investigations. Unforeseen conditions probably exist and existing conditions shown on drawings may differ from the actual existing installation with the result being that new work may not be field located exactly as shown on the drawings. Field verify dimensions of all site utilities, conduit routing, boxes, etc., prior to bidding and include any deviations in the contract. Notify A/E if deviations are found.
- E. All existing electrical is not shown. Become familiar with all existing conditions prior to bidding, and include in the bid the removal of all electrical equipment, wire, conduit, devices, fixtures, etc. that is not being reused, back to it's originating point.
- F. Locate all existing utilities and protect them from damage. Pay for repair or replacement of utilities or other property damaged by operations in conjunction with the completion of this work.
- G. Investigate site thoroughly and reroute all conduit and wiring in area of construction in order to maintain continuity of existing circuitry. Existing conduits indicated in Contract Documents indicate approximate locations. Verify and coordinate existing site conduits and pipes prior to any excavation on site. Bids shall include hand digging and all required rerouting in areas of existing conduits or pipes.

PONumber: C17902C020

H. Work is in connection with existing buildings which must remain in operation while work is being performed. Work shall be in accord with the schedule required by the Contract. Schedule work for a minimum outage to Owner. Notify Owner 72 hours in advance of any shut-down of existing systems. Perform work during non-school operating hours unless otherwise accepted by Owner. Protect existing buildings and equipment during construction.

1.8 COMMISSIONING RESPONSIBILITIES

- A. Attend commissioning meetings scheduled by the CM.
- B. Schedule work so that required electrical installations are completed, and system verification checks and functional performance test can be carried out on schedule.
- C. Inspect, check and confirm in writing the proper installation and performance of all electrical services as required by the system verification and functional performance testing requirements of electrical equipment in the commissioning specifications.
- D. Provide qualified personnel to assist and operate electrical system during system verification checks and functional performance testing of HVAC systems as required by the commissioning specifications.
- E. Provide instruction and demonstrations for the Owner's designated operating staff in accordance with the requirements of the commissioning specifications.

1.9 TEMPORARY POWER:

- A. Provide temporary power distribution for the connection of all single phase 120V 20A tools, OSHA work lighting, and testing as required for performance of the project. Provide OSHA required work lighting and task lighting for the project.
- B. Coordinate requirements with the local Utility Company for availability of adequate power. Include all cost associated with any Utility Company charges for connection or upgrades in this bid price.
- C. If power to any of the existing facilities will be interrupted, coordinate the outage with the Owner atleast 72 hours in advance. All power outages will occur outside operational hours as determined by the Owner.
- D. Provide temporary power to any buildings, parking lot lighting, canopy lighting, lift stations, etc that will have power removed during the course of construction temporarily. Additionally, if any new buildings, parking lots, lift stations, etc will need power until the permanent power becomes available, provide temporary power until the permanent power is available.
- E. Provide temporary lighting for all areas that will require lighting for school use as well as construction use during the course of construction. Temporary lighting must comply with all FBC requirements as though it was being installed for permanent use. This includes but is not limited to any temporary canopies, parking lots, walkways or roads. If you are unsure of how to connect or provide this lighting, notify the engineer of record in writing prior to bidding project. Submission of a bid indicates that the bidder has included these requirements as part of the scope of work.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 NOT USED

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Engineer shall have no responsibility for job site safety and the Contractor shall have full and sole authority for all safety programs and precautions in connection with the Work. Nothing herein shall be interpreted to confer upon the Engineer any duty regarding safety or the prevention of accidents at the jobsite.
- B. Comply with NECA 1.
- C. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- D. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- E. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- F. Right of Way: Give to piping systems installed at a required slope.
- G. All work shall be executed in a workmanship manner and shall present a neat mechanical appearance upon completion.
- H. Care shall be exercised that all items are plumb, straight, level.
- I. Care shall be exercised so that Code clearance is allowed for all panels, controls. etc., requiring it. Do not allow other trades to infringe on this clearance.
- J. Balance load as equally as practicable on all feeders, circuits and panel buses.
- K. The electrical circuits, components and controls for all equipment are selected and sized based on the equipment specified. If substitutions are proposed, furnish all materials and data required to prove equivalence. No additional charges shall be allowed if additional materials, labor, connections or equipment are needed for substituted products.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

PONumber: C17902C020

C. Coordinate with roofing scope of work for the installation of electrical items which pierce roof. Roof penetrations shall not void warranty. Pitch pockets are not acceptable.

- D. Where work pierces waterproofing, it shall maintain the integrity of the waterproofing. Coordinate roofing materials which pierce roof for compatibility with membrane or other roof types.
- E. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- F. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- G. Cut sleeves to length for mounting flush with both surfaces of walls.
- H. Extend sleeves installed in floors **2 inches** above finished floor level.
- I. Size pipe sleeves to provide **1/4-inch** annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- J. Seal space outside of sleeves with grout for penetrations of concrete and masonry
- K. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- L. Fire-Rated-Assembly Penetrations: Firestop penetrations of walls, partitions, ceilings, and floors under Division 07 Section "Firestopping."
- M. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. The use of pitch pockets is not acceptable.

3.3 DEMOLITION

- A. Unless otherwise specified, all equipment and materials shall remain the property of the Owner. Owner shall have first rights to all demolished items if they decide it is usable. This selected property of Owner shall be delivered to a location where directed by Owner within 15 miles of site and all other items shall be removed from the job site and legally disposed of by the Contractor.
- B. Cut no structural members without written approval from the structural engineer of record and Owner.

3.4 MISCELLANEOUS CIRCUITS REQUIRED

A. Provide 120 volt, 20 amp circuit to building control panels for HVAC system (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer of Record of required circuit so that final circuit information may be added to the drawings. Re-label circuit breaker accordingly. Coordinate location with drawings or specifications prior to bid and provide all electrical.

END OF SECTION 26 05 00

SECTION 26 05 01 - INVESTIGATION OF EXISTING ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including Contractual conditions and Division 1 Specification sections apply to this section.

1.2 SUMMARY

A. This section includes the requirements for investigation and reporting on conditions of existing electrical systems.

1.3 DESCRIPTION

- A. Test the essential features of existing electrical power, lighting and systems.
- B. Each system shall be tested once only, and after completion of testing, results given to the Owner. Point out any non-operational function noticed during testing.
- C. Document the existing conditions and operation of the existing electrical systems prior to any work.
- D. Contractor shall be responsible for all non-working systems and their components unless non-working status is verified prior to work on system.

1.4 COORDINATION

A. The testing shall be held at a date to be agreed upon in writing by the Owner.

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION

3.1 PERFORMANCE VERIFICATION

- A. The contractor shall investigate all existing systems prior to the beginning any work on site. Test the functionality of each system and report only those items that are non-functional to the Owner.
- B. Demonstrate to the Owner the non-functional items to verify the issue. Owner will at its option correct the deficiency immediately or defer to correct until the construction is completed. Provide a written report to clarify the items and the Owners decisions on correction,

PONumber: C17902C020

- C. Each system shall be retested after completion of renovation to ensure proper operation.
- D. At the completion of construction, the Owner will expect all power, lighting and systems to function for their intended purpose wether new or existing. The contractor will remain responsible for this unless noted otherwise during the intial investigation and documented and demonstrated as such.

3.2 MEMO OF INVESTIGATION (TESTING)

A. Submit Existing Facilities Investigation Memo and advise Owner of all deficiencies in system(s) prior to Work. All systems will be assumed to be fully operational if Memo is not received by Owner prior to work on system.

END OF SECTION 26 05 01

SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
 - 3. Sleeves and sleeve seals for cables.
 - 4. Metal Clad cable, Type MC

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Provide type and UL listing of each type of conductor, cable, connector and termination to be utilized for the DIVISION 26 scope of work.
- B. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. Listing and Labeling: Provide wires and cables specified in this Section that are listed and labeled as defined in NFPA 70, Article 100.
- B. Comply with NFPA 70.

1.6 COORDINATION

- A. Coordinate layout and installation of cables with other installations.
- B. Revise locations and elevations from those indicated, as required to suit field conditions and as approved by Architect.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alcan Products Corporation; Alcan Cable Division.
 - 2. American Insulated Wire Corp.; a Leviton Company.
 - 3. General Cable Corporation.
 - 4. Senator Wire & Cable Company.
 - 5. Southwire Company.

B. BUILDING WIRES AND CABLES

CONDUCTOR INSULATION

- a. Comply with NEMA WC 70 for Types THHN-THWN
- b. Service Entrance: Type THHN-THWN CU or XHHW-2 Al, single conductors in raceway.
- c. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway.
- d. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
- e. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.
- f. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- g. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC (MC may only be utilized in certain specific installations as described elsewhere in this section).
- h. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway. Minimum #12.
- i. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway. Minimum #12.
- j. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- k. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- I. Class 2 Control Circuits: Type THHN-THWN, in raceway.

2. CONDUCTOR MATERIAL:

- a. Copper Conductors: Comply with NEMA WC 70.
- b. All #10 and smaller conductors shall be solid CU. No stranded conductors are permitted for #10 and smaller.
- c. Aluminum conductors may be used for 1/0 and larger panel board feeders if identified as aluminum on the electrical feeder schedule. Aluminum conductors shall be compact stranded aluminum alloy with XHHW-2 insulation, made of an AA-8000 series electrical grade aluminum alloy conductor material.

PONumber: C17902C020

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. AMP Incorporated
 - 3. Anderson
 - 4. O-Z/Gedney; EGS Electrical Group LLC.
 - 5. 3M; Electrical Products Division.
 - 6. Burndy
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
- C. Aluminum connections shall be made with compression type wire barrels factory prefilled with oxide inhibiting compound. Set screw connectors are not acceptable.

2.3 FLEXIBLE METAL CLAD CABLE

- A. Comply with:
 - 1. NFPA 70
 - 2. ANSI/UL 4/UL 83/UL 1479
 - 3. Fed. Specification J-C-30B
- B. Cable material:
 - 1. Jacket material:
 - a. Galvanized Steel or aluminum, interlocked.
 - 2. Conductor covering: Paper wrap.
 - 3. Conductor Material:
 - a. Copper, Solid, THHN
 - b. Minimum #12 gauge
 - c. Maximum #10 gauge
 - d. 90 degree C, 600 volt.
 - e. Full size insulted grounding conductor, green.
 - f. Conductor color coding to match system voltage. Comply with Division 26 Section "Identification".

C. Fittings:

- 1. ANSI/NEMA FB 1
- 2. ANSI/UL 514B
- 3. Zinc plated Malleable iron, or steel.
 - a. Direct flexible conduit bearing set screw type not acceptable.
 - b. Install insulated bushings or equivalent protection (i.e. Anti-short) between core conductors and outer jacket.

PONumber: C17902C020

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES IN RACEWAY

- A. No cables shall be installed in raceways until the raceway system is complete from end to end.
- B. Examine raceways and building finishes to confirm compliance with contract requirements for installation tolerances and other conditions affecting installation of wires and cables. Do not proceed with installation until area is ready and any unsatisfactory conditions have been corrected.
- C. Verify that interior of building has been protected from weather.
- D. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- E. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."
- G. All branch circuit wire shall be sized for a maximum voltage drop of 3%. The contractor shall size all cables to comply with this requirement. Below are some guidelines that may be followed to achieve the correct voltage drop in lieu of providing custom calculations for each case
 - 1. Use conductor not smaller than #12 AWG for all 120V 20A branch circuits less than 60' in length from the source breaker to any device.
 - 2. All 120V branch circuit conductors where the length is 61' to 120' from the source breaker to any device shall utilize #10 minimum throughout the circuit, unless otherwise noted.
 - 3. All 120V branch circuit conductors where the length is 121' to 240' from the source breaker to any device shall utilize # 8 minimum throughout the circuit, unless otherwise noted.
 - 4. All 120V branch circuit conductors where the length is greater than 241' from the source breaker to any device shall utilize # 6 minimum throughout the circuit, unless otherwise noted.
 - 5. Use conductor not smaller than #12 AWG for all 277V 20A branch circuits less than 140' in length from the source breaker to any device.
 - 6. All 277V branch circuit conductors where the length is 141' to 220' from the source breaker to any device shall utilize #10 minimum throughout the circuit, unless otherwise noted.
 - 7. All 277V branch circuit conductors where the length is 221' to 340' from the source breaker to any device shall utilize # 8 minimum throughout the circuit, unless otherwise noted.
 - 8. All 277V 20A branch circuit conductors where the length is greater than 341' from the source breaker to any device shall utilize # 6 minimum throughout the circuit, unless otherwise noted.
- H. Provide a dedicated neutral conductor for all dimmer circuits from the load back to the dimmer module or switch.
- I. Provide a dedicated neutral conductor for all computer receptacle circuits from the load back to the branch circuit panel board.

PONumber: C17902C020

- J. Neatly train and lace wiring inside boxes, equipment, and panelboards.
- K. Conductor sizes indicated on circuit homeruns or in schedules shall be installed over the entire length of the circuit unless noted otherwise on the drawings or in these specifications.
- L. Before installing raceways and pulling wire to any mechanical equipment, verify electrical characteristics with final submittal on equipment to assure proper number and AWG of conductors. (As for multiple speed motors, different motor starter arrangements, etc.).
- M. Coordinate all wire sizes with lug sizes on equipment, devices, etc. Provide/install lugs as required to match wire size.

3.2 INSTALLATION REQUIREMENTS FOR METAL CLAD CABLES

- A. Metal Clad Cables may be used only as specified, where permitted by NEC, and if approved by the Local Inspecting Authority having Jurisdiction.
- B. MC Cable shall not be run to the panel board or electrical room. All final runs to the panelbpard shall be in conduit to a point at least 10' outside the electrical room. No more than 6 current carrying conductors shall be run in any conduit to a junction box outside the electrical room. No junction box shall contain more than 6 current carrying conductors. Wireways are not permitted for the termination of MC cables.
- C. MC cable shall not be used for any other building system wiring (except power and lighting).
- D. MC cables shall not be used for switch legs.
- E. MC cables shall not be used for feeder circuits or for systems.
- F. Utilize the same sizing requirements for 20A branch circuit conductors as listed for conductors in raceways.
- G. Connectors and supporting components shall be UL Listed for such use. Tie wire is not acceptable for supporting MC cable.
- H. Cut cables with UL listed tools intended for such use. Ream smooth and free of sharp and abrasive areas. Install bushing between conductors and outer jacket. The use of slide cutters or dikes to cut cables is not acceptable.
- I. Maintain minimum 1/2 inch separation between each cable and support per NEC. The practice of bundling cables is not acceptable.
- J. Install cables minimum of 1'-0" from communications cables.
- K. Attachment of cables to ceiling system is prohibited.
- L. Attachment of cables to, on, or from mechanical (HVAC) equipment, supports, etc., is not permitted.
- M. Install cables parallel and perpendicular to building structure.
- N. Zigzagging cables through building elements, as method of support is not acceptable.

PONumber: C17902C020

O. Cable with outer metal sheath damaged by construction elements and/or improper installation shall be replaced at no additional cost to owner.

3.3 CONNECTIONS

- A. Where oversized conductors are called for (due to voltage drop, etc.) provide/install lugs as required to match conductors, or provide/install splice box, and splice to reduce conductor size to match lug size.
- B. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- C. All aluminum connections shall be made with approved compression connectors before being connected to lugs. Conductors shall be cleaned with a wire brush immediately prior to connecting.
- D. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- E. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
- F. Power and lighting conductors shall be continuous and unspliced where located within conduit. Splices shall occur within troughs, wireways, outlet boxes, or equipment enclosures where sufficient additional room is provided for all splices. No splices shall be made in in-ground pull boxes (without written acceptance of engineer).
- G. Splices in lighting and power outlet boxes, wireway, and troughs shall be kept to a minimum, pull conductors through to equipment, terminal cabinets, and devices.
- H. No splices shall be made in junction box, and outlet boxes (wire No. 8 and larger) without written acceptance of Engineer.
- I. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. A calibrated torque wrench shall be used for all bolt tightening.
- J. All interior power and lighting taps and splices in No. 8 or smaller shall be fastened together by means of "spring type" connectors. All taps and splices in wire larger than No. 8 shall be made with compression type connectors and taped to provide insulation equal to wire. Utilize weatherproof connectors for all splices in exterior boxes.
- K. No splices are permitted in exterior below grade handhole or pull boxes.

3.4 FIELD QUALITY CONTROL

- A. After feeders are in place, but before being connected to devices and equipment, test for shorts, opens, and for intentional and unintentional grounds.
- B. Cables 600 volts or less in size #1/0 and larger shall be meggered using an industry approved "megger" with 1000 V internal generating voltage. Readings shall be recorded and submitted to the Engineer for acceptance prior to energizing same. If values are less than recommended NETA values notify Engineer. Submit five copies of tabulated megger test values for all cables.

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

C. Cables 250 volts or less in size #1/0 and larger shall be meggered using an industry approved "megger" with 500 V internal generating voltage. Readings shall be recorded and submitted to the Engineer, for acceptance prior to energizing same. Submit five copies of tabulated megger test values for all cables.

- D. Perform Insulation resistance test and turns ratio test. Submit five copies to engineer at substantial completion.
- Remove and replace malfunctioning units and retest as specified above. E.

END OF SECTION 26 05 19

PONumber: C17902C020

SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems, equipment and common ground bonding with lightning protection system.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.

1.4 QUALITY ASSURANCE

- A. Comply with UL 467 for grounding and bonding materials and equipment.
- B. Test all ground rod locations as described to confirm quality standard intent is attained.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 4 inches in cross section, unless otherwise indicated; with insulators.

PONumber: C17902C020

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Lugs: Compression of substantial construction, cast copper or cast bronze, with "ground" (micro-flat) surfaces, compression type, two-hole tongue, equal to Burndy or equal by T&B or OZ Gedney. Lightweight and "competitive" devices shall be rejected.
- E. Grounding and Bonding Bushings: Malleable iron, Thomas and Betts (T&B), or equal.
- F. Grounding Screw and Pigtail: Raco No. 983 or equal.
- G. Building Structural Steel, Existing: Thompson 701 Series heavy duty bronze "C" clamp with two-bolt vise-grip cable clamp or equal.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 5/8 inch by 10 feet in diameter.

2.4 GROUNDING WELL COMPONENTS

A. All Areas:

- 1. Well: Minimum 12 inch long by 12 inch wide by 18 inches deep with open bottom.
- 2. Well Cover: Traffic rated for use with "GROUND" embossed on cover.
- 3. Material: Composolite.
- 4. Manufacturer: Quazite.
- 5. Increase depth, diameter or size as required to provide proper access at installed location.

2.5 GROUNDING BARS/GROUND BUS (INCLUDING 'SYSTEMS' GROUND BUS/BARS AND GROUND BUS BARS)

- A. Ground bars shall be copper of the size and description as shown on the drawings. If not sized on drawings, bus bar shall be minimum 1/4" x 4" bus grade copper, spaced from wall on insulating 2" polyester molded insulator standoff/supports, and be 12" or greater minimum overall length, allowing 2" length per lug connected thereto. Increase overall length as required to facilitate all lugs required while maintaining 2" spacing. Size of bus bar used in main electrical room shall be similar except minimum of 4" high and 24" long.
- B. Provide bolt-tapping lug with two hex head mounting bolts for each terminating ground conductor, sized to match conductors. Mount on bus bar at 2 inches on center spacing. Lugs to be manufactured by Burndy or T&B.

PONumber: C17902C020

C. Standoff supports to be 2" polyester as manufactured by Glastic #2015-4C.

PART 3 - EXECUTION

3.1 GROUNDING ELECTRODES

- A. All connections shall be exothermic welded unless otherwise noted herein. All connections above grade and in accessible locations may be by exothermic welding or by braising or clamping with devices UL listed as suitable for use except in locations where exothermic welding is specifically specified in these specifications or called for on drawings.
- B. Each rod shall be die stamped with identification of manufacturer and rod length.
- C. Install rod electrodes at locations indicated and/or as called for in these specifications.
- D. Ground Resistance:
 - 1. Main Electrical Service (to each building):
 - a. Grounding resistance measured at each main service electrode system.
 - 2. Other Locations:
 - a. Resistance to ground of all non-current carrying metal parts shall not exceed 5 ohms measured at motors, panels, busses, cabinets, equipment racks, light poles, transformers, and other equipment.
 - 3. Lightning Protection system ground locations shall not exceed 5 ohms for the Franklin system measured at ground electrode.
 - 4. Resistance called for above shall be maximum resistance of each ground electrode prior to connection to grounding electrode conductor. Where ground electrode system being measured consists of two (2) or more ground rod electrodes then the resistance specified above shall be the maximum resistance with two (2) or more rods connected together but not connected to the grounding electrode conductor.
- E. Install additional rod electrodes as required to achieve specified resistance to ground (specified ground resistance is for each ground rod location prior to connection to ground electrode conductor). Depending on soil condition, etc. of ground rod locations it has been found that the ground rod lengths required to achieve the specified resistance may range from the minimum specified length to up to 80 feet or more in length.
- F. Verify that final backfill and compaction has been completed before driving rod electrodes.
- G. Install ground rods not less than 1 foot below grade level and not less than 2 feet from structure foundation.

3.2 EQUIPMENT GROUNDING CONDUCTOR

- A. Provide separate, insulated conductor within each feeder and branch circuit raceway. Terminate each end on suitable lug, bus, or bushing.
- B. Provide green insulated ground wire for all grounding type receptacles and for equipment of all voltages. In addition to grounding strap connection to metallic outlet boxes, a supplemental

PONumber: C17902C020

grounding wire and screw equal to Raco No. 983 shall be provided to connect receptacle ground terminal to the box.

- C. All plugstrips and metallic surface raceway shall contain a green insulation ground conductor from supply panel ground bus connected to grounding screw on each receptacle in strip and to strip channel. Conductor shall be continuous.
- D. All motors, all heating coil assemblies, and all building equipment requiring flexible connections shall have a green grounding conductor properly connected to the frames and extending continuously inside conduit with circuit conductors to the supply source bus with accepted connectors regardless of conduit size or type. This shall include Food Service equipment, Laundry equipment, and all other "Equipment By Owner" to which an electric conduit is provided under this Division.

3.3 MAIN ELECTRICAL SERVICE

- A. Existing Buildings:
 - 1. Verify that each building's electrical service is properly grounded as required by the NEC.
 - 2. Provide and install electrical service grounding at each building as called for herein for all existing services that do not comply with the grounding specified above.
 - 3. Supplement existing electrical service grounding at each building as required to comply with all requirements in these specifications.
 - 4. If exterior ground rod electrode does not exist at each buildings main electrical service, provide and install these ground rods as called for main electrical service, exterior of building. Connect all counterpoise conductors required elsewhere thereto.
- B. Ground electrodes shall be provided for the main service in sufficient number and configuration to secure resistance specified.
- C. Bond to all of the following when available on site:
 - 1. Ground Rods
 - 2. Metal Water Pipe (Interior and Exterior to Building)
 - 3. Building Metal Frame, Structural Steel and/or Reinforced Structural Concrete
 - 4. All Piping Entering or Leaving All Buildings (Including Chilled Water Piping)
 - 5. Encasing Electrodes
 - 6. Site Distribution Counterpoise Ground System
 - 7. Lightning Protection System
- D. A main ground, bare copper conductor, sized per applicable table in NEC, but in no case less than #2/0, shall be run in conduit from the main switchgear of <u>each</u> building to the building steel in respective building. This ground conductor shall also be run individually from the main switchgear and be bonded to the main water service ahead of any union in pipe and must be metal pipe of length as acceptable by authorities having jurisdiction. Provide properly sized bonding shunt around water meter and/or dielectric unions in the water pipe. Also required is the same size ground wire to ground rod electrode as called for below:
 - 1. Three 30 ft. ground rods in a delta configuration at no less than 30 ft. spacing driven to a minimum depth of 30 ft. plus 1 below grade.
 - 2. Bond ground rod electrodes together with a bare copper ground conductor that matches size required by applicable table in NEC 250, but in no case less than #2/0.
 - 3. Provide additional rod electrodes as required to achieve specified ground resistance.
- E. Ground/bond neutral per NEC.

PONumber: C17902C020

F. Bond grounding electrodes to site counterpoise grounding system and lightning protection system where provided.

G. Provide and install ground bus bar on wall near main service disconnect/switchboard. Connect to ground bar in disconnect/switchboard bonded to switchboard/disconnect enclosure/neutral with copper grounding conductor sized per applicable table in NEC.

3.4 TRANSFORMER GROUNDING

- A. Ground all transformers and enclosures of 120/208V and 277/480V "separately derived systems" as specified herein.
 - 1. Ground per NEC 250 and these specifications.
 - 2. Bond neutral to transformer frame/enclosure and the equipment grounding conductors of the derived system with copper ground conductor sized per applicable table in NEC.
 - 3. Connect transformer neutral/ground to grounding electrode per NEC with grounding electrode conductor sized per applicable table in NEC.
 - 4. In addition to connection to grounding electrode conductor called for above (i.e. per NEC) provide, install and connect supplemental grounding electrode as follows:
 - a. Where grounding required per NEC is to building steel/structure, supplement this grounding with connection to nearest available effectively grounded metal water pipe.
 - b. Where grounding connection required per NEC is to grounded metal water pipe, supplement this grounding with connection to other electrodes specified in NEC.
 - c. Where supplemental grounding electrodes required above is a ground rod electrode, provide, install and connect two or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
 - 5. Where neither building steel nor water pipe grounding electrodes are available (i.e. exterior locations with no available water pipe electrode) provide two (2) ground connections: each to two (2) or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
 - 6. Where transformer is mounted exterior to building one (1) of the two (2) ground electrodes required shall be ground rod electrode as called for in 5. above. This ground rod electrode shall also be connected to counterpoise system (wherever counterpoise system is available).
 - 7. Ground to water system service pipe as required by NEC.
- B. Provide additional ground electrodes as required to achieve specified ground resistance.
- C. Where two or more ground electrodes are used at any one required ground location, they shall be bonded together with a copper ground conductor, sized to meet applicable table in NEC, but in no case less than #2/0.
- D. Provide and install ground bus bar on wall near transformer (or in associated electrical room for exterior mounted transformers). Connect to ground lug in transformer bonded to transformer enclosure/neutral with copper ground conductor sized per applicable table in NEC.

3.5 LIGHTNING PROTECTION SYSTEMS

A. Ground per applicable section on lightning protection system, NFPA 780, and as specified herein. The most stringent requirements shall govern.

PONumber: C17902C020

B. Bond lightning protection system grounds to electrical service system ground, all piping entering or leaving all buildings, and counterpoise system ground where provided.

C. Lightning protection ground rods shall be 20' in length and should not be driven deeper. If additional rods are required to achieve the required resistance to ground, they should be added in parallel with the first at one rod length separation.

3.6 EXTERIOR GRADE (OR FREE STANDING ABOVE GROUND) MOUNTED EQUIPMENT

A. General:

- 1. All equipment (including chillers, pumps, disconnects, starters, control panels, panels, etc) mounted exterior to building shall have their enclosures grounded directly to a grounding electrode at the equipment location in addition to the building equipment ground connection.
- 2. Bond each equipment enclosure, metal rack support, mounting channels, etc. to ground electrode system at each rack with an insulated copper ground conductor sized to match the grounding electrode conductor required by applicable table in NEC based on equipment feeder size, but in no case shall conductor be smaller than #6 copper or larger than #2 copper. This connection is in addition to grounding electrode connections required for services.
- B. Main electrical service rack mounted equipment.
 - 1. Ground per "MAIN ELECTRICAL SERVICE".
 - 2. Bond all metal parts as noted above.
- C. Electrical sub service rack mounted equipment.
 - Ground per "MAIN ELECTRICAL SERVICE", except do not bond neutral to ground.
 - 2. Bond all metal parts as noted above.
- D. Electrical equipment connection rack mounted equipment.
 - 1. Bond all metal parts as noted above.
- E. Grounding electrodes (ground electrodes system) shall be:
 - 1. Located at each rack location.
 - 2. For service equipment: Ground electrode required per "MAIN ELECTRICAL SERVICE".
 - 3. For equipment connection equipment: Two or more 30 ft. ground rods at no less than 30 ft. spacing, driven vertical to a minimum depth of 1 ft below grade. Bond the two or more ground rods together with a size to meet applicable table in NEC, but no less than a #2 copper ground conductor. Provide additional rod electrodes as required to achieve specified ground resistance.

3.7 MISCELLANEOUS GROUNDING CONNECTIONS

- A. Provide bonding to meet regulatory requirements.
- B. Required connections to building steel shall be with UL accepted non-reversible crimp type ground lugs exothermically welded to bus bar that is either exothermically welded to steel or bolted to steel in locations where weld will not affect the structural properties of the steel.

PONumber: C17902C020

Required connections to existing building structural steel purlins/I beams shall be with heavy duty bronze "C" clamp with two bolt vise-grip cable clamp.

- C. Grounding conductors shall: be so installed as to permit shortest and most direct path from equipment to ground; be installed in conduit; be bonded to conduit at both ends when conduit is metal; have connections accessible for inspection; and made with accepted solderless connectors brazed (or bolted) to the equipment or to be grounded; in NO case be a current carrying conductor; have a green jacket unless it is bare copper; be run in conduit with power and branch circuit conductors. The main grounding electrode conductor shall be exothermically welded to ground rods, water pipe, and building steel.
- D. All surfaces to which grounding connections are made shall be thoroughly cleaned to maximum conductive condition immediately before connections are made thereto. Metal rustproofing shall be removed at grounding contact surfaces, for 0 ohms by digital Vm. Exposed bare metal at the termination point shall be painted.
- E. All ground connections that are buried or in otherwise inaccessible locations, shall be welded exothermically. The weld shall provide a connection which shall not corrode or loosen and which shall be equal or larger in size than the conductors joined together. The connection shall have the same current carrying capacity as the largest conductor.
- F. Install ground bushings on all metal conduits entering enclosures where the continuity of grounding is broken between the conduit and enclosure (i.e. metal conduit stub-up into a motor control center enclosure or at ground bus bar). Provide an appropriately sized bond jumper from the ground bushing to the respective equipment ground bus or ground bus bar.
- G. Install ground bushings on all metal conduits where the continuity of grounding is broken between the conduit and the electrical distribution system (i.e. metal conduit stub-up from wall outlet box to ceiling space. Provide an appropriately sized bond jumper from the ground bushing to the respective equipment ground bus or ground bus bar.
- H. Each feeder metallic conduit shall be bonded at all discontinuities, including at switchboards and all subdistribution and branch circuit panels with conductors in accordance with applicable table in NEC 250 for parallel return with respective interior grounding conductor.
- I. Grounding provisions shall include double locknuts on all heavywall conduits.
- J. Bond all metal parts of pole light fixtures to ground rod at base.
- K. Install grounding bus in all existing panelboards of remodeled areas, for connection of new grounding conductors, connected to an accepted ground point.
- L. Bond together reinforcing steel and metal accessories in pool and fountain structures.
- M. Where reinforced concrete is utilized for building grounding system, proper reinforced bonding shall be provided to secure low resistance to earth with "thermite" type devices, and #10AWG wire ties shall be provided to not less than ten (10) full length rebars which contact the connected rebar.
- 3.8 GROUNDING BAR/GROUND BUS (INCLUDING 'SYSTEMS' GROUND BUS/BAR ON GROUND BUS/BAR) INSTALLATION
 - A. Where indicated on the drawings, provide and install grounding bar/ground bus (bus bar). These bus installations are intended to provide a low-impedance "earthing" path for surge voltages, which are electrically "clamped" and shunted to earth by variable-impedance surge

PONumber: C17902C020

protective devices. Metal sheaths of underground cables are also to be grounded thereto at points of building entrance.

- B. Mount bolt tapping lugs with hex head bolts to bus bar at 2" o.c. spacing, one for each ground conductor.
- C. Mount bus bar to wall using 2" polyester molded insulator stand-off.
- D. Extend a #2/0 (minimum size) or larger THWN insulated copper ground conductor (if larger size is called for on drawings or required by N.E.C. for service ground, etc.) in PVC conduit to accepted service ground installation or ground bus/bar in main service equipment enclosure.
- E. Extend #6 insulated copper ground wire from respective bus/bar to each 'local' ground bus/bar in each cabinet for Section 27 systems.
- F. 'SYSTEMS' grounding bus/bar must be connected with #2/0 insulated copper conductor to grounding electrodes system as defined in NEC "Article 800.

3.9 TESTING AND REPORTS

- A. Ground resistance measurements shall be made on each system utilized in the project. The ground resistance measurements shall include building structural steel, driven grounding system, water pipe grounding system and other accepted systems as may be applicable. Ground resistance measurements shall be made in normally dry weather, not less than 24 hours after rainfall, and with the ground under test isolated from other grounds and equipment. Resistances measured shall not exceed specified limits.
- B. Upon completion of testing, the testing conditions and results shall be certified and submitted to the Architect/Engineer.

END OF SECTION 26 05 26

PONumber: C17902C020

SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.
- D. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and shown.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Unistrut
 - 2. Straps
 - 3. Clamps
 - 4. Rods
 - 5. Hangers

PONumber: C17902C020

- 6. Anchors
- 7. Attachment Devices
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Nonmetallic slotted channel systems. Include Product Data for components.
 - 4. Equipment supports.

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-Line, Inc.; a division of Cooper Industries.
 - b. ERICO International Corporation.
 - c. Thomas & Betts Corporation.
 - d. Unistrut; Tyco International, Ltd.
 - e. Wesanco, Inc.
 - 2. Metallic Coatings: Exterior of the building utilize stainless steel or hot-dip galvanized after fabrication and applied according to MFMA-4. Interior utilize electro-galvanized steel products.
 - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.
- B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch diameter holes at a maximum of 8 inches o.c., in at least 1 surface.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

PONumber: C17902C020

- a. Cooper B-Line, Inc.; a division of Cooper Industries.
- b. Fabco Plastics Wholesale Limited.
- c. T & B/Carlon
- d. Seasafe, Inc.
- 2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
- 3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
- 4. Rated Strength: Selected to suit applicable load criteria.
- C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - Available Manufacturers: Subject to compliance with requirements, manufacturers
 offering products that may be incorporated into the Work include, but are not
 limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.

PONumber: C17902C020

- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18: complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25percent in future without exceeding specified design load limits.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.

PONumber: C17902C020

- 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
- 4. To Existing Concrete: Expansion anchor fasteners.
- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
- 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts, beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or spring-tension clamps.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- F. Do not support conduit or raceway with wire, metal banding material, or perforated pipe straps. Remove wire used for temporary supports
- G. Do not attach conduit or raceway to ceiling support wires.
- H. Conduits or raceways shall not be supported from ceiling grid supports, plumbing pipes, duct systems, heating or air conditioning pipes, or other building systems.
- I. Non-bolted conduit clamps, spring type conduit clamps, and tie wire are not acceptable for supports. All conduits must be supported with bolted hangers listed for the specific installed application.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

END OF SECTION 26 05 29

SECTION 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. NBR: Acrylonitrile-butadiene rubber.
- H. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - 2. For handholes and boxes for underground wiring, including the following:

PONumber: C17902C020

- a. Duct entry provisions, including locations and duct sizes.
- b. Frame and cover design.
- c. Grounding details.
- d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
- e. Joint details.
- C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

1.5 REFERENCES

- A. ANSI C80.1 Rigid Steel Conduit Zinc Coated
- B. ANSI C80.3 Electrical Metallic Tubing Zinc Coated
- C. ANSI C80.5 Aluminum Rigid Conduit (ARC)
- D. ANSI/NEMA FB 1 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
- E. ANSI/NEMA OS 1 Sheet-steel Outlet Boxes, Device Boxes, Covers, and Box Supports.
- F. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
- G. ANSI/NFPA 70 National Electrical Code
- H. NECA Standard Practices for Good Workmanship in Electrical Contracting
- I. NEMA RN 1 Polyvinyl Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit.
- J. NEMA TC 2 Electrical Polyvinyl Chloride (PVC) Conduit (EPC 40, EPC 80)
- K. NEMA TC 3 -Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Minimum Trade Size
 - 1. All Conduit (except switch legs) 3/4"c.
 - 2. Switch legs 1/2"c.

B. RIGID METALLIC CONDUIT

- 1. Comply with:
 - a. ANSI C80.1
 - b. UL Spec No. 6
 - c. NEC 344
- 2. Conduit material:
 - a. Zinc coated or hot dipped galvanized steel.
- 3. Fittings:
 - a. Threaded.
 - b. Insulated bushings shall be used on all rigid steel conduits terminating in panels, boxes, wire gutters, or cabinets, and shall be impact resistant plastic molded in an irregular shape at the top to provide smooth insulating surface at top and inner edge. Material in these bushings must not melt or support flame.
 - c. Zinc plated or hot dipped galvanized malleable iron or steel.
- 4. Conduit Bodies:
 - a. Comply with ANSI/NEMA FB 1.
 - b. Threaded hubs.
 - c. Zinc plated or hot-dipped galvanized malleable iron.

C. RIGID ALUMINUM CONDUIT

- 1. Comply with:
 - a. ANSI C80.5
 - b. UL 6
 - c. NEC 344
- 2. Conduit material: Aluminum.
- 3. Fittings:
 - a. Threaded.
 - b. Aluminum.
 - c. Insulated bushings on terminations.
- 4. Conduit bodies:

PONumber: C17902C020

- a. Comply with ANSI/NEMA FB 1.
- b. Threaded hubs.
- c. Aluminum.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with:
 - a. UL 6
 - b. ANSI C80.1
 - c. NEC. 344
 - d. NEMA RN1
 - 2. Conduit material: Hot-dipped galvanized rigid steel with external PVC coating, 20 mil. thick.
 - 3. Fittings:
 - a. Threaded.
 - b. Insulated bushings on terminations.
 - c. Zinc plated or hot-dipped galvanized malleable iron or steel with external PVC coating, 20 mil. thick.
 - 4. Conduit bodies:
 - a. Comply with:
 - b. ANSI/NEMA FB 1
 - c. Threaded hubs
 - Zinc plated or hot-dipped galvanized malleable iron with external PVC coating 20 mil thick.
- E. EMT: ANSI C80.3.
 - 1. Comply with:
 - a. UL 797
 - b. ANSI C80.3
 - c. NEC 358
 - d. ANSI/UL797
 - 2. Conduit material: Galvanized steel tubing.
 - 3. Fittings:
 - a. ANSI/NEMA FB 1
 - b. Set screw, Die Cast for Interior Dry locations
 - c. Compression, Steel for all damp locations
- F. FMC: Zinc-coated steel or aluminum.
 - 1. Comply with:
 - a. NEC 348
 - b. ANSI/UL 1
 - 2. Conduit material: Steel or aluminum, interlocked.

PONumber: C17902C020

- 3. Fittings:
 - a. ANSI/NEMA FB 1
 - b. ANSI/UL 514B
 - c. Die Cast
 - d. Threaded rigid conduit to flexible conduit coupling.
 - e. Direct flexible conduit bearing set screw type not acceptable.
- G. LFMC: Flexible steel conduit with PVC jacket.
 - 1. Comply with:
 - a. NEC 350
 - b. ANSI/UL 360
 - 2. Conduit material:
 - a. Flexible hot-dipped galvanized steel core, interlocked.
 - b. Continuous copper ground built into core up to 1-1/4" size.
 - c. Extruded polyvinyl gray jacket.
 - 3. Fittings:
 - a. Threaded for rigid conduit connections.
 - b. Accepted for hazardous locations where so installed.
 - c. Provide sealing washer in wet/damp locations.
 - d. Compression type.
 - e. ANSI/NEMA FB 1.
 - f. ANSI/UL 5148.
 - g. Zinc plated malleable iron or steel.
- 2.2 NONMETALLIC CONDUIT AND TUBING
 - A. Minimum Trade Size 3/4"
 - B. RNC: NEMA TC 2, Schedule-40-PVC, unless otherwise indicated.
 - 1. Comply with:
 - a. NEMA TC-2
 - b. UL 651
 - c. NEC 352
 - 2. Conduit material:
 - a. Shall be high impact PVC tensile strength 55 PSI, flexural strength 11000 PSI.
 - 3. Fittings:
 - a. Comply with: NEMA TC-3 and UL 514.

PONumber: C17902C020

2.3 EXPANSION FITTINGS

- A. Expansion fittings shall be:
 - 1. UL Listed, hot dipped galvanized inside and outside providing a 4" expansion chamber when used with rigid conduit and electrical metallic conduit, or:
 - 2. Be polyvinyl chloride and shall meet the requirements of and as specified elsewhere for non-metallic conduit and shall provide a 6" expansion chamber.
 - 3. Hot dipped galvanized expansion fitting shall be provided with an external braided grounding and bonding jumper with accepted clamps, UL Listed for the application.
 - 4. Expansion fitting, UL Listed for the application and in compliance with the National Electrical Code without the necessity of an external bonding jumper may be considered. Submit fitting with manufacturer's data and UL Listing for acceptance prior to installation.

2.4 METAL WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type.
- E. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Thomas & Betts Corporation.
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.
 - d. Mono-Systems, Inc.

PONumber: C17902C020

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - Hoffman
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. O-Z/Gedney; a unit of General Signal.
 - 7. RACO; a Hubbell Company.
 - 8. Robroy Industries, Inc.; Enclosure Division.
 - 9. Scott Fetzer Co.; Adalet Division.
 - 10. Spring City Electrical Manufacturing Company.
 - 11. Thomas & Betts Corporation.
 - 12. Walker Systems, Inc.; Wiremold Company (The).
 - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
 - 1. Luminaire and Equipment Supporting Boxes: Rated for weight of equipment supported; include 1/2 inch (13 mm) male fixture studs where required.
 - 2. Concrete Ceiling Boxes: Concrete type.
 - 3. Interior flush outlet boxes shall be one piece drawn galvanized steel constructed with stamped knockouts in back and sides, and threaded holes with screws for securing box coverplates or wiring devices.
 - 4. Ceiling outlet boxes shall be 4" octagonal or 4" square X 1 1/2" deep or larger as required for number and size of conductors and arrangement, size and number of conduits terminating at them.
 - 5. Switch, wall receptacle, telephone and other recessed wall outlet boxes in drywall shall be a minimum of 4" square X 1 1/2" deep. For recessing in exposed masonry, provide one piece drawn 4" square x 1 1/2" deep wall boxes with appropriate 4" square cut tile wall covers. For recessing in furred-out block walls, provide 4" square box with required extension for block depth and required extension for drywall depth.
 - 6. Boxes shall be of such form and dimensions as to be adapted to the specific use and location, type of device or fixtures to be used, and number and size of conductors and arrangement, size and number of conduits connecting thereto.
 - 7. Handy boxes shall not be used for any purpose.
 - 8. Where a box is used as the sole support for a ceiling paddle fan, the box must be listed for this purpose and the weight of the fan.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.
 - 1. Interior surface outlet boxes and conduit bodies installed from 0" AFF to 90" AFF (including fire alarm device backbox) shall be the heavy cast aluminum or iron with external threaded hubs for power devices and threaded parts for low voltage devices. Trim rings shall also be of one-piece construction.
 - 2. Weatherproof outlet boxes shall be constructed of corrosion-resistant cast iron suited to each application and having threaded conduit hubs, cast metal faceplate with spring-hinged waterproof cap suitable configured, gasket, and corrosion-proof fasteners.
 - 3. Freestanding malleable iron cast boxes are to be type FSY (with flange). Cast aluminum/zinc boxes are not acceptable (Bell Boxes).

PONumber: C17902C020

D. Floor Boxes:

- 1. For all slab on grade areas except wet locations and wooden floors: Cast iron or steel with epoxy paint, fully adjustable before and after the concrete pour. The cover shall provide protection from water, dirt and debris. The cover will be flanged die cast aluminum with brushed aluminum finish that will accept carpet or tile cutouts to match flooring. The box shall be capable of adapting to most power and communications needs. Provide all activations, barriers and brackets required for the particular installation. Design Selection is Wiremold RFB 4 (based on required outlets) or equal.
- 2. Wood Floors: Cast iron or steel fully adjustable, rectangular, multi-gang box. The cover shall provide protection from water, dirt and debris. The cover will be brass flip lids with appropriate multi gang ring to set flush with wood flooring. The box shall be capable of adapting to most power and communications needs.
- 3. Poke Thru's for all floor boxes in elevated slabs: Flush style round poke thru with combination power (2 duplex) and data (6 Cat6 outlets). Poke Thru shall be UL scrub water exclusion for tile and carpeted floors. Poke thru shall be maintains UL fire rated for up to 2 hour rated floors. Poke thru shall meet FBC and ADA accessibility guidelines.

E. Sheet Metal Pull and Junction Boxes: NEMA OS 1.

- 1. Pull and junction boxes (not in-ground type) larger than 25 square inches shall be hinged cover type with flush latches operated with screwdriver.
- 2. Large Pull Boxes: Boxes larger than 400 cubic inches in volume or 20 inches in any dimension:
 - Use continuous hinged enclosures with locking handle.
- 3. Exterior, damp location and wet location pull and junction boxes shall be Nema 4x stainless steel.

F. Cabinets (Control and Systems):

- 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Metal barriers to separate wiring of different systems and voltage.
- 4. Accessory feet where required for freestanding equipment.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Concrete ring with Nema 6P box inside (All Areas)
 - 1. Color of Frame and Cover: Gray.
 - 2. Configuration: Concrete ring shall be designed for flush burial and have open bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural traffic load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC.", "TELEPHONE." or as indicated for each service.
 - 6. Nema 6P box rated for direct burial enclosure shall be located inside the concrete ring for termination of conduits.
 - 7. Handholes 36 inches wide by 36 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

PONumber: C17902C020

PART 3 - EXECUTION

3.1 RACEWAY LOCATION INSTALLATION REQUIREMENTS

A. Underground Installations:

- 1. Use rigid non-metallic conduit (PVC) only unless local authority having jurisdiction or applicable codes/utility requirements, etc. require rigid steel conduit.
- 2. All conduits or elbows entering, or leaving the ground shall be rigid steel conduit coated with asphaltic paint.
- 3. All underground raceways shall be installed in accordance with the NEC except that the minimum cover for any conduit outside the building slab shall be two feet. Included under this Section shall be the responsibility for verifying finished lines in areas where raceways will be installed underground before the grading is complete.
- 4. Where rigid metallic conduit is installed underground as noted above it shall be coated with waterproofing black mastic before installation, and all joints shall be re-coated after installation.
- 5. Utilize rigid steel 90° elbows at each riser and at each change in direction. Elbows shall be coated with black mastic or PVC coating. Bond all metal elbows per NEC.
- 6. All underground service lateral raceways shall be protected as required by the NEC including requirements for installation of warning tape.

B. In Slab Above or on Grade:

- 1. Use coated rigid steel conduit or rigid non-metallic conduit.
- 2. Coating of metallic conduit to be black asphaltic or PVC.

C. Penetration of Slab:

- 1. Exposed Location subject to damage:
 - a. Where penetrating a floor in an exposed location subject to damage from underground or in slab, a black mastic coated or PVC coated galvanized rigid steel conduit shall be used.
- 2. Interior Location not subject to damage:
 - a. Where penetrating a floor in a location concealed in block wall and acceptable by applicable codes, rigid non-metallic conduit may be used up to first outlet box, provided outlet box is at a maximum height of 40" above finished floor.
 - b. Where penetrating a floor in location other than that above, transition to metallic conduit at the floor.

D. Outdoor Location:

1. Above Grade:

- a. Where penetrating the finished grade, black mastic coated or PVC coated galvanized rigid steel conduit shall be used.
- b. In general all exterior conduit runs shall be rigid steel conduit and threaded connectors as specified elsewhere.

PONumber: C17902C020

c. Electrical metallic tubing (thin wall) is permitted under roof, overhangs, etc. provided it is not subjected to physical damage and is not in direct contact or directly subject to exterior elements including sunlight.

2. Metal Canopies:

a. Conduit runs except for canopy lighting raceways are not to be run on (top or bottom) of metal canopies roof systems. All new conduit shown on or at these areas is to be run underground. Clamp back spacers shall be used on all canopies to prevent galvanic action from dissimilar metals. Conduits installed exposed from Building structure to Metal Canopies will not be permitted.

3. Roofs:

- a. Conduit is not to be installed on roofs, without written authorization by A/E and the Owner for specific conditions.
- b. When accepted by written authorization conduit shall comply with the following:
 - 1) Be PVC coated rigid galvanized metal conduit.
 - 2) All fittings, etc. are to be PVC coated.
 - 3) Conduit shall be supported above roof at least 6 inches using accepted conduit supporting devices. Refer to applicable sections of specifications on roofing, etc.
 - 4) Supports to be fastened to roof using roofing adhesive or means compatible with roofing. Confirm the method used will not void the roofing warranty. The use of pitch pockets is not acceptable.

E. Interior Dry Locations:

- 1. Concealed: Use rigid galvanized steel conduit and electrical metallic tubing. Rigid non-metallic conduit may be used inside block walls up to first outlet to a maximum of 40" A.F.F. except where prohibited by the NEC (places of assembly, etc.).
- Exposed: Use rigid galvanized steel or electrical metallic tubing. EMT may only be used where not subject to damage, which is interpreted by this specification to be above 90" AFF.
- 3. Concealed or exposed flexible conduit:
 - a. Concealed flexible steel conduit or seal tight flexible steel conduit in lengths not longer than six (6) feet in length with a ground conductor installed in the conduit or an equipment ground conductor firmly attached to the terminating fitting at the extreme end of the flex. Exposed flexible steel conduit or seal tight flexible steel conduit shall not exceed two (2) feet in length, unless written authorization by A/E for specific conditions is granted.

F. Interior Wet and Damp Locations:

- 1. Use rigid galvanized steel conduit.
- G. Concrete Columns or Poured in-place Concrete Wall Locations:
 - 1. Use rigid non-metallic conduit. Penetration shall be by accepted metal raceway (i.e. metal conduit as required elsewhere in these specifications).

PONumber: C17902C020

3.2 RACEWAY INSTALLATION

- A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- B. All bending, cutting, and reaming shall be completed with tools specifically designed for the specific use.
- C. Expansion fittings shall be installed in the following cases:
 - 1. In each conduit run wherever it crosses an expansion joint in the concrete structure; on one side of joint with its sliding sleeve end flush with joint, and with a length of bonding jumper in expansion equal to at least three times the normal width of joints.
 - 2. In each conduit run which mechanically attached to separate structures to relieve strain caused by shift on one structure in relation to the other.
 - 3. In straight conduit run above ground which is more than one hundred feet long and interval between expansion fittings in such runs shall not be greater than 100 feet.
- D. Arrange conduit to maintain headroom and present neat appearance.
- E. Provide rigid steel long radius 90 degree sweeps (bend radius of 10 times the conduit trade size diameter) for all changes in direction (vertical and horizontal) for utility conduits. Comply with all installation requirements of the utility to utilize the conduits.
- F. Utility conduits shall be buried a minimum of 36" deep to the top of the conduit.
- G. Route conduit installed above accessible ceilings or exposed to view parallel or perpendicular to walls. Do not run from point to point.
- H. Do not cross conduits in slab.
- I. Use conduit hubs to fasten conduit to sheet metal boxes in damp and wet locations and to cast boxes.
- J. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- K. Complete raceway installation before starting conductor installation.
- L. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- M. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- N. Install no more than equivalent of three 90-degree bends between boxes. Use conduit bodies to make sharp changes in direction, as around beams. Use factory elbows for bends in metal conduit larger than 2 inch (50 mm) size.
- O. Provide continuous fiber polyline 1000 lb. minimum tensile strength pull string in each empty conduit except sleeves and nipples. This includes all raceways which do not have conductors furnished under this Division of the specifications. Pull cord must be fastened to prevent accidental removal.
- P. Use suitable caps to protect installed conduit against entrance of dirt and moisture.

PONumber: C17902C020

- Q. Rigid steel box connections shall be made with double locknuts and bushings.
- R. Spare conduit stubs shall be capped and location and use marked with concrete marker set flush with finish grade. Marker shall be 6" round x 6" deep with appropriate symbol embedded into top to indicate use. Also, tag conduits in panels where originating.
- S. Spare conduit stubs shall be capped with a UL listed and accepted cap or plug for the specific intended use and identified with ink markers as to source and labeled "Spare."
- T. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- U. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- V. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- W. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- X. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- Z. All raceway runs in masonry shall be installed at the same time as the masonry so that no face cutting is required, except to accommodate boxes.
- AA. Raceways shall not be routed through stairwells, elevator shafts, elevator machine rooms or fire pump rooms unless the conduit is for use within that space.
- BB. Raceways installed in hazardous locations shall be installed in accordance with the appropriate provisions of NEC chapter 5 for that location. Confirm the appropriate space rating with life safety plans.
- CC. All raceway runs, whether terminated in boxes or not, shall be capped during the course of construction and until wires are pulled in, and covers are in place. No conductors shall be pulled into raceways until construction work which might damage the raceways has been completed.
- DD. Electrical raceways shall be supported independently of all other systems and supports, and shall in every case avoid proximity to other systems which might cause confusion with such systems or might provide a chance of electrolytic actions, contact with live parts or excessive induced heat.

PONumber: C17902C020

EE. Excavate trench bottom to provide firm and uniform support for conduit installed underground. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter. Install backfill as specified in Division 31 Section "Earth Moving."

FF. After installing underground conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."

3.3 BOX INSTALLATION

- A. Set metal floor boxes level and flush with finished floor surface.
- B. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
- C. Install electrical boxes as shown on drawings, and as required for splices, taps, wire pulling, equipment connections and compliance with regulatory requirements.
- D. Install electrical boxes to maintain headroom and to present neat mechanical appearance.
- E. Inaccessible Ceiling Areas: Install outlet and junction boxes no more than 6 inches (150 mm) from ceiling access panel or from removable recessed luminaire.
- F. Install boxes to preserve fire resistance rating of partitions and other elements.
- G. Align adjacent wall-mounted outlet boxes for switches, thermostats, and similar devices with each other.
- H. Outlets for 120V clocks shall be recessed so that the clock will hang flush with the finished surface of the wall.
- I. Use flush mounting outlet boxes in finished areas.
- J. Do not install flush mounting boxes back-to-back in walls; provide minimum 6 inch (150 mm) separation. Provide minimum 24 inches (600 mm) separation in acoustic and fire rated walls.
- K. Secure flush mounting box to interior wall and partition studs. Accurately position to allow for surface finish thickness.
- L. Use stamped steel bridges to fasten flush mounting outlet box between studs.
- M. Install flush mounting box without damaging wall insulation or reducing its effectiveness.
- N. Support all outlet boxes from structure with minimum of one (1) 3/8" all-thread rod hangers. Boxes larger than 25 square inches shall be supported with two (2) all-thread rod hangers, minimum.
- O. Do not fasten boxes to ceiling support wires.

PONumber: C17902C020

P. Use multi-gang box where more than one device is mounted together. Do not use sectional box.

- Q. Boxes in exterior walls shall be flush mounted. Use cast outlet box in exterior locations and wet locations where flush mounting is not possible.
- R. Install outlets in the locations shown on the drawings; however, the Owner shall have the right to make, prior to rough-in, slight changes in locations to reflect room furniture layouts.
- S. Coordinate work with all divisions so that each electrical box is the type suitable for the wall or ceiling construction provided and suitable fireproofing is inbuilt into fire rated walls.
- T. All boxes shall be installed in a flush rigid manner with box lines at perpendicular and parallel angles to finished surfaces. Boxes shall be supported by appropriate hardware selected for the type of surface from which the box shall be supported. For example, provide metal screws for metal, wood screws for wood, and expansion devices for masonry or concrete.
- For locations exposed to weather or moisture (interior or exterior), provide weatherproof boxes and accessories.
- V. As a minimum, provide pull boxes in all raceways over 150 feet long. The pull box shall be located near the midpoint of the raceway length.
- W. Provide knockout closures to cap unused knockout holes where blanks have been removed, and plugs for unused threaded hubs.
- Provide conduit locknuts and bushings of the type and size to suit each respective use and installation.
- Y. Boxes and conduit bodies shall be located so that all electrical wiring is accessible.
- Z. Avoid using round boxes where conduit must enter box through side of box, which would result in a difficult and insecure connection with a locknut or bushing on the rounded surface.
- AA. All flush outlets shall be mounted so that covers and plates will finish flush with finished surfaces without the use of shims, mats or other devices not submitted or accepted for the purpose. Add-a-Depth rings or switch box extension rings are <u>not</u> acceptable. Plates shall not support wiring devices. Gang switches with common plate where two or more are indicated in the same location. Wall-mounted devices of different systems (switches, thermostats, etc.) shall be coordinated for symmetry when located near each other on the same wall. Outlets on each side of walls shall have separate boxes. Through-wall type boxes shall not be permitted. Back-to-back mounting shall not be permitted. Trim rings shall be extended to within 1/8" of finish wall surface.
- BB. Outlet boxes mounted in metal stud walls, are to be supported to studs with two (2) screws inside of outlet box to a horizontal stud brace between vertical studs or one side of outlet box supported to stud with opposite side mounted to section of stud or device to prevent movement of outlet box after wall finished.
- CC. All outlet boxes that do not receive devices in this contract are to have blank plates installed matching wiring device plates.

PONumber: C17902C020

DD. Height of wall outlets to bottom above finished floors shall be as follows, unless specifically noted otherwise, or unless otherwise required by applicable codes including ADA. Verify with the Architectural plans and shop drawings for installing.

1. Switches 4'-0" AFF to top 2.

3.

Receptacles 1'-4" AFF to bottom
Lighting Panels 6'-6" AFF to centerline of highest breaker/fuse
Phone outlets 1'-4" AFF to bottom
Intercom Call-in 4'-0"AFF to top 4. Fire Alarm Pull Stations 4'-0" AFF to top 6.

Fire Alarm Strobe Lights Lens is not less than 80" AFF and not more than 96" AFF 7.

Fire Alarm Audible Only Not less than 90" and not less than 6" below ceiling.

- Bottoms of outlets above counter tops or base cabinets shall be minimum 2" above counter top or backsplash, whichever is highest. Outlets may be raised so that bottom rests on top of concrete block course, but all outlets above counters in same area shall be at same height. It is the responsibility of this Division to secure cabinet drawings and coordinate outlet locations in relation to all cabinets as shown on Architectural plans, prior to rough-in, regardless of height shown on Division 26 drawings.
- Height of wall-mounted fixtures shall be as shown on the drawings or as required by Architectural plans and conditions. Fixture outlet boxes shall be equipped with fixture studs when supporting fixtures.
- GG. Locate special purpose outlets as indicated on the drawings for the equipment served. Location and type of outlets shall be coordinated with appropriate trades involved. The securing of complete information for proper electrical roughing-in shall be included as work required under this section of specifications. Provide plug for each outlet.
- HH. Electrical outlet boxes may be installed in vertical fire resistive assemblies classified as fire/smoke and smoke partitions without affecting the fire classification, provided such openings occur on one side only within a 24" wall space and that openings do not exceed 16 sq. inches. All clearances between such outlet boxes and the gypsum board must be completely filled with joint compound.
- II. Fire-Barrier Penetrations: Firestop penetrations under division 07 Section "Firestopping".

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- Install handholes and boxes level and plumb and with orientation and depth coordinated with Α. connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In all areas, set so cover surface will be flush with finished grade.

PONumber: C17902C020

3.5 INSTALLATION OF WIREWAYS

- A. Do not install wireways as a substitute for proper coordination and layout of conduit stub ups to panels. Prior authorization from the engineer is required prior to installation of any wireways.
- B. Do not make splices in wireways. All wires must be pulled through without splice or termination.
- C. Install wireway to maintain headroom and to present neat mechanical appearance.
- D. Support wireway independently of conduit.
- E. Wireway shall be located so that all electrical wiring is accessible.

END OF SECTION 26 05 33

PONumber: C17902C020

SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Identification for raceway and metal-clad cable.
 - 2. Identification for conductors and communication and control cable.
 - 3. Underground-line warning tape.
 - 4. Warning labels and signs.
 - 5. Instruction signs.
 - 6. Equipment identification labels.
 - 7. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.145.

1.5 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

PONumber: C17902C020

- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY, BOX AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- B. Primed and Painted band 4" in length.

2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

- A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 UNDERGROUND-LINE WARNING TAPE

- A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm).
- C. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm).
- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."

PONumber: C17902C020

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.5 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 EQUIPMENT IDENTIFICATION LABELS

- A. Safety Signs: Comply with 29 CFR, 1910.145.
- B. Nameplates shall be laminated phenolic plastic, chamfer edges.
 - 1. For 120/208 Volt System:
 - a. Black front and back with white core, with lettering etched through the outer covering. White engraved letters on Black background.
 - 2. For 277/480 Volt System:
 - a. Orange front and back with white core with lettering etched through the outer covering. White engraved letters on Orange background.
 - 3. For Emergency System:
 - a. Red front and back with white core with lettering etched through the outer covering. White engraved letters on red background.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.6 kg), minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PONumber: C17902C020

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Identification Materials and Devices: Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.
- C. Sequence of Work: If identification is applied to surfaces that require finish, install identification after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before applying.
- E. Install painted identification according to manufacturer's written instructions and as follows:
 - 1. Clean surfaces of dust, loose material, and oily films before painting.
 - 2. Prime surfaces using type of primer specified for surface.
 - 3. Apply one intermediate and one finish coat of enamel.
- F. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressuresensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.
- G. Circuit Identification Labels on Boxes: Install labels externally.
 - 1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on cover.
 - 2. Concealed Boxes: Plasticized card-stock tags.
 - 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.
- H. Paths of Underground Electrical Lines: During trench backfilling, for exterior underground power, control, signal, and communication lines, install continuous underground line marker located directly above line at 6 to 8 inches below finished grade. Where width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches overall, use a single line marker. Install line marker for underground wiring, both direct-buried cables and cables in raceway.
- I. Secondary Service, Feeder, and Branch-Circuit Conductors: Color-code throughout the secondary electrical system.
 - 1. Color-code 208/120-V system as follows:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White.
 - e. Ground: Green.
 - f. Switchlegs(load side of contactor or relay is not considered a switchleg): Purple
 - 2. Color-code 480/277-V system as follows:

PONumber: C17902C020

- a. Phase A: Brownb. Phase B: Orangec. Phase C: Yellow
- d. Neutral: White with a colored stripe or gray.
- e. Ground: Green.
- f. Switchleg(load side of contactor or relay is not considered a switchleg): Pink
- 3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 6 AWG:
 - a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inch wide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
- J. Power-Circuit Identification: Metal tags or aluminum, wraparound marker bands for cables, feeders, and power circuits in vaults, pull and junction boxes, manholes, and switchboard rooms.
 - 1. Legend: 1/4-inch steel letter and number stamping or embossing with legend corresponding to indicated circuit designations.
 - 2. Tag Fasteners: Nylon cable ties.
 - 3. Band Fasteners: Integral ears.
- K. Apply identification to conductors as follows:
 - 1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
 - 2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.
 - 3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, color-coding, or cable marking tape.
- L. Apply warning, caution, and instruction signs as follows:
 - 1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
 - 2. Emergency Operation: Install engraved laminated signs with white legend on red background with minimum 3/8-inch high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.
- M. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- N. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction

PONumber: C17902C020

- signs with approved legend where instructions are needed for system or equipment operation.
- 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.
- O. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled: Include as a minimum the equipment identification (first line ½"): voltage rating and amperage rating (second line 3/8"): where it is fed from (third line 3/8"). (Example :Panel CP1 (Line 1), 208/120V 3ph, 4w, 225A(line 2), fed from swbd MDP-1 (Line 3))
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - d. Transformers.
 - e. Electrical substations.
 - f. Emergency system boxes and enclosures.
 - g. Motor-control centers.
 - h. Disconnect switches.
 - i. Enclosed circuit breakers.
 - j. Motor starters.
 - k. Push-button stations.
 - I. Power transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery inverter units.
 - p. Battery racks.
 - q. Power-generating units.
 - r. Voice and data cable terminal equipment.
 - s. Master clock and program equipment.
 - t. Intercommunication and call system master and staff stations.
 - u. Television/audio components, racks, and controls.
 - v. Fire-alarm control panel and annunciators.
 - w. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks.
 - x. Monitoring and control equipment.
 - y. Uninterruptible power supply equipment.
 - z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions.

PONumber: C17902C020

3.2 SWITCHGEAR BREAKERS

A. Provide labels for each breaker to identify the load served.

3.3 CONDUIT/JUNCTION BOX COLOR CODE

A. All conduit system junction boxes (except those subject to view in public areas) shall be color coded as listed below:

B. Color Code for Junction Boxes

1. System Emergency 277/480 volt Orange/Brown System Emergency 120/208 volt Orange/Black 2. 3. Fire Alarm Red Normal Power 277/480 volt 4. Brown 5. Normal Power 120/208 volt Black Fiber Optics Purple 6. Sound System 7. Yellow 8. Clock Light Blue 9. Intercom Blue 10. Computer/Data Gold 11. White 12. Security/CCTV Beige

13. Ground Fluorescent Green14. Telephone Clover Green

- C. Conduits (not subject to public view) longer than 20 feet shall be painted with above color paint band 20 ft. on center. Paint band shall be 4" in length, applied around the entire conduit. Where conduits are parallel and on conduit racking, the paint bands shall be evenly aligned. Paint shall be neatly applied and uniform. Paint boxes and raceways prior to installation or tape conduits and surrounding surfaces to avoid overspray. Paint overspray shall be removed.
- D. All new and existing junction boxes/cover plates for power, lighting and systems (except those installed in public areas) shall adequately describe it's associated panel and circuit reference number(s) within, (i.e. ELRW-2, 4, 6) or systems within (i.e. fire alarm, intercom. Etc.). Identification shall be by means of black permanent marker. (Paint ½ cover plate with appropriate color as noted in 2.3 above, and mark other ½ with associated panel/circuit or system description as described).

END OF SECTION 26 05 53

PONumber: C17902C020

SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Twist-locking receptacles.
 - 3. Isolated-ground receptacles.
 - 4. Snap switches and wall-box dimmers.
 - 5. Solid-state fan speed controls.
 - 6. Pendant cord-connector devices.
 - 7. Cord and plug sets.
 - 8. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

PONumber: C17902C020

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. Comply with NEMA WD 1.

1.6 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

1.7 ALLOWANCES

A. Provide for twenty additional receptacles as directed in field. Allowance includes purchase, delivery and installation of box, receptacle cover plate, wire and 100 feet of conduit for each receptacle.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 2. Leviton Mfg. Company Inc. (Leviton).
 - 3. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following for standard convenience outlets:
 - a. Hubbell: HBL5361 (single), HBL5352 (duplex).
 - b. Leviton; 5351 (single), 5352 (duplex).
 - c. Pass & Seymour; 5361 (single), 5352 (duplex).

PONumber: C17902C020

- 2. Black Computer Power Duplex Receptacle:
 - a. Pass & Seymour Model PS5352-Black
 - b. Hubbell Model HBL5362-Black
 - c. Leviton Model 5362-Black

2.3 GFCI RECEPTACLES

- A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and trip button to indicate when device is tripped. Face will not have power if reverse wired. Visual indication for device has lost capability to provide protection.
- B. Outdoor locations provide weather resistant GFCI convenience receptacles, 125V, 20A Black
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell #GFR5362WR
 - b. Pass & Seymour; 2095DSWRBK.
 - c. Leviton #W7899-E
- C. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell #GFR5362
 - b. Pass & Seymour; 2095.
 - c. Leviton #6898

2.4 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

- A. Wiring Devices for Hazardous (Classified) Locations: Comply with NEMA FB 11 and UL 1010.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper Crouse-Hinds.
 - b. EGS/Appleton Electric.
 - c. Killark; a division of Hubbell Inc.

2.5 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL2310.
 - b. Leviton; 2310.
 - c. Pass & Seymour; L520-R.

PONumber: C17902C020

2.6 PENDANT CORD-CONNECTOR DEVICES

A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-20P and L5-20R, heavy-duty grade.

- 1. Body: Nylon with screw-open cable-gripping jaws and provision for attaching external cable grip.
- 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.7 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.8 SNAP SWITCHES

- A. Comply with NEMA WD 1 and UL 20.
- B. Snap switches for general use shall be maintained contact types, and shall be single-pole, double-pole, three-way, or four-way as required for the specific switching arrangements shown on the drawings. They shall be quiet tumbler operation types, having silver alloy contacts, and meeting all NEMA performance standards.
- C. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1221 (single pole), HBL1222 (two pole), HBL1223 (three way), HBL1224 (four way).
 - b. Leviton; 1221 (single pole), 1222 (two pole), 1223 (three way), 1224 (four way).
 - c. Pass & Seymour; PS20AC1 (single pole), PS20AC2 (two pole), PS20AC3 (three way), PS20AC4 (four way).
- D. Pilot Light Switches, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HPL1221PL for 120 V and 277 V.
 - b. Leviton: 1221-PLR for 120 V. 1221-7PLR for 277 V.
 - c. Pass & Seymour; PS20AC1RPL for 120 V.
 - 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "off." Provide red handle for switches connected to emergency power.

PONumber: C17902C020

- E. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1221L.
 - b. Leviton: 1221L.
 - c. Pass & Seymour; PS20AC1-L.
 - 2. Description: Single pole, with factory-supplied key in lieu of switch handle. All key operated switches shall be keyed alike.
- F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1557.
 - b. Leviton; 1257.
 - c. Pass & Seymour; 1251.
- G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle. All keyed switches shall be keyed alike.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1557L.
 - b. Leviton; 1257L.
 - c. Pass & Seymour; 1251L.

2.9 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable toggle switch; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W; dimmers shall require no derating when ganged with other devices.
- D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.10 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.

PONumber: C17902C020

- 1. Continuously adjustable toggle switch, 5 A.
- 2. Three-speed adjustable slider, 1.5 A.

2.11 WALL PLATES

- A. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. All wiring devices shall be provided with standard size one-piece cover plates of suitable configuration for the number and type of devices to be covered.
 - 3. Metallic cover plates shall be used in interior spaces, except as noted below, and shall be fabricated of corrosion-resistant #302 stainless steel, having a nominal thickness of .04", and a brushed finish. Screws securing the plates shall have flush (when installed) heads with finish to match plates. Metallic cover plates shall meet all requirements of the National Electrical Code and Federal Specifications.
 - 4. Cover plates for switches located in corrosive atmospheres (where vaporproof is not indicated) shall be equal to Hubbell #17CM81/#17CM82/#17CM83/#17CM84 one piece neoprene with matching presswitch.
 - 5. Cover plate engraving, where required, shall be accomplished by cover plate manufacturer in accordance with instructions given on the drawings. Metallic plates shall be engraved with black fill. Red plates shall be engraved with white fill.
 - 6. Material for Unfinished Spaces: Galvanized steel.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable "in use" cover. Cover plates for exterior receptacles shall be gasketed covers with hinge allowing plug and cord to be plugged in and activated with cover closed..

2.12 MULTIOUTLET ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.
 - 2. Wiremold Company (The).
 - 3. Mono-systems, Inc.
- B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- C. Raceway Material: Metal, with manufacturer's standard finish.
- D. Wire: No. 12 AWG.

2.13 SERVICE POLES

A. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.

PONumber: C17902C020

- 1. Poles: Nominal 2.5-inch- (65-mm-) square cross section, with height adequate to extend from floor to at least 6 inches (150 mm) above ceiling, and with separate channels for power wiring and voice and data communication cabling.
- 2. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
- 3. Finishes: Manufacturer's standard painted finish and trim combination.
- 4. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, 4-pair, Category 3 or 5 voice and data communication cables.
- 5. Power Receptacles: Two duplex, 20-A, heavy-duty, NEMA WD 6 configuration 5-20R units.
- 6. Voice and Data Communication Outlets: Four RJ-45 Category 6 jacks.

2.14 FINISHES

- A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: Gray in unfinished spaces and Ivory in finished spaces, unless otherwise noted.
 - 2. Receptacle devices for computer power shall be black color.
 - 3. Wiring Devices Connected to Emergency Power System: Red.
 - 4. Modify any given catalog numbers as required to procure devices and plates of the proper color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Coordination with Other Trades:

- 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.
- B. Install products in accordance with manufacturer's instructions.
- C. Install devices plumb and level.
- D. Install switches with OFF position down.
- E. Provide device coverplates for every device installed. Cover plates shall be installed so that they appear straight with no gaps between plate edges and the wall. Maintain vertical and horizontal to within 1/16 of an inch
- F. Wiring devices shall not be installed in exposed masonry until cleaning of masonry with acids has been completed.

PONumber: C17902C020

G. All receptacles and switches shall be grounded by means of a ground wire from device ground screw to outlet box screw and branch circuit ground conductor. Strap alone will not constitute an acceptable ground.

- H. All devices shall be installed so that only one wire is connected to each terminal.
- I. Connect wiring devices by wrapping conductor around screw terminal.
- J. Install galvanized steel plates on outlet boxes and junction boxes in unfinished areas, above accessible ceilings, and on surface mounted outlets.
- K. Install local room area wall switches at door locations on the lock side of the door, approximately four inches from the jamb. Where locations shown on the drawings are in question, provide written request for information to A/E prior to roughin.

L. Conductors:

- Do not strip insulation from conductors until just before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

M. Device Installation:

- 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
- N. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

O. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Verify that dimmers used for fan speed control are listed for that application.
- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

PONumber: C17902C020

P. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on bottom. Group adjacent switches or receptacles under multigang wall plates. Provide proper NEC barriers in boxes which serve devices for both the Normal and Emergency Systems.

Q. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 CONNECTIONS

- A. Connect wiring device grounding terminal to outlet box with bonding jumper.
- B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
- C. Tighten electrical connectors and terminals according to manufacturers published torquetightening values. If manufacturers torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 NEUTRAL CONDUCTOR CONNECTIONS

A. At each receptacle "in" and "out" phase and neutral conductors shall have an additional conductor for connection to device. The practice of "looping" conductors through receptacle boxes shall not be acceptable. (IE: The device shall not be used to complete the circuit. Pigtails shall be used from the device)

3.4 IDENTIFICATION

- A. Comply with Division 26 Section "Identification for Electrical Systems."
 - 1. Receptacles and Switches: Identify panelboard and circuit number from which served. Use permanent marker to identify on the back of plates or tags within outlet boxes.

3.5 FIELD QUALITY CONTROL

- A. Inspect each wiring device for defects.
- B. Operate each wall switch with circuit energized and verify proper operation.
- C. Verify that each receptacle device is energized.
- D. Test each receptacle device for proper polarity.
- E. Test each GFCI receptacle device for proper operation.

3.6 ADJUSTING

A. Adjust devices and wall plates to be flush and level.

END OF SECTION 26 27 26

PONumber: C17902C020

SECTION 26 28 13 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Cartridge fuses rated 600 V and less for use in switches, controllers and motor-control centers.

1.3 SUBMITTALS

- A. Product Data: Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Let-through current curves for fuses with current-limiting characteristics.
 - 3. Time-current curves, coordination charts and tables, and related data.
 - 4. Fuse size for elevator feeders and elevator disconnect switches.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA FU 1.
- D. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size.

FUSES 26 28 13 - 1

PONumber: C17902C020

1.7 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Three (3) of each type installed. Install in spare Fuse Cabinet

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussman, Inc.
 - 2. Eagle Electric Mfg. Co., Inc.; Cooper Industries, Inc.
 - 3. Mersen
 - 4. Tracor, Inc.; Littlefuse, Inc. Subsidiary.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.
- 2.3 SPARE-FUSE CABINET (Provide one in mechanical room closest to the CEP on the first floor)
 - A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 - 1. Size: Adequate for storage of spare fuses specified with 25 percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch- (38-mm-) high letters on exterior of door.
 - 4. Fuse Pullers: Provide one for each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

FUSES 26 28 13 - 2

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

3.2 **FUSE APPLICATIONS**

- A. Service Entrance: Class RK1, time delay.
- Feeders: Class RK5, time delay. B.
- C. Motor Branch Circuits: Class RK5, time delay.
- D. Other Branch Circuits: Class RK5, time delay.

3.3 **INSTALLATION**

Install fuses in fusible devices. Arrange fuses so rating information is readable without A. removing fuse.

3.4 **IDENTIFICATION**

Install labels indicating fuse replacement information on inside door of each fused switch. A.

END OF SECTION 26 28 13

FUSES 26 28 13 - 3

SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following individually mounted, enclosed switches and circuit breakers:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Bolted-pressure contact switches.
 - 4. High-pressure, butt-type contact switches.
 - 5. Molded-case circuit breakers.
 - 6. Molded-case switches.
 - 7. Enclosures.

1.3 DEFINITIONS

- A. GD: General duty.
- B. GFCI: Ground-fault circuit interrupter.
- C. HD: Heavy duty.
- D. RMS: Root mean square.
- E. SPDT: Single pole, double throw.

1.4 REFERENCES

- A. UL 98 Enclosed and Dead Front Switches
- B. NEMA KS1 Enclosed Switches
- C. NEMA 250 Enclosures for Electrical Equipment
- D. NFPA 70 National Electric Code

PONumber: C17902C020

1.5 SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current rating.
 - 4. UL listing for series rating of installed devices.
 - 5. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers
 - 2. Time-current curves, including selectable ranges for each type of circuit breaker.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.
- C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PONumber: C17902C020

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 RATING

- A. The size, number of poles, and fusing for each switch shall be as denoted on the drawings. As a minimum, no less than one pole for each ungrounded conductor shall be provided. Switches shall be rated 250 VAC or 600 VAC as required by the circuit to which it is connected.
- B. Switches serving motors with more than one set of windings shall have the number of poles necessary to disconnect all conductors to all windings in a single switch. Switches serving motor loads shall be horsepower rated of sufficient size to handle the load.
- C. Switches shall be rated for the available fault current at that location. Provide enclosed circuit breakers if required to meet the available fault current. If the available fault current is unknown, assume that the available fault current is to be equal to the upstream panel fault current.

2.3 SERVICE ENTRANCE EQUIPMENT

A. Switches used as service entrance equipment shall be listed and labeled by U.L. for use as service equipment.

2.4 FUSIBLE AND NONFUSIBLE SWITCHES

A. Manufacturers:

- 1. Eaton Corporation; Cutler-Hammer Products.
- 2. General Electric Co.; Electrical Distribution & Control Division.
- 3. Siemens Energy & Automation, Inc.
- 4. Square D/Group Schneider.
- B. Fusible Switch, 1200 A and Smaller: NEMA KS 1, Type HD, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- C. Nonfusible Switch, 1200 A and Smaller: NEMA KS 1, Type HD, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

D. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded, and bonded; and labeled for copper and aluminum neutral conductors.

PONumber: C17902C020

3. Auxiliary Contact Kit: Auxiliary set of contacts arranged to open before switch blades open.

2.5 MOLDED-CASE CIRCUIT BREAKERS AND SWITCHES

A. Manufacturers:

- 1. Eaton Corporation; Cutler-Hammer Products.
- 2. General Electric Co.; Electrical Distribution & Control Division.
- 3. Siemens Energy & Automation, Inc.
- 4. Square D/Group Schneider.
- B. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
 - 3. Electronic Trip-Unit Circuit Breakers: All breakers 400A and larger. RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and l²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller and let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.

C. Molded-Case Circuit-Breaker Features and Accessories:

- 1. Standard frame sizes, trip ratings, and number of poles.
- 2. Lugs: Mechanical style suitable for number, size, trip ratings, and conductor material.
- 3. Application Listing: Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
- 4. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
- 5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
- 6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
- 7. Auxiliary Switch: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
- 8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
- 9. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

PONumber: C17902C020

2.6 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of enclosed switches and circuit breakers.
- B. All switches shall be firmly anchored to walls and supporting structures (where used) using appropriate installation. Switches shall be installed with the turning axis of their handles approximately 5'-0" above finished floor unless otherwise indicated. Provide rigid steel (galvanized for exterior use) mounting stands, brackets, plates, hardware, and accessories for a complete installation
- C. Switches shall be mounted in accessible locations chosen where the passageway to the switch is not likely to become obstructed. Where a switch serves as the disconnecting means for a load, the switch shall be located as close as practical to the load with the switch handle within sight of the load.
- D. Provide and install lugs on disconnect switch as required to accept conductors called for on drawings.
- E. Disconnect switches shall not be mounted on equipment, unless specifically noted or required and meet all applicable codes, etc. If switches are noted or required to be mounted on equipment they shall have vibrator clips on fuses and be connected to conduit system with liquid tight flexible conduit.
- F. Coordinate all requirements for controls between variable speed drive units and its respective motor with drive specification, manufacturer, provider and installer. Provide auxiliary contacts, relays, etc. as required.
- G. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

PONumber: C17902C020

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section "Identification for Electrical Systems."

B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate as specified in Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

- A. Install equipment grounding connections for switches with ground continuity to main electrical ground bus.
- B. Install power wiring. Install wiring between switches and control and indication devices.
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

- A. Prepare for acceptance testing as follows:
 - 1. Inspect mechanical and electrical connections.
 - 2. Verify switch and relay type and labeling verification.
 - 3. Verify rating of installed fuses.
 - 4. Inspect proper installation of type, size, quantity, and arrangement of mounting or anchorage devices complying with manufacturer's certification.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Infrared Scanning:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Open or remove doors or panels so connections are accessible to portable scanner.
 - b. Instruments, Equipment and Reports:
 - Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - Prepare a certified report that identifies enclosed switches and circuit breakers included and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

Orange County - Fire Station #30 HVAC Replacement PONumber: C17902C020

3.6 **ADJUSTING**

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.7 **CLEANING**

- On completion of installation, vacuum dirt and debris from interiors; do not use compressed air A. to assist in cleaning.
- B. Inspect exposed surfaces and repair damaged finishes.

END OF SECTION 26 28 16