

Permit Document Specifications

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

October 17, 2016

DIVISION 1

01100	SUMMARY OF WORK
01250	CONTRACT MODIFICATIONS PROCEDURES
01290	PAYMENT PROCEDURES
01310	PROJECT MANAGEMENT AND COORDINATION
01320	CONSTRUCTION PROGRESS DOCUMENTATION
01322	PHOTOGRAPHIC DOCUMENTATION
01330	SUBMITTAL PROCEDURES
01400	QUALITY REQUIREMENTS
01500	TEMPORARY FACILITIES
01600	PRODUCT REQUIREMENTS
01700	EXECUTION REQUIREMENTS
01731	CUTTING AND PATCHING
01770	CLOSEOUT PROCEDURES
01781	PROJECT RECORD DOCUMENTS
01782	OPERATION AND MAINTENCE DATA
01820	DEMONSTRATION AND TRAINING

DIVISION 2

02411	SELECTIVE DEMOLITION
-------	----------------------

DIVISION 7

07210	BUILDING INSULATION
07920	JOINT SEALANTS

DIVISION 8

08111	HOLLOW METAL DOORS AND FRAMES
08411	ALUMINUM-FRAMED STOREFRONTS AND ENTRANCES
08710	DOOR HARDWARE
08800	GLAZING

DIVISION 9

09221	NON-STRUCTURAL METAL FRAMING
09290	GYPSUM BOARD
09310	TILING
09511	ACOUSTICAL PANEL CEILINGS
09653	RESILIENT WALL BASE
09654	VINYL FLOORING
09680	CARPET
09910	PAINTING

DIVISION 10

10530	PRE-MANUFACTURED	CANOPY SYSTEM

DIVISION 15

15080	MECHANICAL INSULATION
15113	METAL DUCTS
15140	DOMETSIC WATER PIPING

- 15145 DOMESTIC WATER PIPING SPECIALTIES
- 15150 SANITARY WAST AND VENT PIPING
- 15155 DRAINAGE PIPING SPECIALTIES
- 15194 FUEL GAS PIPING
- 15300 REFRIGERANT PIPING
- 15301 DUCT ACCESSORIES
- 15410 PLUMBING FIXTURES
- 15415 DRINKING FOUNTAINS AND WATER COOLERS
- 15486 FUEL-FIRED WATER HEATERS
- 15500 MECHANICAL BASIC MATERIALS AND METHODS
- 15529 HANGERS AND SUPPORTS
- 15553 MECHANICAL IDENTIFICATION
- 15593 TESTING AND BALANCING
- 15700 VARIABLE REFRIGERANT VOLUME HEAT RECOVERY SYSTEMS
- 15701 BUILDING AUTOMATION SYSTEM
- 15732 PACKAGED AIR CONDITIONERS
 - DDC CONTROLS

DIVISION 16

- 16050 BASIC ELECTRICAL MATERIAL AND METHODS
- 16060 GROUNDING AND BONDING
- 16072 ELECTRICAL SUPPORTS
- 16075 ELECTRICAL IDENTIFICATION
- 16120 CONDUCTORS AND CABLES
- 16130 RACEWAYS AND BOXES
- 16140 WIRING DEVICES
- 16289 TRANSIENT VOLTAGE SUPPRESSION
- 16410 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 16442 PANELBOARDS
- 16511 INTERIOR LIGHTING

END OF TABLE OF CONTENTS

SHEET INDEX

CS	COVER SHEET
C-100	GENERAL NOTES AND SITE DETAILS
C-200	EXISTING CONDITIONS AND PROPOSED GRADING PLAN
C-300	GRADING AND DRAINAGE DETAILS
AD100	DEMOLITION IMAGES
AD103	DEMOLITION IMAGES
AD201	DEMOLITION FLOOR PLAN
AD311	REFLECTED CEILING PLAN – DEMOLITION
A101	PARTITION TYPES AND DETAILS
A201	FLOOR PLAN
A251	ENLARGED RESTROOM PLAN – ACCESSORIES AND FIXTURE
	SCHEDULES
A311	REFLECTED CEILING PLAN
A601	DOOR SCHEDULE AND DETAILS
A701	ENLARGED PLAN AND DETAILS
A801	MILLWORK ELEVATIONS AND DETAILS
A900	FURNITURE PLAN
LS201	LIFE SAFTEY PLAN
M0.1	MECHANICAL GENERAL INFORMATION
M0.2	MECHANICAL SCHEDULES
M1.0	MECHANICAL DEMOLITION PLAN
M2.0	MECHANICAL NEW PLAN
M2.1	MECHANICAL REF. AND CONDENSATE PIPING PLAN
M3.0	VRF SCHEDULES
M4.1	MECHANICAL DETAILS
M4.2	MECHANICAL DETAILS
M5.1	VRF CONTROLS
E0.1	ELECTRICAL GENERAL INFORMATION
E1.0	POWER DEMOLITION PLAN
E1.1	LIGHTING DEMOLITION PLAN
E2.0	POWER NEW PLAN
E2.1	LIGHTING NEW PLAN
E3.0	ELECTRICAL SCHEDULES & RISERS
P0.1	PLUMBING GENERAL INFORMATION
P1.0	PLUMBING DEMOLITION PLAN
P2.0	PLUMBING NEW DOMESTIC PLANS
P2.1	PLUMBING NEW SANITARY PLANS
P3.0	PLUMBING DETAILS & ISOMETRICS

SECTION 01100 – SUMMARY OF WORK

1) GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Work covered by the Contract Documents
 - 2. Work phases
 - 3. Use of premises
 - 4. Owner's occupancy requirements
 - 5. Specification formats and conventions
- B. See Division 1 Section "Summary of Multiple Contracts" for division of responsibilities for the Work.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

- A. Project Identification: Orange County Facilities Management Division Special Services Building 1944 HVAC Improvements.
 - 1. Project Location: 1944 East Michigan Street, Orlando, FL 32806
- B. Prime Consultant: RTM Engineering Consultants, Inc. 925 South Semoran Blvd, Suite 100, Winter Park, Florida
- C. The Work consists of the following:

This project involves; the installation of an exterior ground mounted packaged DX system for the facilities building to provide dedicated conditioned outside air, A new Variable Refrigerant Flow (VRF) DX system consisting of a single condensing unit and fifteen (15) fan coil units will be installed to provide conditioned air to the facilities management building. All supply and return air ductwork serving the entire building will be removed and discarded. The new HVAC units scaled down version of BAS shall be connected to the existing main building automation system. The proposed architectural scope for this project includes interior renovations to the existing building including restroom, break room, finish, millwork, and entry improvements. The scope also includes, as part of the entry improvements, the addition of an exterior remanufactured canopy system. There is an addition of a trench drain at entrance of building as well as site re-grading. Existing Facilities Management Building will be vacated with the exclusion of the locksmith area which will remain operational during the construction period. The electrical work includes all existing panelboards will be removed and discarded. Two new panel boards will be installed and existing circuits reconnected. All lighting fixtures in the Facilities Management Building (excluding the locksmith and generator area) will be removed and replaced with new 2'x2' LED lighting.

> 01100 - 1 SUMMARY OF WORK October 17, 2016

D. Project shall be constructed under a single prime contract.

1.3 WORK PHASES

- A. A phasing plan shall be presented to the Owner representative prior to start of work.
- B. Before commencing Work of each phase, submit a schedule showing the sequence, commencement and completion dates.
- C. Note that all areas of building will be occupied at all times, and contractor shall expect to work around occupants in a safe and effective manner.
- D. Work shall not be performed in public areas during hours of operation. Schedule all work with Orange County.

1.4 USE OF PREMISES

- A. General: Contractor shall have limited use of premises for construction operations as indicated on Drawings by the Contract limits.
- B. Use of Site: Limit use of premises to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Owner Occupancy: Allow for Owner occupancy of Project site at all times.
 - 2. Driveways and Entrances: Keep driveways and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 - a. Schedule deliveries to minimize use of driveways and entrances.
 - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
- C. Use of Existing Building: Maintain existing building in a weather tight condition throughout construction period. Repair damage caused by construction operations. Protect building and its occupants during construction period. Locksmith area will be the only area to remain operational during construction.

1.5 OWNER'S OCCUPANCY REQUIREMENTS

- A. Full Owner Occupancy: Owner will occupy site and building during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits, unless otherwise indicated.
 - 1. Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction.

01100 - 2 SUMMARY OF WORK October 17, 2016 2. All work performed in show/ open areas within lobbies and public areas shall be coordinated with owner. All work shall be performed during hours not open to business (10pm to 6am).

1.6 SPECIFICATION FORMATS AND CONVENTIONS

- A. Specification Format: The Specifications are organized into Divisions and Sections using the 16-division format and CSI/CSC's "Master Format" numbering system.
 - 1. Division 1: Sections in Division 1 govern the execution of the Work of all Sections in the Specifications.
- B. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Abbreviated Language: Language used in the Specifications and other Contract Documents is abbreviated. Words and meanings shall be interpreted as appropriate. Words implied, but not stated, shall be inferred as the sense requires. Singular words shall be interpreted as plural and plural words shall be interpreted as singular where applicable as the context of the Contract Documents indicates.
 - 2. Imperative mood and streamlined language are generally used in the Specifications. Requirements expressed in the imperative mood are to be performed by Contractor. Occasionally, the indicative or subjunctive mood may be used in the Section Text for clarity to describe responsibilities that must be fulfilled indirectly by Contractor or by others when so noted.
 - a. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.

END OF SECTION 011000

01100 - 3 SUMMARY OF WORK October 17, 2016

SECTION 01250 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section specifies administrative and procedural requirements for handling and processing Contract modifications.
- B. See Division 1 Section "Allowances" for procedural requirements for handling and processing allowances.
- C. See Division 1 Section "Unit Prices" for administrative requirements for using unit prices.

1.2 MINOR CHANGES IN THE WORK

A. Architect will issue supplemental instructions authorizing Minor Changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions."

1.3 PROPOSAL REQUESTS

- A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - 1. Proposal Requests issued by Architect are for information only. Do not consider them instructions either to stop work in progress or to execute the proposed change.
 - 2. Within time specified in Proposal Request after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 - a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - c. Include costs of labor and supervision directly attributable to the change.
 - d. Include an updated Contractor's Construction Schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

- B. Contractor-Initiated Proposals: If latent or unforeseen conditions require modifications to the Contract, Contractor may propose changes by submitting a request for a change to Architect.
 - 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 - 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - 4. Include costs of labor and supervision directly attributable to the change.
 - 5. Include an updated Contractor's Construction Schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 - 6. Comply with requirements in Division 1 Section "Product Requirements" if the proposed change requires substitution of one product or system for product or system specified.
- C. Proposal Request Form: Use AIA Document G709 for Proposal Requests.

1.4 ALLOWANCES

- A. Allowance Adjustment: To adjust allowance amounts, base each Change Order proposal on the difference between purchase amount and the allowance, multiplied by final measurement of work-in-place. If applicable, include reasonable allowances for cutting losses, tolerances, mixing wastes, normal product imperfections, and similar margins.
 - 1. Include installation costs in purchase amount only where indicated as part of the allowance.
 - 2. If requested, prepare explanation and documentation to substantiate distribution of overhead costs and other margins claimed.
 - 3. Submit substantiation of a change in scope of work, if any, claimed in Change Orders related to unit-cost allowances.
 - 4. Owner reserves the right to establish the quantity of work-in-place by independent quantity survey, measure, or count.
- B. Submit claims for increased costs because of a change in scope or nature of the allowance described in the Contract Documents, whether for the Purchase Order amount or Contractor's handling, labor, installation, overhead, and profit. Submit claims within 21 days of receipt of the Change Order or Construction Change Directive authorizing work to proceed. Owner will reject claims submitted later than 21 days after such authorization.
 - 1. Do not include Contractor's or subcontractor's indirect expense in the Change Order cost amount unless it is clearly shown that the nature or extent of work has

changed from what could have been foreseen from information in the Contract Documents.

2. No change to Contractor's indirect expense is permitted for selection of higher- or lower-priced materials or systems of the same scope and nature as originally indicated.

1.5 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Proposal Request, Architect will issue a Change Order for signatures of Owner and Contractor on **AIA Document G701**.

1.6 CHANGE DIRECTIVE

- A. Change Directive: Architect may issue a Change Directive. Change Directive instructs Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.
 - 1. Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.
- B. Documentation: Maintain detailed records on a time and material basis of work required by the Change Directive.
 - 1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01250

SECTION 01290 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

1.2 SCHEDULE OF VALUES

- A. Coordination: Coordinate preparation of the Schedule of Values with preparation of Contractor's Construction Schedule. Cost-loaded CPM Schedule may serve to satisfy requirements for the Schedule of Values.
 - 1. Correlate line items in the Schedule of Values with other required administrative forms and schedules, including Contractor's Construction Schedule.
 - 2. Submit the Schedule of Values to Architect at earliest possible date but no later than seven days before the date scheduled for submittal of initial Applications for Payment.
 - 3. Sub schedules: Where the Work is separated into phases requiring separately phased payments, provide sub schedules showing values correlated with each phase of payment.
- B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the Schedule of Values. Provide at least one line item for each Specification Section.
 - 1. Identification: Include the following Project identification on the Schedule of Values:
 - a. Project name and location.
 - b. Name of Architect.
 - c. Architect's project number.
 - d. Contractor's name and address.
 - e. Date of submittal.
 - 2. Submit draft of AIA Document G703 Continuation Sheets
 - 3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide several line items for principal subcontract amounts, where appropriate. Include separate line items under required principal subcontracts for operation and maintenance manuals, punch list activities, Project Record Documents, and demonstration and training in the amount of 5 percent of the Contract Sum.
 - 4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.

- 5. Provide a separate line item in the Schedule of Values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
- 6. Provide separate line items in the Schedule of Values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.
- 7. Allowances: Provide a separate line item in the Schedule of Values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.
- 8. Each item in the Schedule of Values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 - a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the Schedule of Values or distributed as general overhead expense, at Contractor's option.
- 9. Schedule Updating: Update and resubmit the Schedule of Values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.3 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 - 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.
- B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction Work covered by each Application for Payment is the period indicated in the Agreement.
- C. Payment Application Times: Progress payments shall be submitted to Architect by the 5th of the month. The period covered by each Application for Payment is one month, ending on the last day of the month.
- D. Payment Application Forms: Use AIA Document G702 and AIA Document G703 Continuation Sheets as form for Applications for Payment.
- E. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the Schedule of Values and Contractor's Construction Schedule. Use updated schedules if revisions were made.

- 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
- F. Transmittal: Submit **3** signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt. One copy shall include waivers of lien and similar attachments if required.
 - 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
- G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from every entity who is lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.
 - 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 - 2. When an application shows completion of an item, submit final or full waivers.
 - 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 - 4. Waiver Forms: Submit waivers of lien on forms, executed in a manner acceptable to Owner.
- H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 - 1. List of subcontractors.
 - 2. Schedule of Values.
 - 3. Contractor's Construction Schedule (preliminary if not final).
 - 4. Schedule of unit prices.
 - 5. Submittals Schedule (preliminary if not final).
 - 6. List of Contractor's staff assignments.
 - 7. List of Contractor's principal consultants.
 - 8. Copies of building permits.
 - 9. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
 - 10. Initial progress report.
 - 11. Report of preconstruction conference.
 - 12. Certificates of insurance and insurance policies.
- I. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

- J. Final Payment Application: Submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 - 3. Updated final statement, accounting for final changes to the Contract Sum.
 - 4. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
 - 5. AIA Document G706A, "Contractor's Affidavit of Release of Liens."
 - 6. AIA Document G707, "Consent of Surety to Final Payment."
 - 7. Evidence that claims have been settled.
 - 8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.
 - 9. Final, liquidated damages settlement statement.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01290

01290 - 4 PAYMENT PROCEDURES October 17, 2016

SECTION 01310 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. Coordination Drawings.
 - 2. Project meetings.
- B. See Division 1 Section "Summary of Multiple Contracts" for a description of the division of Work among separate contracts and responsibility for coordination activities not in this Section.
- C. See Division 1 Section "Execution Requirements" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.

1.2 COORDINATION

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections, that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components with other contractors to ensure maximum accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
 - 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components, including mechanical and electrical.
- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.
- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and activities of other

contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

- 1. Preparation of Contractor's Construction Schedule.
- 2. Preparation of the Schedule of Values.
- 3. Installation and removal of temporary facilities and controls.
- 4. Delivery and processing of submittals.
- 5. Progress meetings.
- 6. Preinstallation conferences.
- 7. Project closeout activities.
- 8. Startup and adjustment of systems.
- 9. Project closeout activities.

1.3 SUBMITTALS

- A. Coordination Drawings: Prepare Coordination Drawings if limited space availability necessitates maximum utilization of space for efficient installation of different components or if coordination is required for installation of products and materials fabricated by separate entities.
 - 1. Content: Project-specific information, drawn accurately to scale. Do not base Coordination Drawings on reproductions of the Contract Documents or standard printed data. Include the following information, as applicable:
 - a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 - b. Indicate dimensions shown on the Contract Drawings and make specific note of dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect for resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
 - 2. Format: ADOBE PDF.
 - 3. Provide a fully detailed shop drawing of the intended projector housings including dimensions, access, internal equipment, conduit paths, projector locations, projector access methods and hardware, electrical and data equipment and outlets, and all other misc components. Include all materials to be used in fabrication of the housings and include details of fasteners, securement and connection into the building. Provide final weight data.

1.4 PROJECT MEETINGS

- A. General: Schedule and conduct meetings and conferences at Project site, unless otherwise indicated.
 - 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
 - 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.

- 3. Minutes: Record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.
- B. Preconstruction Conference: Schedule a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement. Hold the conference at Project site or another convenient location. Conduct the meeting to review responsibilities and personnel assignments.
 - 1. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. All participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. Tentative construction schedule.
 - b. Phasing.
 - c. Critical work sequencing and long-lead items.
 - d. Designation of key personnel and their duties.
 - e. Procedures for processing field decisions and Change Orders.
 - f. Procedures for requests for interpretations (RFIs).
 - g. Procedures for testing and inspecting.
 - h. Procedures for processing Applications for Payment.
 - i. Distribution of the Contract Documents.
 - j. Submittal procedures.
 - k. Preparation of Record Documents.
 - I. Use of the premises
 - m. Work restrictions.
 - n. Owner's occupancy requirements.
 - o. Responsibility for temporary facilities and controls.
 - p. Construction waste management and recycling.
 - q. Parking availability.
 - r. Office, work, and storage areas.
 - s. Equipment deliveries and priorities.
 - t. First aid.
 - u. Security.
 - v. Progress cleaning.
 - w. Working hours.
 - 3. Minutes: Record and distribute meeting minutes.
- C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction.

- 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
- 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. The Contract Documents.
 - b. Options.
 - c. Related requests for interpretations (RFIs).
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Review of mockups.
 - i. Possible conflicts.
 - j. Compatibility problems.
 - k. Time schedules.
 - I. Weather limitations.
 - m. Manufacturer's written recommendations.
 - n. Warranty requirements.
 - o. Compatibility of materials.
 - p. Acceptability of substrates.
 - q. Temporary facilities and controls.
 - r. Space and access limitations.
 - s. Regulations of authorities having jurisdiction.
 - t. Testing and inspecting requirements.
 - u. Installation procedures.
 - v. Coordination with other work.
 - w. Required performance results.
 - x. Protection of adjacent work.
 - y. Protection of construction and personnel.
- 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
- 4. Reporting: Distribute minutes of the meeting to each party present and to parties who should have been present.
- 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Progress Meetings: Conduct progress meetings at weekly intervals. Coordinate dates of meetings with preparation of payment requests.
 - 1. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.

- 2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's Construction Schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Status of submittals.
 - 4) Deliveries.
 - 5) Off-site fabrication.
 - 6) Access.
 - 7) Site utilization.
 - 8) Temporary facilities and controls.
 - 9) Work hours.
 - 10) Hazards and risks.
 - 11) Progress cleaning.
 - 12) Quality and work standards.
 - 13) Status of correction of deficient items.
 - 14) Field observations.
 - 15) Requests for interpretations (RFIs).
 - 16) Status of proposal requests.
 - 17) Pending changes.
 - 18) Status of Change Orders.
 - 19) Pending claims and disputes.
 - 20) Documentation of information for payment requests.
- 3. Minutes: Record the meeting minutes.
- 4. Reporting: Distribute minutes of the meeting to each party present and to parties who should have been present.
 - a. Schedule Updating: Revise Contractor's Construction Schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01310

SECTION 01320 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. CONTRACTOR's Construction Schedule
 - 2. Submittals Schedule
 - 3. Daily construction reports
 - 4. Field condition reports
- B. See Division 1 Section "Payment Procedures" for submitting the Schedule of Values.
- C. See Division 1 Section "Photographic Documentation" for submitting construction photographs.

1.2 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 - 1. Critical activities are activities on the critical path. They must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of Project.
- C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- D. Fragnet: A partial or fragmentary network that breaks down activities into smaller activities for greater detail.
- E. Major Area: A story of construction, a separate building, or a similar significant construction element.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

1.3 SUBMITTALS

- A. Submittals Schedule: Submit three copies of schedule. Arrange the following information in a tabular format:
 - 1. Scheduled date for first submittal
 - 2. Specification Section number and title
 - 3. Submittal category (action or informational)
 - 4. Name of subcontractor
 - 5. Description of the Work covered
 - 6. Scheduled date for OWNER's final release or approval by the CONSULTANT
- B. CONTRACTOR's Construction Schedule: Submit two opaque copies of initial schedule, large enough to show entire schedule for entire construction period.
 - 1. Submit an electronic copy of schedule, using software indicated, on CD-R, and labeled to comply with requirements for submittals. Include type of schedule (Initial or Updated) and date on label.

1.4 COORDINATION

- A. Coordinate preparation and processing of schedules and reports with performance of construction activities and with scheduling and reporting of separate contractors.
- B. Coordinate CONTRACTOR's Construction Schedule with the Schedule of Values, list of subcontracts, Submittals Schedule, progress reports, payment requests, and other required schedules and reports.
 - 1. Secure time commitments for performing critical elements of the Work from parties involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 SUBMITTALS SCHEDULE

- A. Preparation: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, resubmittal, ordering, manufacturing, fabrication, and delivery when establishing dates.
 - 1. Coordinate Submittals Schedule with list of subcontracts, the Schedule of Values, and CONTRACTOR's Construction Schedule.
 - 2. Submit concurrently with the first complete submittal of CONTRACTOR's Construction Schedule.

2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

- A. Time Frame: Extend schedule from date established for the Notice to Proceed to date of Final Completion.
 - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.
- B. Activities: Treat each story or separate area as a separate numbered activity for each principal element of the Work. Comply with the following:
 - 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by OWNER.
 - 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 - a. Insert list of major items or pieces of equipment
 - 3. Submittal Review Time: Include review and resubmittal times indicated in Division 1 Section "Submittal Procedures" in schedule. Coordinate submittal review times in CONTRACTOR's Construction Schedule with Submittals Schedule.
 - 4. Startup and Testing Time: Include not less than 7 days for startup and testing.
 - 5. Substantial Completion: Indicate completion in advance of date established for Substantial Completion, and allow time for OWNER/CONSULTANT's administrative procedures necessary for certification of Substantial Completion.
- C. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule, and show how the sequence of the Work is affected.
 - 1. Phasing: Arrange list of activities on schedule by phase.
 - 2. Work under More Than One Contract: Include a separate activity for each contract.
 - 3. Work by OWNER: Include a separate activity for each portion of the Work performed by OWNER.
 - 4. Work Restrictions: Show the effect of the following items on the schedule:
 - a. Coordination with existing construction
 - b. Limitations of continued occupancies
 - c. Uninterruptible services
 - d. Partial occupancy before Substantial Completion
 - e. Use of premises restrictions
 - f. Provisions for future construction
 - g. Seasonal variations
 - h. Environmental control
 - 5. Work Stages: Indicate important stages of construction for each major portion of the Work.

- D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and Final Completion
- E. Contract Modifications: For each proposed contract modification and concurrent with its submission, prepare a time-impact analysis using fragnets to demonstrate the effect of the proposed change on the overall project schedule.

2.3 CONTRACTOR'S CONSTRUCTION SCHEDULE (GANTT CHART)

- A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal Ganttchart-type, CONTRACTOR's Construction Schedule within 15 days of date established for the Notice of Award. Base schedule on the Preliminary Construction Schedule and whatever updating and feedback was received since the start of Project.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. For construction activities that require 3 months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. CONTRACTOR's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule before regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate Actual Completion percentage for each activity.
- B. Distribution: Distribute copies of approved schedule to OWNER, separate contractors, testing and inspecting agencies, and other parties identified by CONTRACTOR with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.
 - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 01320

SECTION 01322 - PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for the following:
 - 1. Preconstruction photographs
 - 2. Periodic construction photographs
- B. See Division 1 Section "Closeout Procedures" for submitting digital media as Project Record Documents at Project closeout.
- C. See Division 1 Section "Demonstration and Training" for submitting videotapes of demonstration of equipment and training of OWNER's personnel.

1.2 SUBMITTALS

- A. Key Plan: Submit key plan of Project site and building with notation of vantage points marked for location and direction of each photograph. Indicate elevation or story of construction. Include same label information as corresponding set of photographs.
- B. Construction Photographs: Submit two CDs of each photographic view within seven days of taking photographs.
 - 1. Format: PDF File with 6 photos per page with identifier at bottom of each photo
 - 2. Identification:

1.3 COORDINATION

A. Auxiliary Services: Cooperate with photographer and provide auxiliary services requested, including access to Project site and use of temporary facilities, including temporary lighting required to produce clear, well-lit photographs without obscuring shadows.

1.4 USAGE RIGHTS

A. Obtain and transfer copyright usage rights from photographer to OWNER for unlimited reproduction of photographic documentation.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 CONSTRUCTION PHOTOGRAPHS

- A. General: Take photographs using the maximum range of depth of field, and that are in focus, to clearly show the Work. Photographs with blurry or out-of-focus areas will not be accepted.
 - 1. Maintain key plan with each set of construction photographs that identifies each photographic location.
- B. Digital Images: Submit digital images exactly as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.
 - 1. Date and Time: Include date and time in filename for each image.
 - 2. Field Office Images: Maintain one set of images on CD-ROM in the field office at Project site, available at all times for reference. Identify images same as for those submitted to Architect.
- C. Photographs: Before each phase, take photographs of Project, including existing items to remain during construction. Photographs should show before, during and after images of associated work

END OF SECTION 01322

SECTION 01330 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.
- B. See Division 1 Section "Construction Progress Documentation" for submitting schedules and reports, including CONTRACTOR's Construction Schedule.
- C. See Division 1 Section "Photographic Documentation" for submitting construction photographs and construction videotapes.
- D. See Division 1 Section "Quality Requirements" for submitting test and inspection reports and for mockup requirements.
- E. See Division 1 Section "Closeout Procedures" for submitting warranties.
- F. See Division 1 Section "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.
- G. See Division 1 Section "Operation and Maintenance Data" for submitting operation and maintenance manuals.
- H. See Division 1 Section "Demonstration and Training" for submitting videotapes of demonstration of equipment and training of OWNER's personnel.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information that requires CONSULTANT's responsive action.

1.3 SUBMITTAL PROCEDURES

- A. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.

- a. OWNER/CONSULTANT reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- B. Submittals Schedule: Comply with requirements in Division 1 Section "Construction Progress Documentation" for list of submittals and time requirements for scheduled performance of related construction activities.
- C. Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on CONSULTANT's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 - 1. Initial Review: Allow **15** days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. CONSULTANT will advise CONTRACTOR when a submittal being processed must be delayed for coordination.
 - 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 - 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
- D. Identification: Place a permanent label or title block on each submittal for identification.
 - 1. Indicate name of firm or entity that prepared each submittal on label or title block.
 - 2. Provide a space approximately 6 by 8 inches (150 by 200 mm) on label or beside title block to record CONTRACTOR's review.
 - 3. Include the following information on label for processing and recording action taken:
 - a. Project name
 - b. Date
 - c. Name and address of OWNER
 - d. Name and address of CONSULTANT
 - e. Name and address of CONTRACTOR
 - f. Name and address of subcontractor
 - g. Name and address of supplier
 - h. Name of manufacturer
 - i. Submittal number or other unique identifier, including revision identifier
 - Submittal number shall use Specification Section number followed by a decimal point and then a sequential number (e.g., 06100.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., 06100.01.A).
 - j. Number and title of appropriate Specification Section
 - k. Drawing number and detail references, as appropriate
 - I. Location(s) where product is to be installed, as appropriate
 - m. Other necessary identification

- E. Deviations: Highlight, encircle, or otherwise specifically identify deviations from the Contract Documents on submittals.
- F. Additional Copies: Unless additional copies are required for final submittal, and unless OWNER/CONSULTANT observes noncompliance with provisions in the Contract Documents, initial submittal may serve as final submittal.
 - 1. Additional copies submitted for maintenance manuals will not be marked with action taken and will be returned.
- G. Transmittal: Include a transmittal and handling. Transmit each submittal using a transmittal form. OWNER will return submittals, without review, received from sources other than CONTRACTOR.
- H. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked.
- I. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- J. Use for Construction: Use only final submittals with mark indicating "Insert approval notation from CONSULTANT's action letter" taken by CONSULTANT.
- 1.4 CONTRACTOR'S USE OF CONSULTANT'S CAD FILES
 - A. General: At CONTRACTOR's written request, copies of CONSULTANT's CAD files will be provided to CONTRACTOR for CONTRACTOR's use in connection with Project.

PART 2 - PRODUCTS

2.1 ACTION SUBMITTALS

- A. General: Prepare and submit Action Submittals required by individual Specification Sections.
- B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard printed data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable using ADOBE PDF.

01330 - 3 SUBMITTAL PROCEDURES October 17, 2016

- 3. Include the following information, as applicable:
 - a. Manufacturer's written recommendations
 - b. Manufacturer's product specifications
 - c. Manufacturer's installation instructions
 - d. Manufacturer's catalog cuts
 - e. Wiring diagrams showing factory-installed wiring
 - f. Printed performance curves
 - g. Operational range diagrams
 - h. Compliance with specified referenced standards
 - i. Testing by recognized testing agency
- 4. Format: All submittals shall be on PDF format only. A single PDF file of each submittal shall be sent to the OWNER representative and copied to the CONSULTANT using a submittal tracking software maintained by the CONTRACTOR. Submittal reviews by CONSULTANT will include a single PDF Letter indicating disposition and actions required by CONTRACTOR. Do not submit hard bound multiple copies of books or drawings. Hard bound submittals will be rejected for improper format. Name the single PDF file as follows "Sub15050.1-OOC–xxxx", where "15050.1" indicates the specification number where the submittal was required and "xxxx" indicates a brief description of the submittal.
- C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Dimensions
 - b. Identification of products
 - c. Fabrication and installation drawings
 - d. Roughing-in and setting diagrams
 - e. Wiring diagrams showing field-installed wiring, including power, signal, and control wiring.
 - f. Shopwork manufacturing instructions
 - g. Templates and patterns
 - h. Schedules
 - i. Notation of coordination requirements
 - j. Notation of dimensions established by field measurement
 - k. Relationship to adjoining construction clearly indicated
 - I. Seal and signature of professional Consultant if specified
 - m. Wiring Diagrams: Differentiate between manufacturer-installed and field-installed wiring.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm) but no larger than 30 by 40 inches (750 by 1000 mm).
 - 3. Number of Copies: Submit PDF multi-sheet single file for each shop drawings submittal. See section B above for file naming procedures.

- D. Submittals Schedule: Comply with requirements specified in Division 1 Section "Construction Progress Documentation."
- E. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design.
 - 1. Number of Copies: Submit one PDF copy of subcontractor list 3 days prior to pre-construction meeting.

2.2 DELEGATED DESIGN

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of CONTRACTOR by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to OWNER.
- B. Delegated-Design Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit **three** copies of a statement, signed and sealed by the responsible design professional, for each product and system specifically assigned to CONTRACTOR to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Include a CONTRACTOR's approval page before submitting to OWNER.
- B. CONTRACTOR's Approval Page: Provide with each submittal with a separate page created by the Generator Contractor including a typed list of issues and actions required. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of CONTRACTOR's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents. A standard sample page shall be submitted for approval prior to 1st submittal.

3.2 CONSULTANT'S ACTION

- A. General: CONSULTANT will not review submittals that do not bear CONTRACTOR's approval stamp and will return them without action.
- B. Action Submittals: CONSULTANT will review each submittal and provide a separate CONSULTANT Submittal Review page. A sample of the review page will be provided during or after pre-construction meeting.
- C. Partial submittals are not acceptable, will be considered nonresponsive, and will be returned without review.
- D. Submittals not required by the Contract Documents may not be reviewed and may be discarded.
- E. Note that O&M Manuals will require a separate hard cover book submittal as identified within section 01782.

END OF SECTION 01330

SECTION 01400 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 2. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.
- C. See Divisions 2 through 16 Sections for specific test and inspection requirements.

1.2 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.
- C. Mockups: Full-size, physical assemblies that are constructed on-site. Mockups are used to verify selections made under sample submittals, to demonstrate aesthetic effects and, where indicated, qualities of materials and execution, and to review construction, coordination, testing, or operation; they are not Samples.
- D. Preconstruction Testing: Tests and inspections that are performed specifically for the Project before products and materials are incorporated into the Work to verify performance or compliance with specified criteria.
- E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with industry standards.

01400 - 1 QUALITY REQUIRMENTS October 17, 2016

- F. Source Quality-Control Testing: Tests and inspections that are performed at the source, i.e., plant, mill, factory, or shop.
- G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespeople of the corresponding generic name.
- J. Experienced: When used with an entity, "experienced" means having successfully completed a minimum of five previous projects similar in size and scope to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.
- K. All components and assemblies shall be UL Listed.

1.3 CONFLICTING REQUIREMENTS

- A. General: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer uncertainties and requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 SUBMITTALS

- A. Qualification Data: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
- B. Reports: Prepare and submit certified written reports that include the following:

- 1. Date of issue.
- 2. Project title and number.
- 3. Name, address, and telephone number of testing agency.
- 4. Dates and locations of samples and tests or inspections.
- 5. Names of individuals making tests and inspections.
- 6. Description of the Work and test and inspection method.
- 7. Identification of product and Specification Section.
- 8. Complete test or inspection data.
- 9. Test and inspection results and an interpretation of test results.
- 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
- 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
- 12. Name and signature of laboratory inspector.
- 13. Recommendations on retesting and reinspecting.
- C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.5 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this Article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- C. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar to those indicated for this Project in material, design, and extent.
- F. Specialists: Certain sections of the Specifications require that specific construction activities shall be performed by entities who are recognized experts in those

01400 - 3 QUALITY REQUIRMENTS October 17, 2016 operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

- 1. Requirement for specialists shall not supersede building codes and regulations governing the Work.
- G. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- H. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
 - 2. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 3. Demonstrate the proposed range of aesthetic effects and workmanship.
 - 4. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 - 5. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 6. Demolish and remove mockups when directed, unless otherwise indicated.

1.6 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
 - 2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.
- B. Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.

01400 - 4 QUALITY REQUIRMENTS October 17, 2016
- 2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
- 3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
- 4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
- 5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- C. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 1 Section "Submittal Procedures."
- D. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- E. Testing Agency Responsibilities: Cooperate with Architect and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform any duties of Contractor.
- F. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Delivery of samples to testing agencies.
 - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 7. Security and protection for samples and for testing and inspecting equipment at Project site.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- G. Coordination: Coordinate sequence of activities to accommodate required qualityassurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible.
 - 2. Comply with the Contract Document requirements for Division 1 Section "Cutting and Patching."
- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 01400

01400 - 6 QUALITY REQUIRMENTS October 17, 2016

SECTION 01500 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

1.2 DEFINITIONS

A. Permanent Enclosure: As determined by Consultant, permanent or temporary roofing is complete, insulated, and weather tight; exterior walls are insulated and weather tight; and all openings are closed with permanent construction or substantial temporary closures.

1.3 USE CHARGES

- A. General: Cost or use charges for temporary facilities shall be included in the Contract Sum. Allow other entities to use temporary services and facilities without cost, including, but not limited to, OWNER's construction forces, Consultant, testing agencies, and authorities having jurisdiction.
- B. Water Service: Water from OWNER's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.
- C. Electric Power Service: Electric power from Owner's existing electrical system is provided. Provide connections and extensions of services as required for construction operations.

1.4 SUBMITTALS

A. Site Plan: Show temporary facilities, utility hookups, staging areas, and parking areas for construction personnel. A basic layout will be provided during the pre-bid meeting.

1.5 QUALITY ASSURANCE

- A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.
- B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

1.6 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Installer of each permanent service shall assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before OWNER's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

- A. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations as required by contractor.
- B. Note that all staging and storage of materials of construction shall be at contractors risk. An area outside the facility will be provided.

2.2 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 OPERATION, TERMINATION, AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
- B. Maintenance: Maintain facilities in good operating condition until removal.
 - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

- C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.
- D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are property of Contractor. OWNER reserves right to take possession of Project identification signs.
 - 2. At Substantial Completion, clean and renovate permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 1 Section "Closeout Procedures."

END OF SECTION 01500

SECTION 01600 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; product substitutions; and comparable products.
- B. See Division 1 Section "Closeout Procedures" for submitting warranties for Contract closeout.
- C. See Divisions 2 through 16 Sections for specific requirements for warranties on products and installations specified to be warranted.

1.2 DEFINITIONS

- A. Products: Items purchased for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process, or where indicated as a product substitution, to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
- C. Basis-of-Design Product Specification: Where a specific manufacturer's product is named and accompanied by the words "basis of design," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of other named manufacturers.

1.3 SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use CSI Form 13.1A.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified material or product cannot be provided.
 - b. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 - e. Samples, where applicable or requested.
 - f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 - g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 - h. Research/evaluation reports evidencing compliance with building code in effect for Project, from a model code organization acceptable to authorities having jurisdiction.
 - i. Detailed comparison of Contractor's Construction Schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating lack of availability or delays in delivery.
 - j. Cost information, including a proposal of change, if any, in the Contract Sum.
 - k. Contractor's certification that proposed substitution complies with requirements in the Contract Documents and is appropriate for applications indicated.
 - I. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
 - Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within 7 days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later.

- a. Form of Acceptance: Change Order.
- b. Use product specified if Architect cannot make a decision on use of a proposed substitution within time allocated.
- B. Comparable Product Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later.
 - a. Form of Approval: As specified in Division 1 Section "Submittal Procedures."
 - b. Use product specified if Architect cannot make a decision on use of a comparable product request within time allocated.
- C. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 1 Section "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, product selected shall be compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 - 4. Inspect products on delivery to ensure compliance with the Contract Documents and to ensure that products are undamaged and properly protected.
- C. Storage:

- 1. Store products to allow for inspection and measurement of quantity or counting of units.
- 2. Store materials in a manner that will not endanger Project structure.
- 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
- 4. Store cementitious products and materials on elevated platforms.
- 5. Store foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
- 6. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
- 7. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Preprinted written warranty published by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by or incorporated into the Contract Documents, either to extend time limit provided by manufacturer's warranty or to provide more rights for Owner.
- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution. Submit a draft for approval before final execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using appropriate form properly executed.
 - 3. Refer to Divisions 2 through 16 Sections for specific content requirements and particular requirements for submitting special warranties.
- C. Submittal Time: Comply with requirements in Division 1 Section "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, that are undamaged and, unless otherwise indicated, that are new at time of installation.

- 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
- 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
- 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
- 4. Where products are accompanied by the term "as selected," Architect will make selection.
- 5. Where products are accompanied by the term "match sample," sample to be matched is Architect's.
- 6. Descriptive, performance, and reference standard requirements in the Specifications establish "salient characteristics" of products.
- B. Product Selection Procedures:
 - 1. Product: Where Specifications name a single product and manufacturer, provide the named product that complies with requirements.
 - 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements.
 - 3. Products: Where Specifications include a list of names of both products and manufacturers, provide one of the products listed that complies with requirements.
 - 4. Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements.
 - 5. Available Products: Where Specifications include a list of names of both products and manufacturers, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product.
 - 6. Available Manufacturers: Where Specifications include a list of manufacturers, provide a product by one of the manufacturers listed, or an unnamed manufacturer, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product.
 - 7. Product Options: Where Specifications indicate that sizes, profiles, and dimensional requirements on Drawings are based on a specific product or system, provide the specified product or system. Comply with provisions in Part 2 "Product Substitutions" Article for consideration of an unnamed product or system.
 - 8. Basis-of-Design Product: Where Specifications name a product and include a list of manufacturers, provide the specified product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product by the other named manufacturers.
 - 9. Visual Matching Specification: Where Specifications require matching an established Sample, select a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.

- a. If no product available within specified category matches and complies with other specified requirements, comply with provisions in Part 2 "Product Substitutions" Article for proposal of product.
- 10. Visual Selection Specification: Where Specifications include the phrase "as selected from manufacturer's colors, patterns, textures" or a similar phrase, select a product that complies with other specified requirements.
 - a. Standard Range: Where Specifications include the phrase "standard range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that does not include premium items.
 - b. Full Range: Where Specifications include the phrase "full range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 PRODUCT SUBSTITUTIONS

- A. Timing: Architect will consider requests for substitution if received within 3 days after the Notice of Award. Requests received after that time may be considered or rejected at discretion of Architect.
- B. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - 1. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - 2. Requested substitution does not require extensive revisions to the Contract Documents.
 - 3. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - 4. Substitution request is fully documented and properly submitted.
 - 5. Requested substitution will not adversely affect Contractor's Construction Schedule.
 - 6. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - 7. Requested substitution is compatible with other portions of the Work.
 - 8. Requested substitution has been coordinated with other portions of the Work.
 - 9. Requested substitution provides specified warranty.

2.3 COMPARABLE PRODUCTS

- A. Conditions: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require extensive revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.
 - 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 - 3. Evidence that proposed product provides specified warranty.
 - 4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
 - 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01600

01600 - 7 Product Requirements October 17, 2016

SECTION 01700 - EXECUTION REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes general procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Construction layout.
 - 2. General installation of products.
 - 3. Progress cleaning.
 - 4. Starting and adjusting.
 - 5. Protection of installed construction.
 - 6. Correction of the Work.
- B. See Division 1 Section "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.
- PART 2 PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of site improvements, utilities, and other construction indicated as existing are not guaranteed. Before beginning work, investigate and verify the existence and location of mechanical and electrical systems and other construction affecting the Work.
 - 1. Before construction, verify the location and points of connection of utility services.
 - 2. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field

> 01700 - 1 EXECUTIVE REQUIREMENTS October 17, 2016

measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

- B. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- C. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents, submit a request for information to Architect. Include a detailed description of problem encountered, together with recommendations for changing the Contract Documents. Submit requests for interpretation.

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.

3.4 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas, unless otherwise indicated.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.
- F. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

- G. Anchors and Fasteners: Provide anchors and fasteners as required to anchor each component securely in place, accurately located and aligned with other portions of the Work.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 - 2. Allow for building movement, including thermal expansion and contraction.
 - 3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.
- H. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- I. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.5 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Coordinate progress cleaning for joint-use areas where more than one installer has worked. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Do not hold materials more than 7 days during normal weather or 3 days if the temperature is expected to rise above 80 deg F.
 - 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.
- B. Site: Maintain Project site free of waste materials and debris.
- C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

01700 - 3 EXECUTIVE REQUIREMENTS October 17, 2016

- E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- G. Waste Disposal: Burying or burning waste materials on-site will not be permitted. Washing waste materials down sewers or into waterways will not be permitted.
- H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.6 STARTING AND ADJUSTING

- A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- B. Adjust operating components for proper operation without binding. Adjust equipment for proper operation.
- C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Manufacturer's Field Service: If a factory-authorized service representative is required to inspect field-assembled components and equipment installation, comply with qualification requirements in Division 1 Section "Quality Requirements."
- E. All starting and adjusting of projectors shall be performed by an EPSON certified technician hired by the general contractor.

3.7 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

3.8 CORRECTION OF THE WORK

- A. Repair or remove and replace defective construction. Restore damaged substrates and finishes. Comply with requirements in Division 1 Section "Cutting and Patching."
 - 1. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment.
- B. Restore permanent facilities used during construction to their specified condition.
- C. Remove and replace damaged surfaces that are exposed to view if surfaces cannot be repaired without visible evidence of repair.
- D. Repair components that do not operate properly. Remove and replace operating components that cannot be repaired.
- E. Remove and replace chipped, scratched, and broken glass or reflective surfaces.

END OF SECTION 01700

01700 - 5 EXECUTIVE REQUIREMENTS October 17, 2016

SECTION 01782 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation manuals for systems, subsystems, and equipment.
 - 2. Maintenance manuals for the care and maintenance of systems and equipment.
- B. See Divisions 2 through 16 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.2 SUBMITTALS

A. Manual: Submit two copies of each manual in final form at least 15 days before final inspection.

PART 2 - PRODUCTS

2.1 MANUALS, GENERAL

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain a title page, table of contents, and manual contents.
- B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of OWNER.
 - 4. Date of submittal.
 - 5. Name, address, and telephone number of Contractor.
 - 6. Name and address of Architect.
 - 7. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble

01782 - 1 OPERATION AND MAINTENANCE DATA October 17, 2016 instructions for subsystems, equipment, and components of one system into a single binder.

- 1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
- 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
- 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.
- 4. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and equipment descriptions, operating standards, operating procedures, operating logs, wiring and control diagrams, and license requirements.
- B. Descriptions: Include the following:
 - 1. Product name and model number
 - 2. Manufacturer's name
 - 3. Equipment identification with serial number of each component
 - 4. Equipment function
 - 5. Operating characteristics
 - 6. Limiting conditions
 - 7. Performance curves
 - 8. Engineering data and tests
 - 9. Complete nomenclature and number of replacement parts
- C. Operating Procedures: Include start-up, break-in, and control procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; and required sequences for electric or electronic systems.

- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.3 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including maintenance instructions, drawings and diagrams for maintenance, nomenclature of parts and components, and recommended spare parts for each component part or piece of equipment:
- D. Maintenance Procedures: Include test and inspection instructions, troubleshooting guide, disassembly instructions, and adjusting instructions, and demonstration and training videotape if available, that detail essential maintenance procedures:
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by OWNER's operating personnel for types of emergencies indicated.
- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original Project Record Documents as part of operation and maintenance manuals.
- F. Comply with Division 1 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 01782

SECTION 01770 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Inspection procedures
 - 2. Warranties
 - 3. Final cleaning
- B. See Division 1 Section "Photographic Documentation" for submitting Final Completion construction photographs and negatives.
- C. See Division 1 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
- D. See Division 1 Section "Demonstration and Training" for requirements for instructing OWNER's personnel.

1.2 SUBSTANTIAL COMPLETION

- A. Preliminary Procedures: Before requesting inspection for determining date of Substantial Completion, complete the following. List items below that are incomplete in request.
 - 1. Prepare a list of items to be completed and corrected (punch list), the value of items on the list, and reasons why the Work is not complete.
 - 2. Advise OWNER of pending insurance changeover requirements.
 - 3. Submit specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Obtain and submit releases permitting OWNER unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 5. Prepare and submit Project Record Documents, operation and maintenance manuals, Final Completion construction photographs, damage or settlement surveys, property surveys, and similar final record information.
 - 6. Deliver tools, spare parts, extra materials, and similar items to location designated by OWNER. Label with manufacturer's name and model number where applicable.
 - 7. Make final changeover of permanent locks and deliver keys to OWNER. Advise OWNER's personnel of changeover in security provisions.
 - 8. Complete startup testing of systems.
 - 9. Submit test/adjust/balance records.

- 10. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
- 11. Advise OWNER of changeover in heat and other utilities.
- 12. Submit changeover information related to OWNER's occupancy, use, operation, and maintenance.
- 13. Complete final cleaning requirements, including touchup painting.
- 14. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- B. Inspection: Submit a written request for inspection for Substantial Completion. On receipt of request, OWNER and CONSULTANT will either proceed with inspection or notify CONTRACTOR of unfulfilled requirements. CONSULTANT will prepare the Certificate of Substantial Completion after inspection or will notify CONTRACTOR of items, either on CONTRACTOR's list or additional items identified by CONSULTANT, that must be completed or corrected before certificate will be issued.
 - 1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
 - 2. Results of completed inspection will form the basis of requirements for Final Completion.

1.3 FINAL COMPLETION

- A. Preliminary Procedures: Before requesting final inspection for determining date of Final Completion, complete the following:
 - 1. Submit a final Application for Payment according to Division 1 Section "Payment Procedures."
 - 2. Submit certified copy of CONSULTANT's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by CONSULTANT. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 - 4. Submit pest-control final inspection report and warranty.
 - 5. Instruct OWNER's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training videotapes.
- B. Inspection: Submit a written request for final inspection for acceptance. On receipt of request, CONSULTANT will either proceed with inspection or notify CONTRACTOR of unfulfilled requirements. CONSULTANT will prepare a final Certificate for Payment after inspection or will notify CONTRACTOR of construction that must be completed or corrected before certificate will be issued.
 - 1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.4 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Preparation: Submit three copies of list. Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by CONTRACTOR that are outside the limits of construction. Use CSI Form 14.1A.
 - 1. Organize list of spaces in sequential order,
 - 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.

1.5 WARRANTIES

- A. Submittal Time: Submit written warranties on request of CONSULTANT for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated.
- B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.
 - 1. Bind warranties and bonds in heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper.
 - 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
 - 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of CONTRACTOR.
- C. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

01770 - 3 CLOSEOUT PROCEDURES October 17, 2016

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Provide final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 - c. Rake grounds that are neither planted nor paved to a smooth, eventextured surface.
 - d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - e. Remove snow and ice to provide safe access to building.
 - f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - h. Sweep concrete floors broom clean in unoccupied spaces.
 - i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; shampoo if visible soil or stains remain.
 - j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
 - k. Remove labels that are not permanent.
 - I. Touch up and otherwise repair and restore marred, exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored or that already show evidence of repair or restoration.
 - 1) Do not paint over "UL" and similar labels, including mechanical and electrical nameplates.

- m. Wipe surfaces of mechanical and electrical equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- n. Replace parts subject to unusual operating conditions.
- o. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- p. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- q. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency. Replace burned-out bulbs, and those noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.
- r. Leave Project clean and ready for occupancy.
- C. Pest Control: Engage an experienced, licensed exterminator to make a final inspection and rid Project of rodents, insects, and other pests. Prepare a report.
- D. Comply with safety standards for cleaning. Do not burn waste materials. Do not bury debris or excess materials on OWNER's property. Do not discharge volatile, harmful, or dangerous materials into drainage systems. Remove waste materials from Project site and dispose of lawfully.

END OF SECTION 01770

01770 - 5 CLOSEOUT PROCEDURES October 17, 2016

SECTION 01781 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for Project Record Documents, including the following:
 - 1. Record Drawings
 - 2. Record Specifications
 - 3. Record Product Data
- B. See Division 1 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
- C. See Divisions 2 through 16 Sections for specific requirements for Project Record Documents of the Work in those Sections.

1.2 SUBMITTALS

- A. Record Drawings: Comply with the following:
 - 1. Number of Copies: Submit one set(s) of marked-up Record Prints.
 - 2. Number of Copies: Submit copies of Record Drawings as follows:
 - a. Initial Submittal: Submit one set(s) of corrected Record Transparencies and one set(s) of marked-up Record Prints. Consultant will initial and date each plot and mark whether general scope of changes, additional information recorded, and quality of drafting are acceptable. Consultant will return plot and prints for organizing into sets, printing, binding, and final submittal.
 - b. Final Submittal: Submit one set(s) of marked-up Record Prints, and the following:
 - 1) Record CAD Drawing Files and Plots: two set(s).
- B. Record Specifications: Submit one copy of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit one copy of each Product Data submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of blue- or black-line white prints of the Contract Drawings and Shop Drawings.
 - 1. Preparation: Mark Record Prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to prepare the marked-up Record Prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Record data as soon as possible after obtaining it. Record and check the markup before enclosing concealed installations.
 - 2. Mark the Contract Drawings or Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If Shop Drawings are marked, show cross-reference on the Contract Drawings.
 - 3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
 - 4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Format: Identify and date each Record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize Record Prints and newly prepared Record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Record Transparencies: Organize into unbound sets matching Record Prints. Place transparencies in durable tube-type drawing containers with end caps. Mark end cap of each container with identification. If container does not include a complete set, identify Drawings included.
 - 3. Record CAD Drawings: Organize CAD information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each CAD file.
 - 4. Identification: As follows:
 - a. Project name
 - b. Date
 - c. Designation "PROJECT RECORD DRAWINGS"
 - d. Name of Consultant
 - e. Name of Contractor

2.2 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.
 - 4. Note related Change Orders, Record Product Data, and Record Drawings where applicable.

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, Record Specifications, and Record Drawings where applicable.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for Project Record Document purposes. Post changes and modifications to Project Record Documents as they occur; do not wait until the end of Project.
- B. Maintenance of Record Documents and Samples: Store Record Documents and Samples in the field office apart from the Contract Documents used for construction. Do not use Project Record Documents for construction purposes. Maintain Record Documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to Project Record Documents for Consultant's reference during normal working hours.

END OF SECTION 01781

01781 - 3 PROJECT RECORD DOCUMENTS October 17, 2016

SECTION 01782 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation manuals for systems, subsystems, and equipment.
 - 2. Maintenance manuals for the care and maintenance of systems and equipment.
- B. See Divisions 2 through 16 Sections for specific operation and maintenance manual requirements for the Work in those Sections.

1.2 SUBMITTALS

A. Manual: Submit two copies of each manual in final form at least 15 days before final inspection.

PART 2 - PRODUCTS

2.1 MANUALS, GENERAL

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain a title page, table of contents, and manual contents.
- B. Title Page: Enclose title page in transparent plastic sleeve. Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of OWNER.
 - 4. Date of submittal.
 - 5. Name, address, and telephone number of Contractor.
 - 6. Name and address of Architect.
 - 7. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble

01782 - 1 OPERATION AND MAINTENANCE DATA October 17, 2016 instructions for subsystems, equipment, and components of one system into a single binder.

- 1. Binders: Heavy-duty, 3-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
- 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
- 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software diskettes for computerized electronic equipment.
- 4. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.2 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and equipment descriptions, operating standards, operating procedures, operating logs, wiring and control diagrams, and license requirements.
- B. Descriptions: Include the following:
 - 1. Product name and model number
 - 2. Manufacturer's name
 - 3. Equipment identification with serial number of each component
 - 4. Equipment function
 - 5. Operating characteristics
 - 6. Limiting conditions
 - 7. Performance curves
 - 8. Engineering data and tests
 - 9. Complete nomenclature and number of replacement parts
- C. Operating Procedures: Include start-up, break-in, and control procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; and required sequences for electric or electronic systems.

- D. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- E. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.3 SYSTEMS AND EQUIPMENT MAINTENANCE MANUAL

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including maintenance instructions, drawings and diagrams for maintenance, nomenclature of parts and components, and recommended spare parts for each component part or piece of equipment:
- D. Maintenance Procedures: Include test and inspection instructions, troubleshooting guide, disassembly instructions, and adjusting instructions, and demonstration and training videotape if available, that detail essential maintenance procedures:
- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by OWNER's operating personnel for types of emergencies indicated.
- B. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- C. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
- D. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
- E. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in Record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original Project Record Documents as part of operation and maintenance manuals.
- F. Comply with Division 1 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 01782

SECTION 01820 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes administrative and procedural requirements for instructing OWNER's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Demonstration and training videotapes.
- B. See Divisions 2 through 16 Sections for specific requirements for demonstration and training for products in those Sections.

1.2 SUBMITTALS

- A. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
- B. Demonstration and Training Videotapes: Submit two copies within seven days of end of each training module.

1.3 QUALITY ASSURANCE

- A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 1 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- C. Pre-instruction Conference: Conduct conference at Project site. Review methods and procedures related to demonstration and training.
- D. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by OWNER and CONSULTANT.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - 1. Projectors
 - 2. Audio Visual System interface
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include system and equipment descriptions, operating standards, regulatory requirements, equipment function, operating characteristics, limiting conditions, and performance curves.
 - 2. Documentation: Review emergency, operations, and maintenance manuals; Project Record Documents; identification systems; warranties and bonds; and maintenance service agreements.
 - 3. Emergencies: Include instructions on stopping; shutdown instructions; operating instructions for conditions outside normal operating limits; instructions on meaning of warnings, trouble indications, and error messages; and required sequences for electric or electronic systems.
 - 4. Operations: Include startup, break-in, control, and safety procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; operating procedures for emergencies and equipment failure; and required sequences for electric or electronic systems.
 - 5. Adjustments: Include alignments and checking, noise, vibration, economy, and efficiency adjustments.
 - 6. Troubleshooting: Include diagnostic instructions and test and inspection procedures.
 - 7. Maintenance: Include inspection procedures, types of cleaning agents, methods of cleaning, procedures for preventive and routine maintenance, and instruction on use of special tools.
 - 8. Repairs: Include diagnosis, repair, and disassembly instructions; instructions for identifying parts; and review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between CONTRACTOR and OWNER for number of participants, instruction times, and location.

- B. Prior to training, provide a training scheduled and agenda for approval within 5 days of training.
- C. Engage qualified instructors to instruct OWNER's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
- D. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with OWNER with at least 20 days' advance notice.
- E. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral performance-based test.

3.2 DEMONSTRATION AND TRAINING VIDEOTAPES

- A. General: Engage a qualified commercial photographer to record demonstration and training videotapes. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.
- B. Videotape Format: Provide high-quality DVD.

END OF SECTION 01820
SECTION 02411 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Demolition and removal of building components and materials.
 - 2. Disconnecting, capping or sealing, abandoning in-place and removing site utilities.

1.2 DEFINITIONS

- A. Demolish: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and reinstalled.
- B. Remove and Store: Detach items from existing construction and deliver them to Owner's on site storage area ready to be reinstalled.
- C. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed or removed and reinstalled.

1.3 MATERIALS OWNERSHIP

- A. Unless otherwise indicated, demolition waste becomes property of Contractor.
- B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 - 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.4 SUBMITTALS

- A. Proposed Protection Measures: Submit informational report, including drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and, for noise control. Indicate proposed locations and construction of barriers.
- B. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and

ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.

- 2. Interruption of utility services. Indicate how long utility services will be interrupted.
- 3. Coordination for shutoff, capping, and continuation of utility services.
- 4. Coordination of Owner's continuing occupancy of portions of existing building.
- 5. Means of protection for items to remain and items in path of waste removal from building site.
- C. Pre-demolition Photographs or Video: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by building demolition operations. Submit before the Work begins.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI A10.6 and NFPA 241.
- C. Pre-demolition Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to selective demolition including, but not limited to, the following:
 - 1. Review methods and procedures for vermin eradication and cleanup.
 - 2. Inspect and discuss condition of construction to be demolished.
 - 3. Review structural load limitations of existing structures.
 - 4. Review and finalize building demolition schedule and verify availability of demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 5. Review and finalize protection requirements.
 - 6. Review procedures for noise control and dust control.
 - 7. Review procedures for protection of adjacent buildings.

1.6 PROJECT CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Owner assumes no responsibility for buildings and structures to be demolished.
- C. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

- 1. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. On-site storage or sale of removed items or materials is not permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations. G.

Building exclusion and rodent eradication and removal shall be completed prior to the beginning of Selective Structural Demolition operations.

1.7 COORDINATION

A. Arrange demolition schedule so as not to interfere with Owner's on-site operations. Obtain Owner's authorization prior to proceeding.

1.8 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting demolition operations.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. Review Project Record Documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- E. Perform an engineering survey of condition of building to determine whether removing any

element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during building demolition operations.

- F. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or video.
- G. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems: Maintain services/systems indicated to remain and protect them against damage during selective demolition operations.
- B. Service/System Requirements: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If services/systems are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 4. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing.
 - a. Where entire wall is to be removed, existing services/systems may be removed with removal of the wall.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debrisremoval operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Division 01 Section "Temporary Facilities and Controls."
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective

demolition of existing construction on exterior surfaces, to prevent water leakage and damage to structure and interior areas.

- 3. Comply with requirements specified in Division 01 Section 01310
- C. Existing Utilities: Locate, identify, disconnect, and seal or cap off indicated utilities serving buildings and structures to be demolished.
 - 1. Owner will arrange to shut off indicated utilities when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If removal, relocation, or abandonment of utility services will affect adjacent occupied buildings, then provide temporary utilities that bypass buildings and structures to be demolished and that maintain continuity of service to other buildings and structures.
 - 4. Cut off pipe or conduit a minimum of 24 inches below grade. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing according to requirements of authorities having jurisdiction.
- D. Temporary Shoring: Provide and maintain interior and exterior shoring, bracing, or structural support to preserve stability and prevent unexpected movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of demolition.

3.4 PROTECTION

- A. Existing Facilities: Protect adjacent walkways, loading docks, building entries, and other building facilities during demolition operations. Maintain exits from existing buildings.
- B. Existing Utilities: Maintain utility services to remain and protect from damage during demolition operations.
 - 1. Do not interrupt existing utilities serving adjacent occupied or operating facilities unless authorized in writing by Owner and authorities having jurisdiction.
 - 2. Provide temporary services during interruptions to existing utilities, as acceptable to Owner and authorities having jurisdiction.
 - a. Provide at least 72 hours' notice to occupants of affected buildings if shutdown of service is required during changeover.
- C. Temporary Protection: Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction and as indicated. Comply with requirements in Division 01 Section "Temporary Facilities and Controls."
 - 1. Protect adjacent buildings and facilities from damage due to demolition activities.
 - 2. Protect existing site improvements, appurtenances, and landscaping to remain.
 - 3. Erect a plainly visible fence around drip line of individual trees or around

perimeter drip line of groups of trees to remain.

- 4. Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
- 5. Provide protection to ensure safe passage of people around building demolition area and to and from occupied portions of adjacent buildings and structures.
- 6. Protect walls, windows, roofs, and other adjacent exterior construction that are to remain and that are exposed to building demolition operations.
- 7. Erect and maintain dustproof partitions and temporary enclosures to limit dust, noise, and dirt migration to occupied portions of adjacent buildings.
- D. Remove temporary barriers and protections where hazards no longer exist. Where open excavations or other hazardous conditions remain, leave temporary barriers and protections in place.

3.5 DEMOLITION, GENERAL

- A. General: Demolish indicated existing building components and materials completely. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Do not use cutting torches until work area is cleared of flammable materials. Maintain portable fire-suppression devices during flame-cutting operations.
 - 2. Maintain fire watch after flame cutting operations.
 - 3. Maintain adequate ventilation when using cutting torches.
 - 4. Locate building demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
- B. Removed and Stored and Reinstalled Items:
 - 1. Pack or crate items as directed by the Owner. Identify contents of containers.
 - 2. Store items as directed by the Owner.
 - 3. Transport items to Owner's storage area on-site.
 - 4. Protect items from damage during transport and storage.
- C. Removed and Reinstalled Items:
 - 1. Clean and repair items to functional condition adequate for intended reuse.
 - 2. Reinstall items in locations indicated. Comply with installation requirements for new materials. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.
- E. Engineering Surveys: During demolition, perform surveys to detect hazards that may result from building demolition activities.

02411 - 6 SELECTIVE DEMOLITION October 17, 2016

- F. Site Access and Temporary Controls: Conduct building demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Do not close or obstruct streets, walks, walkways, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
 - 2. Limit spread of dust and dirt. Comply with governing environmental-protection regulations.

3.6 DEMOLITION BY MECHANICAL MEANS

- A. Remove debris from building in a controlled manner.
- B. Existing Utilities: Demolish and remove existing indicated.
 - 1. Piping: Disconnect piping at unions, flanges, valves, or fittings.
 - 2. Wiring Ducts: Disassemble into unit lengths and remove plug-in and disconnecting devices.

3.7 REPAIRS

A. Promptly repair damage to adjacent buildings caused by demolition operations.

3.8 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be reused, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.9 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by

building demolition operations. Return adjacent areas to condition existing before building demolition operations began.

END OF SECTION 02411

02411 - 8 SELECTIVE DEMOLITION October 17, 2016 SECTION 07210 - BUILDING INSULATION

PART 1 - PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Closed-cell spray polyurethane foam
 - 2. Open-cell spray polyurethane foam

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each product.
- C. Manufacturer's certificate certifying insulation provided meets or exceeds specified requirements.

1.3 QUALITY ASSURANCE

- A. Single-Source Responsibility for Insulation Products: Obtain each type of building insulation from a single source with resources to provide products complying with requirements indicated without delaying the Work.
- B. Manufacturer's Qualifications: Product produced in an ISO 9001 registered factory.
- C. Installer Qualifications: An authorized representative who is trained and approved by manufacturer. Any repairs by an Icynene licensed contractor.
- D. A Third Party Inspection of all Intumescent Spray and Protective Thermal Barrier installation is required by a qualified inspector.
- E. Fire Performance Characteristics: Insulation materials shall be identical to those whose fire performance characteristics, as listed for each material or assembly of which insulation is a part, have been determined by testing, per methods indicated, by a testing agency acceptable to authorities having jurisdiction.

- 1. Surface Burning Characteristics: ASTM E-84
- 2. Combustion Characteristics: ASTM E-136
- 3. Fire Resistance Characteristics: As determined by testing identical products (based on a 4 inch (100 mm) minimum thickness) according to ASTM E 119 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- 4. Fire Resistance Characteristics: As determined by testing identical products according to NFPA 285 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- 5. Toxicity/Hazardous Materials
 - 1. Provide products that contain no urea-formaldehyde
 - 2. Products and equipment requiring or using CFCs, HCFCs, or HFCs during the manufacturing or application process will not be permitted
 - 3. Provide products that contain no PBDEs
 - 4. Provide products that are "Low-emitting"

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect spray polyurethane foam components as follows:
 - 1. Component A and B: store between 60 degrees F (15 degrees C) and 90 degrees F (32 degrees C).
 - 2. Component B must be protected from overheating over 120 degree F (49 degree C) and prolonged storage over 100 degree F (37 degree C).
 - 3. Component B: mix thoroughly prior to use.
 - 4. Components should be a matched set (system) as supplied by the manufacturer.
 - 5. Use components within their labeled shelf-life.
 - 6. Use components as supplied with no site alterations or additions.
 - 7. Comply with manufacturers written instructions for handling and protection prior to and during installation.
 - 8. Store both components in a temperature controlled area between 60 deg F and 90 deg F. Do not allow product to freeze.
 - 9. Use only those components that are supplied by the Manufacturer.
- C. PROJECT CONDITIONS
 - 1. Do not expose to sunlight, except to extent necessary for period of installation and concealment.
- D. C. WARRANTY

1. Refer to manufacturer's standard warranty terms (as applicable).

PART 2 – PRODUCTS

- 2.0 PERFORMANCE CHARACTERISTICS FOAMED-IN-PLACE INSULATION
 - E. Air Material Air Leakage Rate: Maximum material air leakage rate of less than 0.004 cfm/ft2 under a pressure differential of 0.3 in w.g. (1.6 psf) (0.02 L/m2 at 75 Pa) per ASTM E 2178 or E 282.
 - F. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Development Index: 450 or less.
 - G. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly if required based on product.
 - H. Compressive strength: Minimum 40 psi (276 kPa) (ASTM C1029 Type II) for Closed-cell spray polyurethane.
 - I. Sustainability Requirements: Provide spray polyurethane foam insulation as follows:
 - 1. Low Emitting: Insulation tested according to CA/DPH/EHLB/v1.1-2010.
 - 2. Resistant to fungal growth as per ASTM C1338.
 - 3. Containing no PBDE.
- 2.1 Closed-cell Spray Polyurethane Foam
 - A. Closed-Cell Spray Polyurethane Foam: ASTM C 1029, Type II, minimum density of 2.2 lb/cu. ft. (35.2 kg/cu. m) and minimum aged R-value at 1-inch (25.4-mm) thickness of 4.9 deg F x h x sq. ft./Btu at 75 deg F (0.86 K x sq. m/W at 24 deg C).
 - 1. Basis-of-Design Product: Icynene Inc.; Icynene ProSeal Eco or comparable product by one of the following:
 - a. BASF Corporation.
 - b. Dow Chemical Company (The).
 - c. Demilec (APX)
- 2.2 Open-Cell Spray Polyurethane Foam
 - A. Open-Cell Spray Polyurethane Foam: Spray-applied polyurethane foam using water as a blowing agent. Minimum density of 0.5 lb/cu. ft. (8.0 kg/cu. m) and minimum aged R-value at 1-inch (25.4-mm) thickness of 3.7 deg F x h x sq. ft./Btu at 75 deg F (0.65 K x sq. m/W at 24 deg C).
 - Basis-of-Design Product: ICYNENE Classic Max[™] (LD-C-50-v2) Spray Foam Insulation: Light density, open celled, 100% water-blown or comparable product by one of the following:

- a. BASF Corporation.
- b. Bayer Material Science (Bay Systems)
- c. Demilec (APX)

2.3 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by insulation manufacturer where required for adhesion of insulation to substrates.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine substrates and conditions, under which work is performed. Do not proceed until unsatisfactory conditions have been corrected. Clean substrates and cavities of loose materials capable of interfering with insulation placement.
 - 1. Review placement area to determine final location will not be within 3 inches of any heat source where the temperature will exceed 200 deg F per ASTM C 411 or in accordance with authorities having jurisdiction.
 - 2. Priming: Prime substrates where recommended by insulation manufacturer. Apply primer to comply with insulation manufacturer's written instructions. Confine primers to areas to be insulated; do not allow spillage or migration onto adjoining surfaces.

3.2 INSTALLATION OF FOAMED-IN-PLACE INSULATION - GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Spray insulation to envelop entire area to be insulated and fill voids.
- C. Apply in multiple passes to not exceed maximum thicknesses recommended by manufacturer. Do not spray into rising foam.
- D. Do not apply insulation within 3-inches (76 mm) of heat emitting devices or where the temperature is in excess of 200 degrees F (93 degrees C), as per ASTM C411 or in accordance with applicable codes.

3.3 PROTECTION

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

07210 - 4 BUILDING INSULATION October 17, 2016

- B. Thermal Protection: Thermal Barrier for Polyicynene Spray Insulation to be used is DC315 or approved equal. Spray foam insulation to be sprayed over spray polyurethane foam (SPF) insulation providing a thermal barrier and shall conform with the following:
 - a. Complying with ASTM E-84 and ASTM E-136. Must limit the average temperature rise of the SPF to not more than 250°F (120°C) after 15 minutes of fire exposure, complying with the standard time-temperature curve of ASTM E 119 or UL 263. The thermal barrier shall be installed in such a manner that it will remain in place for 15 minutes based on FM 4880, UL 1040, NFPA 286 or UL 1715.
 - b. All thermal protection and its application are to be per manufacturer's recommendations and abide by all applicable building codes.

END OF SECTION 07210

SECTION 07920 - JOINT SEALANTS

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Joint sealants.

1.2 SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range for this characteristic.

2.2 PRODUCTS AND MANUFACTURERS

- A. Products: Substitutions for exterior building joint sealants shall be listed on the Validated Products list published by the Sealant, Waterproofing, and Restoration Institute (SWRI).
- B. Joint-Sealant: One-part silicone sanitary sealant.
 - 1. Application: Interior joints in vertical and horizontal non-traffic surfaces sanitary sealant.
 - 2. Joint Locations: At plumbing fixtures in toilets and janitor closets, and horizontal and vertical joints of dissimilar materials in toilets and other wet areas.

07920 - 1 JOINT SEALANTS October 17, 2016

- 3. Products and Manufacturers: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. 786; Dow Corning Corp.
 - b. 898; Pecora Corp.
 - c. 600; Tremco, Inc.
- 4. Manufacturer's Warranty: Minimum 15 years.
- C. Joint-Sealant: One-part latex sealant.
 - 1. Application: Interior joints in vertical and horizontal non-traffic surfaces.
 - 2. Joint Locations: Horizontal and vertical joints around door frames, and joints between dissimilar materials.
 - 3. Products and Manufacturers: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AC-20; Pecora Corp.
 - b. Sonolac; BASF Building Systems
 - c. Tremco Acrylic Latex 834; Tremco, Inc.
 - 4. Manufacturer's Warranty: Minimum 15 years.

2.3 JOINT-SEALANT BACKING

- A. Backer Rod (Joint Fillers, Compressible Filler): Type B, ASTM C 1330, preformed, cylindrical, flexible, compressible, resilient, non-staining, bi-cellular material, with a density of 24-48 km/m3 per ASTM D1622, tensile strength greater than 200 kPa per ASTM D 1623, and water absorption less than 0.1 g/cc per ASTM C 1016.
 - 1. Product and Manufacturer Basis of Design: Sof Rod; Nomaco, Inc., Zebulon, NC.
 - 2. Other Acceptable Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include but are not limited to the following:
 - a. C.R. Laurence Co., Inc.
 - b. Industrial Thermo Polymers Limited

2.4 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

07920 - 2 JOINT SEALANTS October 17, 2016 Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- C. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

07920 - 3 JOINT SEALANTS October 17, 2016

- D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Acoustical Sealant Installation: At sound-rated assemblies, fire-rated assemblies, and elsewhere as indicated, seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written recommendations.
- F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile unless otherwise indicated.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 07920

SECTION 08111 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Hollow metal doors.
 - 2. Hollow metal frames.

1.2 SUBMITTALS

- A. Product Data: For products indicated.
- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.
 - 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 - 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 - 4. Locations of reinforcement and preparations for hardware.
 - 5. Details of each different wall opening condition.
 - 6. Details of anchorages, joints, field splices, and connections.
- C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.
- D. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.
- E. pressure according to NFPA 252 or UL 10C.

1.3 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch- high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amweld Building Products, Inc.
 - 2. Ceco Door Products
 - 3. Curries Company
 - 4. Steelcraft

2.2 INTERIOR DOORS AND FRAMES

- A. Interior Doors: Comply with ANSI/SDI A250.8. Face sheets fabricated from steel sheet. Provide doors complying with requirements indicated below by referencing ANSI/SDI A250.8 for level and model and ANSI/SDI A250.4 for physical performance level:
 - 1. Design: Flush panel.
 - 2. Performance Level: Level 3 and Physical Performance Level A (Extra Heavy Duty), Model 2 (Seamless).
 - 3. Door Thickness: As indicated.
 - 4. Face: Uncoated, cold-rolled steel sheet, minimum thickness 0.053 inches (16 gauge)
 - 5. Vertical Edges for Single-Acting Doors: Beveled edge, 1/8 inch in 2 inches.
 - 6. Top and Bottom Edges: Closed with flush or inverted 0.042-inch- thick, end closures or channels of same material as face sheets.
 - 7. Tolerances: SDI 117, "Manufacturing Tolerances for Standard Steel Doors and Frames."
- B. Construct interior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- C. Hardware Reinforcement: ANSI/SDI A250.6.

2.3 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008, Commercial Steel (CS), Type B; suitable for exposed applications.

- B. Hot-Rolled Steel Sheet: ASTM A 1011, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
- D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153.
- E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- F. Grout: ASTM C 476, except with a maximum slump of 4 inches, as measured according to ASTM C 143.

2.4 FRAMES

- A. General: Comply with ANSI/SDI A250.8.
- B. Interior Frames: Fabricated from cold-rolled steel sheet.
 - 1. Fabricate frames with mitered or coped corners.
 - 2. Fabricate frames as face welded.
 - 3. Frames for Level 3 Steel Doors: 0.067-inch- (14 gauge) thick steel sheet.
- C. Hardware Reinforcement: ANSI/SDI A250.6.
- D. Supports and Anchors: Fabricated from not less than 0.042-inch- thick, electrolytic zinc-coated or metallic-coated steel sheet.
 - 1. Wall Anchors in Masonry Construction: 0.177-inch- diameter, steel wire complying with ASTM A 510 may be used in place of steel sheet.
- E. Inserts, Bolts, and Fasteners: Manufacturer's standard units.

2.5 FABRICATION

- A. General: Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
- B. Hollow-Metal Doors:
 - 1. Vertical Edges for Single-Acting Doors: Bevel edges 1/8 inch in 2 inches.

- 2. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets.
- 3. Bottom Edge Closures: Close bottom edges of doors with end closures or channels of same material as face sheets.
- C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.
 - 1. Sidelight Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
 - 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 - 3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
 - 4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
 - 5. Jamb Anchors: Provide number and spacing of anchors as follows:
 - a. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 - 1) Three anchors per jamb up to 60 inches high.
 - 2) Four anchors per jamb from 60 to 90 inches high.
 - 3) Five anchors per jamb from 90 to 96 inches high.
 - 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches or fraction thereof above 96 inches high.
 - b. Compression Type: Not less than two anchors in each frame.
 - c. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
 - 6. Head Anchors: Two anchors per head for frames more than 42 inches wide and mounted in metal-stud partitions.
- D. Tolerances: Fabricate hollow metal work to tolerances indicated in SDI 117.
- E. Hardware Preparation: Factory prepare hollow metal work to receive templated mortised hardware according to the Door Hardware Schedule and templates furnished as specified in Division 08 Section "Door Hardware."
 - 1. Reinforce doors and frames to receive nontemplated, mortised, and surfacemounted door hardware.
 - 2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

2.6 FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Drill and tap doors and frames to receive nontemplated, mortised, and surfacemounted door hardware.

3.3 INSTALLATION

- A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.
- B. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.

- a. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
- b. Install frames with removable stops located on secure side of opening.
- c. Install door silencers in frames before grouting.
- d. Remove temporary braces necessary for installation only after frames have been properly set and secured.
- e. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
- 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
- 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation inside frames.
- 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
- 5. Concrete Walls: Solidly fill space between frames and concrete with mineralfiber insulation.
- 6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
- 7. In-Place Metal or Wood-Stud Partitions: Secure slip-on drywall frames in place according to manufacturer's written instructions.
- 8. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.
- C. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - 1. Non-Fire-Rated Steel Doors:
 - a. Between Door and Frame Jambs and Head: 1/8 inch plus or minus 1/32 inch.
 - b. Between Edges of Pairs of Doors: 1/8 inch to 1/4 inch plus or minus 1/32 inch.

- c. At Bottom of Door: 3/4 inch plus or minus 1/32 inch, unless otherwise indicated or required by Code.
- d. Between Door Face and Stop: 1/16 inch to 1/8 inch plus or minus 1/32 inch.

3.4 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow-metal work immediately after installation.
- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- D. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 08111

SECTION 08411 - ALUMINUM-FRAMED STOREFRONTS AND ENTRANCES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exterior Storefront.
 - 2. Exterior entrance Doors and frames.

1.2 SUBMITTALS

- A. Product Approval: Submit current Product Approval documentation in accordance with the Florida Building Code.
- B. Product Data: For each product specified. Include details of construction relative to materials, dimensions of individual components, profiles, and finishes.
- C. Shop Drawings: Show details of fabrication and installation, including plans, elevations, sections, details of components, provisions for expansion and contraction, and attachments to other work.
 - 1. Engineering Responsibility: Prepare engineering data for entrance systems, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project as prepared by a professional engineer registered in the state of Florida.
 - a. Include structural analysis data signed and sealed by professional engineer registered in the state of Florida responsible for their preparation.
 - b. Show details of fabrication and installation, including plans, elevations, sections, details of components, provisions for expansion and contraction, and attachments to other work.
 - c. Include all drawings and installation details required to insure the elements installed on this Project will be installed in the same manner as they were tested and approved.

D. Installer Certificates: Signed by manufacturer certifying that installers comply with specified requirements.

- E. Samples for Verification: Of exposed finish selected in manufacturer's standard sizes.
- F. Samples: For the following.
 - 1. Aluminum Framing:

- a. Samples for Verification: Of exposed metal finish selected in manufacturer's standard sizes.
- 2. Glass: Glass products, in the form of 12-inch-square Samples for each type of glass indicated.

G. Test Reports: Provide certified test reports indicating compliance with the Building Code.

H. Field Test Reports: Field quality-control test reports.

I. Warranties: Warranties specified in this Section.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer to assume engineering responsibility and perform work of this Section who has specialized in installing glazing systems similar to those required for this Project and who is acceptable to manufacturer.
 - 1. Engineering Responsibility: Preparation of engineering data including the following:
 - a. Shop Drawings based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
 - b. Shop Drawings, pre-construction testing program development, and comprehensive engineering analysis by a qualified professional engineer registered in the state of Florida.
- B. Pre-Installation Conference: Conduct conference at Project site.
 - 1. Review structural load limitations.
 - 2. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 3. Review required testing, inspecting, and certifying procedures.
- C. Source Limitations: Obtain each type of entrance system through one source from a single manufacturer.
- D. Welding Standards: Comply with applicable provisions of AWS D1.2, "Structural Welding Code--Aluminum."
- 1.4 DELIVERY, STORAGE, AND HANDLING

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

A. Protect glazing materials according to manufacturer's written instructions and as needed to prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.5 PROJECT CONDITIONS

- A. Field Measurements: Verify dimensions by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- B. Environmental Limitations for Glass and Glazing: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

1. Do not install liquid glazing sealants when ambient and substrate temperature conditions are outside limits permitted by glazing sealant manufacturer or below 40 degrees F.

1.6 WARRANTY

- A. General Warranty: The special warranty specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.
- B. Manufacturer's Warranty: Submit a written warranty, beginning on the date of Substantial Completion, executed by the manufacturer agreeing to repair or replace components of glazing systems that fail in materials or workmanship within the specified warranty period. Failures include, but are not limited to, the following:
 - 1. Structural failures including, but not limited to, the following:
 - a. Excessive deflection.
 - b. Adhesive sealant failures.
 - c. Cohesive sealant failures.
 - d. Failure of system to meet performance requirements.
 - e. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - f. Failure of operating components to function normally.
 - 2. Warranty Period: 2 years from date of Substantial Completion.
- B. Finish Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components on which finishes do not comply with requirements or that fail in

materials or workmanship within specified warranty period. Warranty does not include normal weathering.

1. Warranty Period: Minimum 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 EXTERIOR STOREFRONT

- A. Model and Manufacturer Basis of Design: Exterior Storefront Impact Resistant: Kawneer Company
 - 1. Florida Product Approval Number:
 - 2. Glass: Insulated, laminated, tinted
 - a. Glass Performance Characteristics: To be determined.

2.2 EXTERIOR ENTRANCE DOORS AND FRAMES

- A. Model and Manufacturer Basis of Design: Insulclad 360 Thermal Entrance; Kawneer Company
 - 1. Florida Product Approval Number
 - 2. Glass: Laminated
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include but are not limited to the following:
 - 1. EFCO Manufacturing, Inc.
 - 2. Kawneer North America

2.2 MATERIALS

- A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated, complying with the requirements of standards indicated below.
 - 1. Sheet and Plate: ASTM B 209.
 - 2. Extruded Bars, Rods, Shapes, and Tubes: ASTM B 221.
 - 3. Extruded Structural Pipe and Tubes: ASTM B 429.
 - 4. Bars, Rods, and Wire: ASTM B 211.
 - 5. Welding Rods and Bare Electrodes: AWS A5.10.

- B. Steel Reinforcement: Complying with ASTM A 36 for structural shapes, plates, and bars; ASTM A 611 for cold-rolled sheet and strip; or ASTM A 570 for hot-rolled sheet and strip.
- C. Glazing Gaskets: As required to comply with system performance requirements. Provide gasket assemblies that have corners sealed with sealant recommended by gasket manufacturer.
- D. Spacers, Setting Blocks, Gaskets, and Bond Breakers: Manufacturer's standard permanent, nonmigrating types in hardness recommended by manufacturer, compatible with sealants, and suitable for system performance requirements.
- E. Framing system gaskets, sealants, and joint fillers as recommended by manufacturer for joint type.

2.3 COMPONENTS

- A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 - 1. Reinforce members as required to retain fastener threads.
 - 2. Do not use exposed fasteners, except for hardware application. For hardware application, use countersunk Phillips flat-head machine screws finished to match framing members or hardware being fastened, unless otherwise indicated.
- C. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123 or ASTM A 153 requirements.

2.4 ENTRANCE DOOR HARDWARE

- A. General: Provide entrance door hardware for each entrance door to comply with requirements in this Section.
 - 1. Entrance Door Hardware Sets: Refer to Section 08710 Door Hardware and the following:
 - a. Weather Stripping: Manufacturer's standard replaceable components
 - b. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip
 - c. Silencers: BHMA A156.16, Grade 1
 - d. Thresholds: BHMA A156.21. raised thresholds beveled with a slope of not more than 1:2, with maximum height of ½ inch

2.5 FABRICATION

A. General: Fabricate components that, when assembled, will have accurately fitted joints with ends coped or mitered to produce hairline joints free of burrs and distortion. After

fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

- 1. Fabricate components for screw-spline (concealed fastener) frame construction.
- 2. Forming: Form shapes with sharp profiles, straight and free of defects or deformations, before finishing.
- 3. Prepare components to receive concealed fasteners and anchor and connection devices.
- B. Welding: Weld components to comply with referenced AWS standard. Weld before finishing components to greatest extent possible. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.
- C. Glazing Channels: Provide minimum clearances for thickness and type of glass indicated according to FGMA's "Glazing Manual."
- D. Metal Protection: Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

2.6 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of glazing systems. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Comply with manufacturer's written instructions for protecting, handling, and installing glazing systems. Do not install damaged components. Fit frame joints to produce hairline joints free of burrs and distortion. Rigidly secure nonmovement joints.
- B. Metal Protection: Where aluminum will contact dissimilar metals, protect against galvanic action by painting contact surfaces with primer or by applying sealant or tape recommended by manufacturer for this purpose. Where aluminum will contact concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- C. Install the system plumb and true in alignment with established lines and grades without warp or rack. Lubricate operating hardware and other moving parts according to hardware manufacturers' written instructions.
- D. Install glazing to comply with requirements of Division 8 Section "Glazing," unless otherwise indicated.
- E. Install perimeter sealant to comply with requirements of Division 7 Section "Joint Sealants," unless otherwise indicated.

3.3 PROTECTION

A. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer that ensure glazing systems are without damage or deterioration at the time of Substantial Completion.

END OF SECTION 08411

SECTION 08710 - DOOR HARDWARE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes:
 - 1. Door hardware.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction and installation details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Door Hardware Schedule: Prepared by or under the supervision of Installer, detailing fabrication and assembly of door hardware, as well as installation procedures and diagrams. Coordinate final door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - 1. Format: Use same scheduling sequence and format and use same door numbers as in the Contract Documents.
 - 2. Content: Include the following information:
 - a. Identification number, location, hand, fire rating, size, and material of door and frame.
 - b. Location of door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 - c. Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 - d. Fastenings and other pertinent information.
 - e. Explanation of abbreviations, symbols, and codes contained in schedule.
 - f. Mounting locations for door hardware.
- C. Keying Schedule: Prepared by or under the supervision of Installer, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.
- D. Warranty: Warranty specified in this Section.
- E. Maintenance Data: For type of door hardware to include in maintenance manuals. Include final hardware and keying schedule.

1.3 QUALITY ASSURANCE

- A. General: All hardware shall meet the requirements of Federal, State and Local codes having jurisdiction.
- B. Source Limitations: Obtain each type of door hardware from a single manufacturer.
- C. Fire-Rated Door Assemblies: Where fire-rated door assemblies are indicated, provide door hardware rated for use in assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C, unless otherwise indicated.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.
- B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.
- C. Deliver keys to Owner.

1.5 COORDINATION

- A. Templates: Obtain and distribute to the parties involved templates for door, frame, and other work specified to be factory prepared for installing door hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- B. Security: Coordinate installation of door hardware, keying, and access control with Owner's security consultant.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.

08710 - 2 DOOR HARDWARE October 17, 2016

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

- A. Provide door hardware for each door as scheduled in Part 3 "Door Hardware Schedule" Article to comply with requirements in this Section.
 - 1. The following is a list of product descriptions, specified manufacturers, and other acceptable manufacturers. Door and hardware is to match existing unless otherwise noted by Owner.

PRODUCT DESCRIPTION	SPECIFIED MANUFACTURER (or approved equal)	ACCEPTABLE SUBSTITUTE
Hinges	lves	Hager, Stanley, Bommer
Cylinders and Keying	Schlage (SCH)	Owners Standard
Locks and Latches	Schlage (SCH)	Owners Standard
Fire Exit Device	Von Duprin	Owners Standard
Closers	LCN	Owners Standard
OH Stops/Holders	Glynn Johnson	Rixson
ADA Operator	LCN	Stanley, Beasam
Wall Bumpers, Floor Stops, Flushbolts	lves	Trimco, Rockwood
Push Plates and Pulls	lves	Trimco, Rockwood
Kick Plates/Armor Plate	lves	Trimco, Rockwood
Power Supplies	VonDuprin	Owners Standard
Threshold/Weatherstrip	Zero	National Guard, Pemko

2.2 HINGES

A. Hinges: BHMA A156.1. Provide template-produced hinges for hinges installed on hollow-metal doors and hollow-metal frames.

2.3 MECHANICAL LOCKS AND LATCHES

A. Lock Functions: As indicated in door hardware schedule.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

B. Strikes: Provide manufacturer's standard strike for each lock bolt or latch bolt complying with requirements indicated for applicable lock or latch and with strike box and curved lip extended to protect frame; finished to match lock or latch.

2.4 EXIT AND PANIC DEVICES AND AUXILIARY ITEMS

- A. Exit and Panic Devices and Auxiliary Items: BHMA A156.3.
- 2.5 LOCK CYLINDERS
 - A. Lock Cylinders: Tumbler type, constructed from brass or bronze, stainless steel, or nickel silver. Interchangeable core, full size, Schlage-no substitute Owner's preference.
- 2.6 SURFACE CLOSERS
 - A. Surface Closers: BHMA A156.4; provide factory-sized closers, adjustable to meet field conditions and requirements for opening force. LCN- Owner's preference.
- 2.7 THRESHOLDS
 - A. Thresholds: BHMA A156.21; fabricated to full width of opening indicated.

2.8 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rated labels and as otherwise approved by Architect.
- B. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.

2.9 FINISHES

A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.

- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
- B. Wood Doors: Comply with DHI WDHS.5 "Recommended Hardware Reinforcement Locations for Mineral Core Wood Flush Doors."
- C. Security: Provide a secure lock-up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items that are not immediately replaceable, so that the completion of the work will not be delayed by hardware losses both before and after installation.

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 09
Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

- 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
- 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.
- C. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

3.4 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Where door hardware is installed more than one month prior to acceptance or occupancy, return to the installation during the week prior to acceptance or occupancy and make a final check and adjust all hardware items. Clean operating items as necessary to restore proper function and finish. Adjust door control devices to compensate for final operation of heating and ventilating equipment.

3.5 CLEANING AND PROTECTION

A. Clean operating items as necessary to restore proper function and finish.

3.6 DOOR HARDWARE SCHEDULE

A. Hardware Groups:

Hardware Group No. 1

Provide each PR door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
6	EA	HINGE	3CB1 4.5 X 4.5 NRP	630	IVE
1	EA	KEYED REMOVABLE MULLION	KR4954-STAB	689	VON
1	EA	PANIC HARDWARE	98-EO	626	VON
1	EA	PANIC HARDWARE	98-NL-OP-110MD	626	VON
1	EA	RIM CYLINDER	20-057-ICX	626	SCH
1	EA	MORTISE CYLINDER	20-061-ICX	626	SCH
2	EA	FSIC CORE	23-030	626	SCH
2	EA	LONG DOOR PULL	9264 36" 20" STD	630	IVE
2	EA	SURFACE CLOSER	4050 SCUSH TBSRT	689	LCN
2	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	GASKETING	31AA	AA	ZER

08710 - 6 DOOR HARDWARE October 17, 2016 Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

1	EA	ASTRAGAL	99A	A	ZER
2	EA	DOOR SWEEP	39A	A	ZER
1	EA	THRESHOLD	65A-MSLA-10	А	ZER

Hardware Group No. 2

Provide each PR door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
6	EA	HINGE	3CB1 4.5 X 4.5	652	IVE
2	EA	MANUAL FLUSH BOLT	FB458	626	IVE
1	EA	DUST PROOF STRIKE	DP1	626	IVE
1	EA	CLASSROOM LOCK	ND70RD RHO	626	SCH
1	EA	OH STOP	450S	630	GLY
1	EA	SURFACE CLOSER	4050 SCUSH TBSRT	689	LCN
2	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	WALL STOP	WS406/407CCV	630	IVE
1	EA	GASKETING	188S-BK	S-Bk	ZER
1	EA	ASTRAGAL	99A	А	ZER

Hardware Group No. 3

Provide each SGL door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
3	EA	HINGE	3CB1 4.5 X 4.5	652	IVE
1	EA	ENTRANCE LOCK	ND53RD RHO	626	SCH
1	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	WALL STOP	WS406/407CCV	630	IVE
1	EA	GASKETING	188S-BK	S-Bk	ZER

Hardware Group No. 4

Provide each SGL door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
3	EA	HINGE	3CB1 4.5 X 4.5	652	IVE
1	EA	PRIVACY LOCK	ND40S RHO	626	SCH
1	EA	SURFACE CLOSER	4050 RW/PA TBSRT	689	LCN
1	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	WALL STOP	WS406/407CCV	630	IVE
1	EA	GASKETING	188S-BK	S-Bk	ZER

Hardware Group No. 5

Provide each SGL door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
3	EA	HINGE	3CB1 4.5 X 4.5	652	IVE
1	EA	PASSAGE SET	ND10S RHO	626	SCH
1	EA	SURFACE CLOSER	4050 SCUSH TBSRT	689	LCN
1	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	GASKETING	188S-BK	S-Bk	ZER

Hardware Group No. 6

Provide each SGL door(s) with the following:

Qty		Description	Catalog Number	Finish	Mfr
3	EA	HINGE	3CB1 4.5 X 4.5	652	IVE
1	EA	STOREROOM LOCK	ND80RD RHO	626	SCH
1	EA	KICK PLATE	8400 10" X 2" LDW B4E	630	IVE
1	EA	WALL STOP	WS406/407CCV	630	IVE
1	EA	GASKETING	188S-BK	S-Bk	ZER

Hardware Group No. 7

Provide each PR door(s) with the following:

HARDWARE BY DOOR MANUFACTURER

END OF SECTION 08710

SECTION 08800 - GLAZING

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Glazing for the following products and applications, including those specified in other Sections where glazing requirements are specified by reference to this Section:
 - a. Glass.

1.2 DEFINITIONS

A. Manufacturer: A firm that produces primary glass or fabricated glass as defined in referenced glazing publications.

1.3 PERFORMANCE REQUIREMENTS

- A. General: Provide glazing systems capable of withstanding normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, and installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
- B. Glass Design: Glass thickness indicated is minimums and is for detailing only. Confirm glass thickness by analyzing Project loads and in-service conditions.
- C. Thermal Movements: Provide glazing that allows for thermal movements resulting from the maximum change (range) in ambient and surface temperatures acting on glass framing members and glazing components.

1.4 SUBMITTALS

- A. Product Data: For each glass product and glazing material indicated.
- B. Samples: For the following products, in the form of 12-inch- square Samples for glass.
 - 1. Each glass type indicated.
- 1.5 QUALITY ASSURANCE

- A. Source Limitations for Clear Glass: Obtain clear float glass from one primary-glass manufacturer source for each product and installation method indicated.
- C. Safety Glass: Category II materials complying with testing requirements in 16 CFR 1201 and ANSI Z97.1.
 - 1.
 - 1. Subject to compliance with requirements, permanently mark safety glass with certification label of Safety Glazing Certification Council or another certification agency acceptable to authorities having jurisdiction.
- D. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below, unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.
 - 1. GANA Publications: GANA'S "Glazing Manual" and "Laminated Glass Design Guide."
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Protect glazing materials according to manufacturer's written instructions and as needed to prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 - 1. Do not install liquid glazing sealants when ambient and substrate temperature conditions are outside limits permitted by glazing sealant manufacturer or below 40 degrees F.

1.8 WARRANTY

A. Manufacturer's Warranty for Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination

08800 - 2 GLAZING October 17, 2016 materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 FLOAT GLASS:

A. ASTM C 1036, Type I, Quality-Q3, Class I (clear).

2.2 HEAT TREATED FLOAT GLASS:

- A. Fabrication Process: By vertical (tong-held) or horizontal (roller-hearth) process, at manufacturer's option, except provide horizontal process where indicated as tongless or free of tong marks.
- B. Heat-Treated Float Glass: ASTM C 1048; Type I (transparent glass, flat); Quality q3 (glazing select); class, kind, and condition as indicated.
- 2.3 LAMINATED GLASS:
 - A. Windborne-Debris-Impact-Resistant Laminated Glass: ASTM C 1172, and complying with testing requirements in 16 CFR 1201 for Category II materials, with "Windborne-Debris-Impact Resistance" Paragraph in "Glass Products, General" Article, and with other requirements specified. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 - 1. Construction: Laminate glass with the following to comply with interlayer manufacturer's written recommendations:
 - a. Polyvinyl butyral interlayer.
 - 2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
 - 3. Interlayer Color: Clear unless otherwise indicated.

2.4 MONOLITHIC-GLASS TYPES

- A. Tempered Glass: Clear fully tempered float glass.
 - 1. Thickness: 1/4-inch, minimum.
 - 2. Labeling: Provide safety glazing labeling.
- 2.5 ELASTOMERIC GLAZING SEALANTS

- A. General: Provide products of type indicated, complying with the following requirements:
 - 1. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 - 2. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range for this characteristic.
- B. Elastomeric Glazing Sealant Standard: Comply with ASTM C 920 and other requirements indicated for each liquid-applied, chemically curing sealant in the Glazing Sealant Schedule at the end of Part 3, including those referencing ASTM C 920 classifications for type, grade, class, and uses.
 - 1. Additional Movement Capability: Where additional movement capability is specified in the Glazing Sealant Schedule, provide products with the capability, when tested for adhesion and cohesion under maximum cyclic movement per ASTM C 719, to withstand the specified percentage change in the joint width existing at time of installation and remain in compliance with other requirements in ASTM C 920 for uses indicated.

2.6 MISCELLANEOUS GLAZING MATERIALS

- A. General: Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
- B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.
- C. Setting Blocks: Elastomeric material with a Shore A durometer hardness of 85, plus or minus 5.
- D. Spacers: Elastomeric blocks or continuous extrusions with a Shore A durometer hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
- E. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).
- F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.7 FABRICATION OF GLASS AND OTHER GLAZING PRODUCTS

- A. Fabricate glass and other glazing products in sizes required to glaze openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing standard, to comply with system performance requirements.
- B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites in a manner that produces square edges with slight kerfs at junctions with indoor and outdoor faces.
- C. Grind smooth and polish exposed glass edges.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine framing glazing, with Installer present, for compliance with the following:
 - 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 - 2. Presence and functioning of weep system.
 - 3. Minimum required face or edge clearances.
 - 4. Effective sealing between joints of glass-framing members.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

3.3 GLAZING, GENERAL

- A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.
- B. Glazing channel dimensions, as indicated on Drawings, provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances. Adjust as required by Project conditions during installation.
- C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.
- D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction sealant-substrate testing.

08800 - 5 GLAZING October 17, 2016

- E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.
- F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- G. Provide spacers for glass lites where the length plus width is larger than 50 inches as follows:
 - 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 - 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.
- H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.
- I. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.
- J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.
- K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.4 SEALANT GLAZING (WET)

- A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
- B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.
- C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.5 PROTECTION AND CLEANING

- A. Protect exterior glass from damage immediately after installation by attaching crossed streamers to framing held away from glass. Do not apply markers to glass surface. Remove nonpermanent labels, and clean surfaces.
- B. Protect glass from contact with contaminating substances resulting from construction operations, including weld splatter. If, despite such protection, contaminating substances do come into contact with glass, remove them immediately as recommended by glass manufacturer.
- C. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for build-up of dirt, scum, alkaline deposits, or stains; remove as recommended by glass manufacturer.
- D. Remove and replace glass that is broken, chipped, cracked, abraded, or damaged in any way, including natural causes, accidents, and vandalism, during construction period.
- E. Wash glass on both exposed surfaces in each area of Project not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended by glass manufacturer.

END OF SECTION 08800

08800 - 7 GLAZING October 17, 2016

SECTION 09221 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.
 - 2. Suspension systems for interior gypsum ceilings and soffits.

1.2 SUBMITTALS

A. Product Data: For products indicated.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by, and displaying a classification label from, an independent testing agency acceptable to the authority having jurisdiction.
 - 1. Construct fire-resistance-rated partitions in compliance with tested assembly requirements indicated in drawings.

2.2 FRAMING SYSTEMS

- A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 - 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 - 2. Protective Coating: Comply with ASTM C645; roll-formed from hot-dipped galvanized steel; complying with ASTM A1003/A1003M and ASTM A653/A653M G40 (Z120) or equivalent corrosion resistant coating. A40 galvannealed products are not acceptable.
- B. Steel Studs and Runners: ASTM C 645.
 - 1. Non-structural Studs: Cold-formed galvanized steel C-studs drywall studs.

- C. Slip-Type Head Joints:
 - 1. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
- D. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
- E. Cold-Rolled Channel Bridging and Bracing: Steel, 0.0538-inch minimum base-metal thickness, with minimum 1/2-inch- wide flanges.
- F. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
- G. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch- wide flanges.
- H. Z-Shaped Furring: With slotted or nonslotted web, face flange of 1-1/4 inches, wall attachment flange of 7/8 inch, minimum uncoated-metal thickness of 0.018 inch, and depth required to fit insulation thickness indicated.

2.3 SUSPENSION SYSTEMS

- A. Tie Wire: ASTM A 641, Class 1 zinc coating, soft temper, 0.062-inch- diameter wire, or double strand of 0.048-inch- diameter wire.
- B. Hanger Attachments to Concrete:
 - 1. Anchors: Capable of sustaining a load equal to 5 times that imposed as determined by ASTM E 488.
 - 2. Powder-Actuated Fasteners: Capable of sustaining, a load equal to 10 times that imposed as determined by ASTM E 1190.
- C. Wire Hangers: ASTM A 641, Class 1 zinc coating, soft temper, 0.16 inch in diameter.
- D. Carrying Channels: Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.053 inch and minimum 1/2-inch- wide flanges.
- E. Furring Channels (Furring Members):
 - 1. Cold-Rolled Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch- wide flanges, 3/4 inch deep.
 - 2. Steel Studs and Runners: ASTM C 645.
 - 3. Hat-Shaped, Rigid Furring Channels: ASTM C 645, 7/8 inch deep.

- F. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong World Industries, Inc.; Drywall Grid Systems.
 - b. Chicago Metallic Corporation; Drywall Grid System.
 - c. USG Corporation; Drywall Suspension System.

2.4 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power and other properties required to fasten steel members to substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollowmetal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Suspended Assemblies: Coordinate installation of suspension systems with installation of overhead structure to ensure that inserts and other provisions for anchorages to building structure have been installed to receive hangers at spacing required to support the Work and that hangers will develop their full strength.
 - 1. Furnish concrete inserts and other devices indicated to other trades for installation in advance of time needed for coordination and construction.

3.3 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

3.4 INSTALLING FRAMED ASSEMBLIES

- A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
- B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.
- C. Install studs so flanges within framing system point in same direction.
- D. Install tracks (runners) at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts penetrating partitions above ceiling.
 - 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 - 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 - a. Install two studs at each jamb unless otherwise indicated.
 - b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 - c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
 - 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
- E. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLING SUSPENSION SYSTEMS

- A. Install suspension system components in accordance with referenced installation standards for assembly types.
- B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

- C. Suspend hangers from building structure as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 - a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 - a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.
 - 3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
 - 5. Do not attach hangers to steel roof deck.
 - 6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
 - 7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
 - 8. Do not connect or suspend steel framing from ducts, pipes, or conduit.
- D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.
- E. Seismic Bracing: As required by Code.
- F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.
- G. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 09221

SECTION 09290 - GYPSUM BOARD

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Gypsum board.

1.2 SUBMITTALS

- A. Product Data: For products indicated.
- 1.3 STORAGE AND HANDLING
 - A. Store materials inside under cover and keep them dry and protected against damage from weather, condensation, direct sunlight, construction traffic, and other causes. Stack panels flat to prevent sagging.

1.4 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Do not install interior products until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

- 2.1 MATERIALS
 - A. General: Complying with ASTM C 36 or ASTM C 1396, as applicable to type of

09290 - 1 GYPSUM BOARD October 17, 2016 gypsum board indicated and whichever is more stringent.

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Georgia-Pacific Gypsum LLC.
 - b. Lafarge North America Inc.
 - c. National Gypsum Properties, LLC
 - d. USG Corporation.
- B. Gypsum Board Regular Type:
 - 1. Thickness: As indicated.
 - 2. Long Edges: Tapered.
- C. Moisture Resistant Backer Board: ASTM C3273 for mold resistance.
 - 1. Thickness: As indicated.
 - 2. Edges: Manufacturer's standard.

2.2 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Paper-faced galvanized steel sheet.
 - 2. Shapes: As indicated and as required in accordance with ASTM C 1047.

2.3 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475.
- B. Joint Tape:
 - 1. Interior Gypsum Wallboard: Paper.
- C. Joint Compound for Interior Gypsum Wallboard: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.

09290 - 2 GYPSUM BOARD October 17, 2016

- B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening backer board units, use screws of type and size recommended by panel manufacturer.
- C. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Grabber Construction Products; Acoustical Sealant GSC.
 - b. Pecora Corporation; A<u>C-20 FTR or AIS-919.</u>
 - c. Specified Technologies, Inc.; Smoke N Sound Acoustical Sealant.
 - d. USG Corporation; SHEETROCK Acoustical Sealant.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Examine areas and substrates, with Installer present, and including welded hollowmetal frames and framing, for compliance with requirements and other conditions affecting performance.
 - B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
 - C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS

- A. General: Comply with ASTM C 840 and manufacturer's instructions and recommendations.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments, except floors. Provide 1/4- to 1/2-inch- wide spaces at these locations, and

09290 - 3 GYPSUM BOARD October 17, 2016 trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

D. Moisture Resistant Gypsum Board Units: Finish according to manufacturer's written instructions.

3.3 INSTALLING TRIM ACCESSORIES

- A. General: Attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints according to ASTM C 840 in specific locations identified, where approved by Architect, as indicated on the Drawings, and as follows:
 - 1. Ceilings: Unless otherwise indicated install control joints as follows:
 - a. Install control joints in areas exceeding 2500 sq. ft.
 - b. Space control joints not more than 50 feet on center.
 - c. Install control joints where ceiling framing or furring changes direction.
 - 2. Partitions and Furring: Unless otherwise indicated install control joints as follows:
 - a. Install control joints in partitions and wall furring runs exceeding 30 feet.
 - b. Space control joints not more than 30 feet on center.
 - c. Install control joints in furred assemblies where control joints occur in base exterior wall.

3.4 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except those with trim having flanges not intended for tape.
- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 - 1. Level 3: Ceiling plenum areas, concealed areas, and where indicated.
 - 2. Level 4: All other locations, unless otherwise indicated.

09290 - 4 GYPSUM BOARD October 17, 2016

3.5 PROTECTION

- A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- B. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09290

09290 - 5 GYPSUM BOARD October 17, 2016 SECTION 09310 - TILING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes:
 - 1. Tile.
 - 2. Stone thresholds.
 - 3. Waterproof membrane for thin-set tile installations.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show locations of each type of tile and tile pattern. Show widths, details, and locations of expansion, contraction, control, and isolation joints in tile substrates and finished tile surfaces.
- C. Samples for Verification:
 - 1. Full-size units of each type and composition of tile and for each color and finish required.
 - 2. Stone thresholds in 6-inch lengths.
 - 3. Assembled samples with grouted joints for each type and composition of tile and for each color and finish required, at least 12 inches square and mounted on rigid panel. Use grout of type and in color or colors approved for completed work.

1.3 QUALITY ASSURANCE

- A. Source Limitations for Tile: Obtain all tile of same type and color or finish from one source or producer.
 - 1. Obtain tile from same production run and of consistent quality in appearance and physical properties for each contiguous area.
- B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from a single manufacturer and each aggregate from one source or producer.
- C. Source Limitations for Other Products: Obtain each of the following products specified in this Section through one source from a single manufacturer for each product:
 - 1. Stone thresholds.
 - 2. Joint sealants.

09310 - 1 TILING October 17, 2016

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirement in ANSI A137.1 for labeling sealed tile packages.
- B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.
- D. Handle tile that has temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 PRODUCTS, GENERAL

- A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1, "Specifications for Ceramic Tile," for types, compositions, and other characteristics indicated.
 - 1. Provide tile complying with Standard grade requirements, unless otherwise indicated.
 - 2. For facial dimensions of tile, comply with requirements relating to tile sizes specified in Part 1 "Definitions" Article.
- B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI standards referenced in "Setting and Grouting Materials" Article.

2.2 TILE PRODUCTS

- A. Products and Manufacturers: Refer to the drawing Sheet A904 for Finish List.
- B. Trim Units: Matching characteristics of adjoining flat tile and coordinated with sizes and coursing of adjoining flat tile where applicable. Provide shapes as follows, selected from manufacturer's standard shapes.

2.3 THRESHOLDS

- A. General: Fabricate to sizes and profiles indicated or required to provide transition between adjacent floor finishes.
 - 1. Bevel edges at 1:2 slope, aligning lower edge of bevel with adjacent floor finish. Limit height of bevel to 1/2 inch or less, and finish bevel to match face of threshold.
- B. Marble Thresholds: ASTM C 503 with a minimum abrasion resistance in accordance with ASTM C 1353 or ASTM C 241 and with honed finish.
 - 1. Color: As indicated on the Drawings.

2.4 WATERPROOFING FOR THIN-SET TILE INSTALLATIONS

- A. Product and Manufacturer Basis of Design: System consisting of liquid-latex rubber and fabric reinforcement.
 - 1. Mapelastic HPG; MAPEI Corporation
- B. Other Acceptable Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include but are not limited to the following:
 - 1. Jamo Inc.
 - 2. LATICRETE International Inc.

2.5 SETTING AND GROUTING MATERIALS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Jamo Inc.
 - 2. LATICRETE International Inc.
 - 3. MAPEI Corporation.
 - 4. Summitville Tiles, Inc.
- B. Latex-Portland Cement Mortar:
 - 1. Product and Manufacturer Basis of Design: Granirapid; MAPEI Corporation
 - 2. Other Acceptable Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include but are not limited to the following:
 - a. Jamo Inc.

09310 - 3 TILING October 17, 2016

- b. LATICRETE International Inc.
- C. Tile Grout:
 - 1. Product and Manufacturer Basis of Design: Kerapoxy CQ; MAPEI Corporation
 - a. Color: Refer to the Finish Materials List
 - 2. Other Acceptable Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include but are not limited to the following:
 - a. Jamo Inc.
 - b. LATICRETE International Inc.

2.6 ELASTOMERIC SEALANTS

- A. General: Provide manufacturer's standard chemically curing, elastomeric sealants of base polymer and characteristics indicated that comply with applicable requirements in Division 7 Section "Joint Sealants."
- 2.7 MISCELLANEOUS MATERIALS
 - A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.
 - B. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.
- 2.8 MIXING MORTARS AND GROUT
 - A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.
 - B. Add materials, water, and additives in accurate proportions.
 - C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.
 - 1. Verify that substrates for setting tile are firm; dry; clean; free of oil, waxy films, and curing compounds; and within flatness tolerances required by referenced ANSI A108 Series of tile installation standards for installations indicated.
 - 2. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed before installing tile.
 - 3. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Interior Designer.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove coatings, including curing compounds and other substances that contain soap, wax, oil, or silicone, that are incompatible with tile-setting materials.
- B. Provide concrete substrates for tile floors installed with thin-set mortar that comply with flatness tolerances specified in referenced ANSI A108 Series of tile installation standards.
 - 1. Fill cracks, holes, and depressions with trowelable leveling and patching compound according to tile-setting material manufacturer's written instructions. Use product specifically recommended by tile-setting material manufacturer.
 - 2. Remove protrusions, bumps, and ridges by sanding or grinding.
- C. Blending: For tile exhibiting color variations within ranges selected during Sample submittals, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.
- D. Field-Applied Temporary Protective Coating: Where recommended by the tile manufacturer or as needed to prevent grout from staining or adhering to exposed tile surfaces, precoat them with continuous film of temporary protective coating, taking care not to coat unexposed tile surfaces.
- E. Install cement board and treat joints to comply with ANSI A108.11 and manufacturer's written instructions for type of application indicated.

3.3 INSTALLATION, GENERAL

A. Waterproofing: Apply waterproofing at all floor tile locations.

- B. Tile Workmanship and Visual Appearance: All tile shall be installed with zero-lippage, with straight and even joints, and smooth and flat. The intent is that all tile installations are to be installed using the best of techniques. Any tile that does not meet or exceed the requirements indicated shall be removed and replaced in accordance with specified requirements.
- C. ANSI Tile Installation Standards: Comply with parts of ANSI A108 Series "Specifications for Installation of Ceramic Tile" that apply to types of setting and grouting materials indicated.
- D. TCA Installation Guidelines: TCA's "Handbook for Ceramic Tile Installation."
- E. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions, unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
- F. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
- G. Jointing Pattern: As indicated or as directed by the Architect.
- H. Expansion Joints: Locate expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 - 1. Locate joints in tile surfaces directly above joints in concrete substrates.
 - 2. Prepare joints and apply sealants to comply with requirements in Division 7 Section "Joint Sealants."
- I. Grout tile to comply with requirements of the following tile installation standards:
 - 1. For chemical-resistant epoxy grouts, comply with ANSI A108.6.

3.4 TILE INSTALLATION

- A. General: Install tile to comply with TCA installation methods and ANSI A108 Series of tile installation standards.
- B. Joint Widths: Install tile on floors and walls with joint widths as directed by the Architect.
- C. Stone Thresholds: Install stone thresholds at locations indicated; set in same type of setting bed as abutting field tile, unless otherwise indicated.
 - 1. Set thresholds in latex-portland cement mortar for locations where mortar bed would otherwise be exposed above adjacent nontile floor finish.

3.5 CLEANING AND PROTECTING

- A. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 - 1. Remove latex-portland cement grout residue from tile as soon as possible.
 - 2. Clean grout smears and haze from tile according to tile and grout manufacturer's written instructions, but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
 - 3. Remove temporary protective coating by method recommended by coating manufacturer that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent it from clogging drains.
- B. When recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear.
- C. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.
- D. Before final inspection, remove protective coverings and rinse neutral cleaner from tile surfaces.

END OF SECTION 09310

09310 - 7 TILING October 17, 2016

SECTION 09511 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Acoustical ceiling tile and suspension systems.

1.2 SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples: For each exposed product and for each color and texture specified.
- C. Samples for Verification: For each component indicated and for each exposed finish required, prepared on Samples of size indicated below.
 - 1. Acoustical Panel: Set of 6-inch- square Samples of each type, color, pattern, and texture.
 - 2. Exposed Suspension System Members, Moldings, and Trim: Set of 12-inchlong Samples of each type, finish, and color.
- D. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each acoustical panel ceiling.
- E. Maintenance Data: For finishes to include in maintenance manuals.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system through one source from a single manufacturer.
- B. Metal Suspension System Standard: Provide manufacturer's standard metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable ASTM C 635 requirements.
- C. Fire-Test-Response Characteristics: Provide acoustical panel ceilings that comply with 09511 - 1 ACOUSTICAL PANEL CEILINGS October 17, 2016

the following requirements:

- 1. Fire-response tests are performed by a qualified testing and inspecting agency. Qualified testing and inspecting agencies include Underwriters Laboratories (UL), Warnock Hersey, or another agency that is acceptable to authorities having jurisdiction and that performs testing and follow-up services.
- 2. Surface-burning characteristics of acoustical panels comply with ASTM E 1264 for Class A materials as determined by testing identical products per ASTM E 84.
- 3. Acoustical panel ceilings indicated are identical in materials and construction to those tested for fire resistance per ASTM E 119.
- 4. Products are identified with appropriate markings of applicable testing and inspecting agency.
- D. Preinstallation Conference: Conduct conference at Project site.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver acoustical panels, suspension system components, and accessories to Project site in original, unopened packages and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
- B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.
- C. Handle acoustical panels carefully to avoid chipping edges or damaging units in any way.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weatherproof, wet work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

09511 - 2 ACOUSTICAL PANEL CEILINGS October 17, 2016

1.6 COORDINATION

A. Coordinate layout and installation of acoustical panels and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Panels: Full-size panels equal to 2.0 percent of quantity installed.

PART 2 - PRODUCTS

- 2.1 ACOUSTICAL CEILING SYSTEMS
 - A. Products and Manufacturers: Subject to compliance with requirements, available products and manufacturers that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ceiling Type A:
 - a. Tile: Genesis, Standard Series, Printed Pro SE, 24"x24" x 5/32"; white.
 - b. Grid: Vinyl RP Grid, 15/16" T-bar, white

2.2 EDGE MOLDINGS AND TRIM

- A. Edge Moldings and Trim: Where indicated, provide manufacturer's edge moldings and trim of profile indicated or referenced by manufacturer's designations, including splice plates, corner pieces, and attachment and other clips.
 - 1. Colors: White
 - 2. Edge Trim: Vinyl RP Angle Molding, white
- 2.3 ACOUSTICAL SEALANT

09511 - 3 ACOUSTICAL PANEL CEILINGS October 17, 2016

- A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Acoustical Sealant for Exposed and Concealed Joints:
 - a. Pecora Corporation; AC-20 FTR Acoustical and Insulation Sealant.
 - b. USG Corporation; SHEETROCK Acoustical Sealant.
 - 2. Acoustical Sealant for Concealed Joints:
 - a. Pecora Corporation; BA-98.
 - b. Tremco, Inc.; Tremco Acoustical Sealant.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders, and comply with layout shown on reflected ceiling plans.

3.3 INSTALLATION

A. General: Install acoustical panel ceilings to comply with manufacturer's instructions and recommendations, publications referenced below and CISCA "Ceiling Systems Handbook."

> 09511 - 4 ACOUSTICAL PANEL CEILINGS October 17, 2016

- Standard for Ceiling Suspension System Installations: Comply with ASTM C 636.
 CISCA Recommendations for Acoustical Ceilings: Comply with CISCA "Recommendations for Direct-Hung Acoustical Tile and Lay-In Panel Ceilings."
 Allow all ceiling components to acclimate to room temperatures before installation.
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required and, if permitted with fire-resistance-rated ceilings, to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
 - 4. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both structure to which hangers are attached and type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.
 - 6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
 - 7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
 - 8. Do not attach hangers to steel deck tabs.
 - 9. Do not attach hangers to steel roof deck. Attach hangers to structural members.
 - 10. Space hangers not more than 48 inches o.c. along each member supported

09511 - 5 ACOUSTICAL PANEL CEILINGS October 17, 2016 directly from hangers, unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.

- 11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
- C. Secure bracing wires to ceiling suspension members and to supports with a minimum of four tight turns. Suspend bracing from building's structural members as required for hangers, without attaching to permanent metal forms, steel deck, or steel deck tabs. Fasten bracing wires into concrete with cast-in-place or postinstalled anchors.
- D. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
 - 2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
 - 3. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- E. Install suspension system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
- F. Install acoustical panels with undamaged edges and fit accurately into suspension system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
 - 1. Arrange directionally patterned acoustical panels as follows:
 - a. As indicated on reflected ceiling plans.
 - 2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension system runners and moldings.
 - 3. For reveal-edged panels on suspension system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
 - 4. For reveal-edged panels on suspension system members with box-shaped flanges, install panels with reveal surfaces in firm contact with suspension system surfaces and panel faces flush with bottom face of runners.
 - 5. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.

09511 - 6 ACOUSTICAL PANEL CEILINGS October 17, 2016

- 6. Install hold-down clips in areas indicated, in areas required by authorities having jurisdiction, and for fire-resistance ratings; space as recommended by panel manufacturer's written instructions, unless otherwise indicated.
- 7. Install clean-room gasket system in areas indicated, sealing each panel and fixture as recommended by panel manufacturer's written instructions.
- 8. Protect lighting fixtures and air ducts to comply with requirements indicated for fire-resistance-rated assembly.

3.4 ADJUSTING AND CLEANING

- A. Replace damaged and broken panels.
- B. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.
- C. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09511

09511 - 7 ACOUSTICAL PANEL CEILINGS October 17, 2016

SECTION 09653 - RESILIENT WALL BASE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Wall base.

1.2 SUBMITTALS

- A. Product Data: For each product indicated.
- B. Samples: For products indicated, in manufacturer's standard-size Samples but not less than 12 inches long, of each resilient product color, texture, and pattern required.

1.3 PROJECT CONDITIONS

- A. Maintain temperatures within range recommended by manufacturer, but not less than 70 degrees F or more than 95 degrees F, in spaces to receive floor tile during the following time periods:
 - 1. 48 hours before installation.
 - 2. During installation.
 - 3. 48 hours after installation.
- B. After postinstallation period, maintain temperatures within range recommended by manufacturer, but not less than 55 degrees F or more than 95 degrees F.
- C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 WALL BASE

- A. Products and Manufacturers: Refer to the drawing Sheet A251 for Material List.
 - 1. Height: As indicated.
 - 2. Type: As indicated.

2.2 MISCELLANEOUS MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic cement based formulation provided or approved by resilient product manufacturers for applications indicated.
- B. Adhesives: Water-resistant type recommended by manufacturer to suit resilient products and substrate conditions indicated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. General: Prepare substrates according to manufacturer's written recommendations to ensure adhesion of resilient products.
- B. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by manufacturer. Do not use solvents.
- C. Move resilient products and installation materials into spaces where they will be installed at least 48 hours in advance of installation.
 - 1. Do not install resilient products until they are the same temperature as the space where they are to be installed.

3.2 RESILIENT WALL BASE INSTALLATION

- A. General: Install resilient base in accordance with manufacturer's instructions and recommendations.
 - 1. Apply wall base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.
 - 2. Install wall base in lengths as long as practicable without gaps at seams and with tops of adjacent pieces aligned.
 - 3. Tightly adhere wall base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.
 - 4. Do not stretch wall base during installation.
 - 5. On irregular substrates, fill voids along top edge of wall base with manufacturer's recommended adhesive filler material.
3.3 ACCESSORY INSTALLATION

A. General: Comply with manufacturer's written instructions for installing resilient accessories.

3.4 CLEANING AND PROTECTION

- A. Perform the following operations immediately after completing resilient product installation:
 - 1. Remove adhesive and other blemishes from exposed surfaces.
 - 2. Sweep and vacuum surfaces thoroughly.
 - 3. Damp-mop surfaces to remove marks and soil.
 - a. Do not wash surfaces until after time period recommended by manufacturer.
- B. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period. Use protection methods recommended in writing by manufacturer.

END OF SECTION 09653

SECTION 09654 - VINYL FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Luxury Vinyl Tile flooring.

1.2 SUBMITTALS

- A. Product Data: For each type of product
- B. Shop Drawings: For each type of floor plank. Include floor plank layouts, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.
 - 1. Show details of special patterns.
- C. Samples: Full-size units of each color and pattern of floor plank required.

1.3 WARRANTY

A. Manufacturer's Standard warranty to begin at date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 LUXURY VINYL FLOORING
 - 1. Products and Manufacturers: Refer to Finish List.

2.2 INSTALLATION MATERIALS

- A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by floor plank manufacturer for applications indicated.
- B. Adhesives: Water-resistant type recommended by floor plank and adhesive manufacturers to suit floor plank and substrate conditions indicated.

09654 - 1 VINYL FLOORING October 17, 2016 C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor plank manufacturer.

PART 3 - EXECUTION

- A. Prepare substrates according to floor plank manufacturer's written instructions to ensure adhesion of resilient products.
- B. Concrete Substrates: Prepare according to ASTM F 710.
 - 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 - 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor plank manufacturer. Do not use solvents.
 - 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor plank manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing.
 - 4. Moisture Testing: Proceed with installation only after substrates pass testing according to floor plank manufacturer's written recommendations, but not less stringent than the following:
 - a. Perform anhydrous calcium chloride test according to ASTM F 1869. Proceed with installation only after substrates have maximum moisturevapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 - b. Perform relative humidity test using in situ probes according to ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level.
- C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
- D. Do not install floor planks until they are the same temperature as the space where they are to be installed.
- E. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor plank.

3.2 FLOOR PLANK INSTALLATION

- A. Comply with manufacturer's written instructions for installing floor plank.
- B. Lay out floor planks from center marks established with principal walls, discounting minor offsets, so planks at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half plank at perimeter.
 - 1. Lay planks in pattern indicated.

- C. Match floor planks for color and pattern by selecting planks from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed planks.
 - 1. Lay planks in and sizes indicated.
- D. Scribe, cut, and fit floor planks to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- E. Extend floor planks into toe spaces, door reveals, closets, and similar openings. Extend floor planks to center of door openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor planks as marked on substrates. Use chalk or other nonpermanent marking device.
- G. Install floor planks on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in finished floor areas. Maintain overall continuity of color and pattern between pieces of plank installed on covers and adjoining planks. Tightly adhere plank edges to substrates that abut covers and to cover perimeters.
- H. Adhere floor planks to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.3 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor plank. B.

Floor Polish: Remove soil, adhesive, and blemishes from floor plank surfaces before applying liquid floor polish in accordance with manufacturer's recommendations.

END OF SECTION 0965

09654 - 3 VINYL FLOORING October 17, 2016

SECTION 09680 - CARPET

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. Section includes:
 - 1. Carpet.

1.2 SUBMITTALS

- A. Product Data: For each product indicated; include the following:
 - 1. Maintenance data.
- B. Shop Drawings: Include the following:
 - 1. Seam locations.
 - 2. Pattern type, repeat, location, direction, and starting point.
 - 3. Transition, and other accessory strips.
 - 4. Transition details to other flooring materials.
- C. Samples: For carpet.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who is certified by the Floor Covering Installation Board or who can demonstrate compliance with its certification program requirements.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI 104, Section "Storage and Handling."

1.5 PROJECT CONDITIONS

- A. General: Comply with CRI 104, Section "Site Conditions; Temperature and Humidity."
- B. Environmental Limitations: Do not install carpet until wet work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
- C. Installation of new work: Remove adhesives and other contaminates from substrates in accordance with carpet materials manufacturer's instructions and recommendations.

D. Do not install carpet over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by manufacturer.

1.6 WARRANTY

A. Carpet Warranty: Manufacturer's standard form in which manufacturer agrees to replace carpet that does not comply with requirements or that fails within 10 years from date of Substantial Completion. Warranty does not include deterioration or failure of carpet from unusual traffic, failure of substrate, vandalism, or abuse. Failures include, but are not limited to, more than 10 percent loss of face fiber, edge raveling, snags, runs, and delamination.

PART 2 - PRODUCTS

2.1 CARPET

- A. Products and Manufacturers: Refer to the drawing Sheet A900 for Material List.
 - 1. Critical Radiant Flux Classification: Class I, not less than 0.45 w/sq. cm per ASTM E 648.

2.2 INSTALLATION ACCESSORIES

- A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cementbased formulation provided by or recommended by the following:
- B. Seaming Cement: Hot-melt adhesive tape or similar product recommended by carpet manufacturer for taping seams and butting cut edges at backing to form secure seams and to prevent pile loss at seams.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet performance. Verify that substrates and conditions are satisfactory for carpet installation and comply with requirements specified.
- B. Concrete Subfloors: Verify that concrete slabs comply with ASTM F 710 and the following:
 - 1. Slab substrates are dry and free of curing compounds, sealers, hardeners, and other materials that may interfere with adhesive bond. Determine adhesion and

09680 - 2 CARPET October 17, 2016 dryness characteristics by performing bond and moisture tests recommended by the following:

a. Carpet manufacturer.

3.2 PREPARATION

- A. General: Comply with CRI 104, Section "Site Conditions; Floor Preparation," and carpet manufacturer's written installation instructions for preparing substrates indicated to receive carpet installation.
- B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, and depressions in substrates.

3.3 INSTALLATION

- A. Comply with CRI 104 and carpet manufacturer's written installation instructions for the following:
- B. Comply with carpet manufacturer's written recommendations and Shop Drawings for seam locations and direction of carpet; maintain uniformity of carpet direction and lay of pile. At doorways, center seams under the door in closed position.
- C. Do not bridge building expansion joints with carpet.
- D. Cut and fit carpet to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet manufacturer.
- E. Extend carpet into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.
- F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on finish flooring as marked on subfloor. Use nonpermanent, nonstaining marking device.

3.4 CLEANING AND PROTECTION

- A. Perform the following operations immediately after installing carpet:
 - 1. Remove excess adhesive, seam sealer, and other surface blemishes using cleaner recommended by carpet manufacturer.
 - 2. Remove yarns that protrude from carpet surface.
 - 3. Vacuum carpet using commercial machine with face-beater element.
- B. Protect installed carpet to comply with CRI 104, Section, "Protecting Indoor Installations."

C. Protect carpet against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet manufacturer.

END OF SECTION 09680

09680 - 4 CARPET October 17, 2016 SECTION 09910 - PAINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Exposed exterior items and surfaces.
 - 2. Exposed interior items and surfaces.
 - 3. Surface preparation, priming, and finish coats specified in this Section are in addition to shop priming and surface treatment specified in other Sections.
- B. Paint exposed surfaces, except where the paint schedules indicate that a surface or material is not to be painted or is to remain natural. If the paint schedules do not specifically mention an item or a surface, paint the item or surface the same as similar adjacent materials or surfaces whether or not schedules indicate colors. If the schedules do not indicate color or finish, the Architect will select from standard colors and finishes available. Painting includes field painting of exposed bare and covered pipes and ducts (including color coding), hangers, exposed steel and iron work, and primed metal surfaces of mechanical and electrical equipment installed and application of paint coats to all finish coated mechanical and electrical equipment in exterior locations, except as otherwise indicated.
- C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and labels.
- D. Do not paint over Underwriters Laboratories (UL), Factory Mutual (FM), or other code- required labels or equipment name, identification, performance rating, or nomenclature plates.
- 1.2 SUBMITTALS
 - A. Product Data: For each paint system specified. Include block fillers and primers.
 - 1. Material List: Provide an inclusive list of required coating materials. Indicate each material and cross-reference specific coating, finish system, and application. Identify each material by manufacturer's catalog number and general classification.
 - 2. Manufacturer's Information: Provide manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material proposed for use.
 - B. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available for each type of finish-coat material indicated.

- 1. After color selection, the Architect will furnish color chips for surfaces to be coated.
- C. Samples for Verification: Of each color and material to be applied, with texture to simulate actual conditions, on representative Samples of the actual substrate.
 - 1. Provide stepped Samples, defining each separate coat, including block fillers and primers. Use representative colors when preparing Samples for review. Resubmit until required sheen, color, and texture are achieved.
 - 2. Provide a list of materials and applications for each coat of each sample. Label each sample for location and application.
 - 3. On actual wall surfaces and other exterior and interior building components, duplicate painted finishes of prepared samples. On at least 100 square feet of surface, as directed, provide full-coat finish samples until required sheen level., color and texture is obtained; simulate finished lighting conditions for review of in- place work.
- D. Qualification Data: For firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and School Districts, and other information specified.

1.3 QUALITY ASSURANCE

- A. Applicator Qualifications: Engage an experienced applicator who has completed painting system applications similar in material and extent to that indicated for this Project with a record of successful in-service performance.
- B. Source Limitations: Obtain block fillers, primers, and undercoat materials for each coating system from the same manufacturer as the finish coats.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers bearing manufacturer's name and label, and the following information:
 - 1. Product name or title of material.
 - 2. Product description (generic classification or binder type).
 - 3. Manufacturer's stock number and date of manufacture.
 - 4. Contents by volume, for pigment and vehicle constituents.
 - 5. Thinning instructions.
 - 6. Application instructions.
 - 7. Color name and number.
 - 8. VOC content.
- B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum ambient temperature of 45 deg F. Maintain containers used in storage in

a clean condition, free of foreign materials and residue.

1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste daily. Take necessary measures to ensure that workers and work areas are protected from fire and health hazards resulting from handling, mixing, and application.

PART 2 - PRODUCTS

- 2.1 MANUFACTURERS
 - A. Products and Manufacturers: Subject to compliance with requirements, products and manufacturers specified include, but are not limited to, the following:
 - 1. The Sherwin-Williams Company
 - 2. Glidden Professional
 - B. Other Products and Manufacturers: Subject to compliance with requirements, available products and manufacturers that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Benjamin Moore & Company (Moore)
 - 2. Glidden Professional
 - 3. PPG Industries, Inc. (PPG)

2.2 PAINT MATERIALS, GENERAL

- A. Material Compatibility: Provide block fillers, primers, undercoats, and finishcoat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
- B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified. Paint-material containers not displaying manufacturer's product identification will not be acceptable.
 - 1. Proprietary Names: Use of manufacturer's proprietary product names to designate colors or materials is not intended to imply that products named are required to be used to the exclusion of equivalent products of other manufacturers. Furnish manufacturer's material data and certificates of performance for proposed substitutions.

C. Colors: Refer to the Finish Material List; where colors are not indicated the Architect

will select colors from manufacturer's full line.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.
 - 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 - 2. Start of painting will be construed as the Applicator's acceptance of surfaces and

conditions within a particular area.

- B. Coordination of Work: Review other Sections in which primers are provided to ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.
 - 1. Notify the Architect about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

- A. General: Remove hardware and hardware accessories, plates, machined surfaces, lighting fixtures, and similar items already installed that are not to be painted. If removal is impractical or impossible because of the size or weight of the item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations in each space or area, reinstall items removed using workers skilled in the trades involved.
- B. Cleaning: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.
 - 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
- C. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.
- D. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.
- E. Tinting: Tint each undercoat a lighter shade to simplify identification of each coat when multiple coats of the same material are applied. Tint undercoats to match the color of the finish coat, but provide sufficient differences in shade of undercoats to distinguish each separate coat.

3.3 APPLICATION

A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.

3.4 FIELD QUALITY CONTROL

- A. Dry Film Thickness Testing: Engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.
 - 1. Contractor shall touch up and restore painted surfaces damaged by testing.
 - 2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

- A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 - 1. After completing painting, clean glass and paint-spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.
 - B. Protect work of other trades, whether being painted or not, against damage by painting.

Correct damage by cleaning, repairing or replacing, and repainting, as approved by

Architect.

- C. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 - 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

3.6 INTERIOR PAINT AMD COATING SCHEDULE

- A. Gypsum Drywall Walls:
 - 1. Paint System, Application and Finish: Latex; two Finish Coats over Primer; refer to the Finish Identification list for gloss level (Finish) Color to match

existing.

- a. Primer: Harmony Interior Primer Sealer; 1.3 mils DFT
- b. Finish Coats: Harmony Interior Latex; 1.8 mils DFT per coat.
- B. Ferrous Metal: Includes steel doors and frames.
 - 1. Paint System, Application and Finish: Alkyd/Latex; two finish coats over prime coat; semi-gloss finish. Pre-primed requires top finish only; prime coat damaged surfaces.
 - a. Primer: Pro Industrial Pro-Cryl Universal Primer; 2-4 mils DFT.
 - b. Finish Coats: Pro Industrial Pre-Catalyzed Waterbased Epoxy; 1.5 mils DFT per coat.
- C. Metal Deck:
- 1. Paint System, Application and Finish: Alkyd; two finish coats over prime coat; egg-shell finish. Pre-primed requires top finish only; prime coat damaged surfaces.
 - a. Primer: Pro Industrial Pro-Cryl Universal Primer
 - b. Finish: Pro Industrial Multi-surface Acrylic Coating

END OF SECTION 09910

09910 - 6 PAINTING October 17, 2016

SECTION 10530 - PRE-MANUFACTURED CANOPY SYSTEM

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Pre-engineered, pre-finished aluminum canopy system.

1.2 REFERENCES

- A. American Architectural Manufacturers Association (AAMA):
 - 1. AAMA 603 Voluntary Performance Requirements and Test Procedures for Pigmented Organic Coatings on Extruded Aluminum.
 - 2. AAMA 605 Voluntary Specification for High Performance Organic Coatings on Architectural Extrusions and Panels.
 - 3. AAMA 607.1 Voluntary Guide Specification and Inspection Methods for Clear Anodic Finishes for Architectural Aluminum.
 - 4. AAMA 608.1 Voluntary Guide Specification and Inspection Methods for Electrolytically Deposited Color Anodic Finishes for Architectural Aluminum.

1.3 DESIGN REQUIREMENTS

- A. Struts, Gutter Beams, Deck, and Trim: Aluminum extrusions.
- B. Structural Framing: Interlocking deck sections secured by screws.
- C. Canopy: Self-draining from deck into perimeter gutter frame through scuppers to discharge point at ground level or as otherwise shown.
- D. Building Code: __FBC 2014_____
- E. Design Loads:
 - 1. Comply with Building Code for site location.
- F. Structural Design: Prepare complete structural design calculations for canopy.
- G. Structural Design: Prepare complete structural design calculations for canopy members.

1.4 SUBMITTALS

- A. Submit under provisions of Section 01300.
- B. Product Data: Manufacturer's catalog data, detail sheets, and specifications.
- C. Shop Drawings: Layout and erection drawings showing roof framing, deck panels, cross sections, and trim details, clearly indicating proper assembly.

- D. Samples: Color selection samples consisting of actual coating material or anodizing process on aluminum extrusions.
- E. Quality Assurance/Control Submittals:
 - 1. Qualifications: Letter certifying manufacturer's required qualifications.
 - 2. Structural Design Calculations.
 - 3. Manufacturer's Installation Instructions.

1.5 QUALITY ASSURANCE

- A. Overall Standard: Structural engineering design documents stamped by a structural engineer registered to practice in the State of Florida.
- B. Manufacturer Qualifications: Minimum five years experience in producing covers/canopies of the type specified.
- C. Installer Qualifications: Minimum two years experience in erecting covers/canopies of the type specified.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Conform to Orange County's Division 01 Specification requirements.
 - B. Follow manufacturer's instructions.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Basis of Design:

Perfection Architectural Systems, Inc., or EQUAL. 2310 Mercator Drive Orlando, FL 32807; ASD. Tel: (800) 238-7207, Fax: (407) 671-8252.

B. Provide all supported canopy components from a single manufacturer.

2.2 MATERIALS

A. Aluminum Extrusions: 6063 alloy, T-6 temper.

2.3 COMPONENTS

- A. Struts:
 - 1. Aluminum tubular extrusion of size shown on shop drawings.
- B. Gutter Beam:
 - 1. Size: As shown on shop drawings.

- C. Deck: Rigid-Roll-Lock extruded aluminum, self-flashing, interlocking sections. Non corrugated. Soffit style.
 - 1. Size and Profile: 6x3 x.060".
- D. Flashing: Aluminum sheet, thickness as recommended by manufacturer for specific condition.
- 2.4 ACCESSORIES
 - A. Fasteners:
 - 1. Deck Screws: No. 14 by 1 inch (25 mm), self-tapping, Type 18-8 stainless steel with neoprene washers.
 - 2. Trim Screws: No. 10 by 1/2 inch (13 mm), self-tapping, Type 18-8 stainless steel.
 - 3. Other Fasteners: Type 18-8 stainless steel, type recommended by manufacturer for specific condition.

2.5 FABRICATION

- A. Shop Assembly: Fabricate with corners mitered and heli-arc welded to the extent that completed pieces can be shipped on local, state, and federal highways without special permit. Provide bolted connections for elements required to be shipped unassembled.
- 2.6 FINISHES
 - A. Struts:
 - 1. Clear Anodized: AA-M-10C-22A-31, Architectural Class II, comply with AAMA 607.1.
 - B. Deck:
 - 1. Clear Anodized: AA-M-10C-22A-31, Architectural Class II, comply with AAMA 607.1.
 - C. Fascia/Gutter:
 - 1. Clear Anodized: AA-M-10C-22A-31, Architectural Class II, comply with AAMA 607.1.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify locations and elevations.

- B. Examine building surfaces to which canopy will connect.
- C. Coordinate with responsible trade to perform corrective work on unsatisfactory surfaces.
- D. Commencement of work by installer is acceptance of existing conditions.

3.2 ERECTION

- A. Erect system in accordance with manufacturer's installation instructions.
- B. Set plumb, straight, and true to line, adequately braced to maintain position.
- C. Keep aluminum surfaces from direct contact with ferrous metal or other incompatible materials by applying one coat of zinc chromate primer; follow with two coats of clear acrylic paint.

3.3 CLEANING

- A. Clean surfaces soiled by work as recommended by manufacturer.
- B. Remove surplus materials and debris from the site.

3.4 PROTECTION

A. Protect finished aluminum surfaces from damage due to subsequent construction operations.

END OF SECTION 10530

SECTION 15080 - MECHANICAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes mechanical insulation for boiler breeching, duct, equipment, and pipe, including the following:
 - 1. Insulation Materials:
 - a. Cellular glass
 - b. Flexible elastomeric
 - c. Mineral fiber
 - 2. Insulating cements
 - 3. Adhesives
 - 4. Mastics
 - 5. Sealants
 - 6. Factory-applied jackets
 - 7. Field-applied jackets
 - 8. Tapes
 - 9. Securements
 - 10. Corner angles

1.2 Special Note

- A. Note: All piping, equipment and valves on the pump package will be provided non insulated. The contractor shall insulate all items per this specifications.
- 1.3 SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Field quality-control inspection reports.
 - C. Certificate of Warranty from Installing Contractor on exterior installed components.
- 1.4 Warranty
 - A. Installing Contractor shall provide a minimum 10-year parts and labor inclusive warranty on exterior installed insulation. Warranty shall include all cost included to repair insulation and or other materials due to defective installation.

15080 - 1 MECHANICAL INSULATION October 17, 2016

1.5 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: Insulation and related materials shall have firetest-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products specified.
 - 2. Products: Subject to compliance with requirements, provide one of the products specified.
 - 3. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 4. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 INSULATION MATERIALS

- A. Refer to Part 3 schedule articles for requirements about where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
 - 1. Products:
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K
 - c. "or approved equal"
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factoryapplied FSK jacket. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
 - 1. Products:
 - a. CertainTeed Corp.; Duct Wrap
 - b. Johns Manville; Microlite
 - c. Knauf Insulation; Duct Wrap
 - d. Manson Insulation Inc.; Alley Wrap
 - e. Owens Corning; All-Service Duct Wrap
- H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.
 - 1. Products:
 - a. CertainTeed Corp.; Commercial Board
 - b. Fibrex Insulations Inc.; FBX

15080 - 3 MECHANICAL INSULATION October 17, 2016 Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- c. Johns Manville; 800 Series Spin-Glas
- d. Knauf Insulation; Insulation Board
- e. Manson Insulation Inc.; AK Board
- f. Owens Corning; Fiberglas 700 Series
- I. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products:
 - a. Fibrex Insulations Inc.; Coreplus 1200
 - b. Johns Manville; Micro-Lok
 - c. Knauf Insulation; 1000 Pipe Insulation
 - d. Manson Insulation Inc.; Alley-K
 - e. Owens Corning; Fiberglas Pipe Insulation
 - Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factoryapplied ASJ. Factory-applied jacket requirements are specified in Part 2 "Factory-Applied Jackets" Article.

2.3 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products:
 - a. Insulco, Division of MFS, Inc.; SmoothKote
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote
 - c. "or approved equal"

2.4 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. Products:
 - a. Childers Products, Division of ITW; CP-96
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33
 - c. "or approved equal"

15080 - 4 MECHANICAL INSULATION October 17, 2016

- C. Flexible Elastomeric: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products:
 - a. Aeroflex USA Inc.; Aeroseal
 - b. Armacell LCC; 520 Adhesive
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75
 - d. RBX Corporation; Rubatex Contact Adhesive
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products:
 - a. Childers Products, Division of ITW; CP-82
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80
 - d. Marathon Industries, Inc.; 225
 - e. Mon-Eco Industries, Inc.; 22-25

2.5 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates: Comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products:
 - a. Childers Products, Division of ITW; CP-35
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90
 - c. ITW TACC, Division of Illinois Tool Works; CB-50
 - d. Marathon Industries, Inc.; 590
 - e. Mon-Eco Industries, Inc.; 55-40
 - f. Vimasco Corporation; 749
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.
- 2.6 SEALANTS
 - A. Joint Sealants:

- 1. Joint Sealants for Cellular-Glass Products:
 - a. Childers Products, Division of ITW; CP-76
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45
 - c. Marathon Industries, Inc.; 405
 - d. Mon-Eco Industries, Inc.; 44-05
 - e. Pittsburgh Corning Corporation; Pittseal 444
 - f. Vimasco Corporation; 750
- 2. Joint Sealants for Polystyrene Products:
 - a. Childers Products, Division of ITW; CP-70
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45/30-46
 - c. Marathon Industries, Inc.; 405
 - d. Mon-Eco Industries, Inc.; 44-05
 - e. Vimasco Corporation; 750
- 3. Materials shall be compatible with insulation materials, jackets, and substrates.
- 4. Permanently flexible, elastomeric sealant.
- 5. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
- 6. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products:
 - a. Childers Products, Division of ITW; CP-76-8
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44
 - c. Marathon Industries, Inc.; 405
 - d. Mon-Eco Industries, Inc.; 44-05
 - e. Vimasco Corporation; 750
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products:
 - a. Childers Products, Division of ITW; CP-76.
 - b. "or approved equal"
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: White.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Sheet and roll stock ready for shop or field sizing
 - 3. Finish and thickness are indicated in field-applied jacket schedules.
 - 4. Moisture Barrier for Indoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 - 5. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 - 6. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

15080 - 7 MECHANICAL INSULATION October 17, 2016

- D. Self-Adhesive Outdoor Jacket: 60-mil- (1.5-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 - 1. Products:
 - a. Polyguard; Alumaguard 60 or approved equal.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136 and UL listed.
 - 1. Width: 3 inches (75 mm).
 - 2. Thickness: 11.5 mils (0.29 mm)
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width
 - 4. Elongation: 2 percent
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136 and UL listed.
 - 1. Width: 3 inches (75 mm)
 - 2. Thickness: 6.5 mils (0.16 mm)
 - 3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width
 - 4. Elongation: 2 percent
 - 5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape
- C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive and UL listed.
 - 1. Width: 2 inches (50 mm)
 - 2. Thickness: 3.7 mils (0.093 mm)
 - 3. Adhesion: 100 ounces force/inch (1.1 N/mm) in width
 - 4. Elongation: 5 percent
 - 5. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing seal.
- B. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

15080 - 8 MECHANICAL INSULATION October 17, 2016

- 1. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
- 2. Spindle: Aluminum, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
- 3. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- C. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - 1. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.
 - 2. Spindle: Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).
 - 3. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
- D. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - 1. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - 2. Spindle: Aluminum, fully annealed, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - 3. Adhesive-backed base with a peel-off protective cover.
- E. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41mm-) thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - 1. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- F. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
- G. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- H. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

2.11 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 COMMON INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation with tightly butted joints free of voids and gaps. Vapor barriers shall be continuous. Before installing jacket material, install vapor-barrier system.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.

- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. Hangers and Anchors: Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

- P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- Q. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices
 - 2. Testing agency labels and stamps
 - 3. Nameplates and data plates
 - 4. Manholes
 - 5. Handholes
 - 6. Cleanouts

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
- F. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Pipe: Install insulation continuously through floor penetrations.
 - 3. Seal penetrations through fire-rated assemblies.

3.4 DUCT AND PLENUM INSULATION INSTALLATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-

inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
- b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
- 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (50 mm) o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.5 PIPE INSULATION INSTALLATION

- A. Requirements in this Article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Secure single-layer insulation with bands at 12-inch (300-mm) intervals and tighten bands without deforming insulation materials.
- C. Install 2-layer insulation with joints tightly butted and staggered at least 3 inches (75 mm). Secure inner layer with 0.062-inch (1.6-mm) wire spaced at 12-inch (300-mm) intervals. Secure outer layer with bands at 12-inch (300-mm) intervals.
- D. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
- E. Cover segmented insulated surfaces with a layer of insulating cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- F. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

15080 - 15 MECHANICAL INSULATION October 17, 2016

- G. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed insulation to pipe with wire or bands and tighten bands without deforming insulation materials. Orient longitudinal joints between half sections in 3 and 9 o'clock positions on the pipe.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient services, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets with vapor barriers, do not staple longitudinal tabs but secure tabs with additional adhesive or tape as recommended by insulation material manufacturer and seal with vapor-barrier mastic.
 - 5. For insulation with factory-applied jackets on below ambient services, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- H. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of same insulation material and thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
 - 5. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- I. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 2. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- J. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
- 5. Install insulation to flanges as specified for flange insulation application.
- K. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- L. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- M. Special Installation Requirements for Flexible Elastomeric and Polyolefin Insulation:
 - 1. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
 - 2. Insulation Installation on Pipe Flanges:
 - a. Install pipe insulation to outer diameter of pipe flange.
 - b. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - c. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - d. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
 - 3. Insulation Installation on Pipe Fittings and Elbows:
 - a. Install mitered sections of pipe insulation.
 - b. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where metal jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-retarder mastic.

3.7 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket as specified in Division 9 painting Sections.
 - 1. Apply two finish coats of interior, flat, latex-emulsion size over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

15080 - 18 MECHANICAL INSULATION October 17, 2016

- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by COUNTY. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum jackets.

3.8 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Inspect ductwork, randomly selected by COUNTY or Consultant, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by COUNTY and Consultant, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by COUNTY and Consultant, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe,
- B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. Remove defective Work.
- C. Install new insulation and jackets to replace insulation and jackets removed for inspection. Repeat inspection procedures after new materials are installed.

3.9 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, supply, return and outdoor air
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Metal ducts exposed within an air conditioned storage space
 - 4. Factory-insulated flexible ducts
 - 5. Factory-insulated plenums and casings

- 6. Flexible connectors
- 7. Vibration-control devices
- 8. Factory-insulated access panels and doors

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply, Return-Air and outside air Duct and Plenum Insulation (non mechanical room): Mineral-fiber blanket, 2.2 inches 0.75-lb/cu. Ft (R=6 minimum) nominal density.
- B. Supply, Return-Air Duct and Plenum Insulation (mechanical room): Mineral-fiber board, 3.0 inches 0.75-lb/cu. Ft (R=6 minimum) nominal density.

3.11 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber board, 3 inches thick and 0.75-lb/cu. ft. (R=8 minimum) nominal density. Provide Self-Adhesive Outdoor Jacketing over duct.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Fire-suppression piping
 - 2. Drainage piping located in crawl spaces
 - 3. Below-grade piping
 - 4. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR & OUTDOOR PIPING INSULATION SCHEDULE

- A. Condensate drainage piping: Flexible elastomeric- 1 inch thick.
- B. Indoor Refrigerant Piping: Flexible elastomeric 1 inch thick (Provide factory recommended insulation thickness if different).
- C. Outdoor Refrigerant Piping: Flexible elastomeric, 2 inches thick (Provide factory recommended insulation thickness if different).

3.14 FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Supply-Return-Outdoor Duct exposed outdoors.
 - 1. Self-Adhesive Outdoor Jacket
- D. Condensate, Refrigerant piping exposed outdoors or indoors.
 - 1. Aluminum Jacket

END OF SECTION 15080

15080 - 21 MECHANICAL INSULATION October 17, 2016 SECTION 15113 - METAL DUCTS

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. This Section includes metal, rectangular ducts and fittings for supply, return, outside, and exhaust air-distribution systems in pressure classes from minus 2- to plus 10-inch wg (minus 500 to plus 2500 Pa).
 - B. This section also includes Fabric Air Dispersion products.
 - C. See Division 15 Section "Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.2 SUBMITTALS

- A. Shop Drawings: Show fabrication and installation details for metal ducts.
 - 1. Penetrations through fire-rated and other partitions.
 - 2. Duct accessories, including access doors and panels.

1.3 QUALITY ASSURANCE

- A. NFPA Compliance:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

1.4 DELIVERY, STORAGE AND HANDLING:

- 1. Protect fabric air dispersion systems from damage during shipping, storage and handling.
- 2. Where possible, store products inside and protect from weather. Where necessary to store outside, store above grade and enclose with a vented waterproof wrapping.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 (Z275) coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.
- D. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.3 SEALANT MATERIALS

- A. Joint and Seam Tape: 2 inches (50 mm) wide; glass-fiber-reinforced fabric.
- B. Tape Sealing System: Woven-fiber tape impregnated with gypsum mineral compound and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
- C. Water-Based Joint and Seam Sealant: Flexible, adhesive sealant, resistant to UV light when cured, UL 723 listed, and complying with NFPA requirements for Class 1 ducts.
- D. Solvent-Based Joint and Seam Sealant: One-part, nonsag, solvent-release-curing, polymerized butyl sealant formulated with a minimum of 75 percent solids.
- E. Flanged Joint Mastic: One-part, acid-curing, silicone, elastomeric joint sealant complying with ASTM C 920, Type S, Grade NS, Class 25, Use O.

F. Flange Gaskets: Butyl rubber or EPDM polymer with polyisobutylene plasticizer.

2.4 HANGERS AND SUPPORTS

- A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
 - 2. Exception: Do not use powder-actuated concrete fasteners for lightweightaggregate concretes or for slabs less than 4 inches (100 mm) thick.
- B. Hanger Materials: Galvanized sheet steel or threaded steel rod.
 - 1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 - 2. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for steel sheet width and thickness and for steel rod diameters.
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- D. Trapeze and Riser Supports: Galvanized-steel shapes and plates complying with ASTM A 36/A 36M.

2.5 RECTANGULAR DUCT FABRICATION

- A. Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and complying with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 - 1. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure class.
 - 2. Deflection: Duct systems shall not exceed deflection limits according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- B. Transverse Joints: Prefabricated slide-on joints and components constructed using manufacturer's guidelines for material thickness, reinforcement size and spacing, and joint reinforcement.
 - 1. Manufacturers:
 - a. Ductmate Industries, Inc
 - b. Nexus Inc
 - c. Ward Industries, Inc

- C. Formed-On Flanges: Construct according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," Figure 1-4, using corner, bolt, cleat, and gasket details.
 - 1. Manufacturers:
 - a. Ductmate Industries, Inc or approved equal.
 - 2. Duct Size: Maximum 30 inches (750 mm) wide and up to 2-inch wg (500-Pa) pressure class.
 - 3. Longitudinal Seams: Pittsburgh lock sealed with noncuring polymer sealant.

PART 3 - EXECUTION

- 3.1 DUCT APPLICATIONS
 - A. All Ducts.
 - 1. Supply/Outdoor Ducts: 3-inch wg (500 Pa) METAL
 - 2. Return Ducts (Negative Pressure): 1-inch wg (250 Pa) METAL

3.2 DUCT INSTALLATION

- A. Construct and install ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
- B. Install ducts with fewest possible joints.
- C. Install fabricated fittings for changes in directions, size, and shape and for connections.
- D. Install couplings tight to duct wall surface with a minimum of projections into duct. Secure couplings with sheet metal screws. Install screws at intervals of 12 inches (300 mm), with a minimum of 3 screws in each coupling.
- E. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.
- F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- G. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.
- H. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.
- I. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.

- J. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.
- K. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.
- L. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches (38 mm).
- M. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers, sleeves, and firestopping sealant. Fire and smoke dampers are specified in Division 15 Section "Duct Accessories."
- N. Protect duct interiors from the elements and foreign materials until building is enclosed. Follow SMACNA's "Duct Cleanliness for New Construction.

3.3 SEAM AND JOINT SEALING

- A. Seal duct seams and joints according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for duct pressure class indicated.
 - 1. For pressure classes lower than 2-inch wg (500 Pa), seal transverse joints.
- B. Seal ducts before external insulation is applied.

3.4 HANGING AND SUPPORTING

- A. Support horizontal ducts within 24 inches (600 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.
- B. Support vertical ducts at maximum intervals of 16 feet (5 m) and at each floor.
- C. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.
- D. Install concrete inserts before placing concrete.
- E. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 1. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors according to Division 15 Section "Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

END OF SECTION 15113

SECTION 15140 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes domestic water piping inside the building.

1.2 SUBMITTALS

A. Field quality-control test reports.

1.3 QUALITY ASSURANCE

- A. Comply with NSF 14, "Plastics Piping System Components and Related Materials," for plastic, potable domestic water piping and components.
- B. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9," for potable domestic water piping and components.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Refer to Part 3 "Pipe and Fitting Applications" Article for applications of pipe, tube, fitting, and joining materials.
- B. Transition Couplings for Aboveground Pressure Piping: Coupling or other manufactured fitting the same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- C. CPVC Schedule 40 Pipe: ASTM F 441/F 441M.
 - 1. CPVC Schedule 40 Fittings: ASTM F 438, socket type.

2.2 VALVES

- A. Bronze and cast-iron, general-duty valves are specified in Division 15 Section "Valves."
- B. Balancing and drain valves are specified in Division 15 Section "Plumbing Specialties."
- C. **CPVC** Union Ball Valves: MSS SP-122, with full-port ball, **socket or threaded** detachable end connectors, and pressure rating not less than **125** psig at **73** deg F.

- D. **CPVC** Non-Union Ball Valves: MSS SP-122, with full- or reduced-port ball, socket or threaded ends, and pressure rating not less than **125** psig.
- E. **CPVC** Check Valves: Swing or ball-check design and pressure rating not less than 150 psig at 73 deg F.

PART 3 - EXECUTION

3.1 EXCAVATION

A. Excavating, trenching, and backfilling are specified in Division 2 Section "Earthwork."

3.2 PIPE AND FITTING APPLICATIONS

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below, unless otherwise indicated.
- B. Flanges may be used on aboveground piping, unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- Under-Building-Slab, Domestic Water Piping on House Side of Water Meter, NPS 4 (DN 100) and Smaller: [Soft] [Hard] copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
- E. Aboveground Domestic Water Piping: Use[**any of**] the following piping materials for each size range:
 - 1. NPS 2 or smaller: CPVC, Schedule 40 pipe; CPVC, Schedule 40 socket fittings; and solvent-cemented joints.

3.3 VALVE APPLICATIONS

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use bronze ball valves for piping NPS 2 (DN 50) and smaller.
 - 2. Hot-Water-Piping, Balancing Duty: Calibrated Memory-stop balancing valves.
 - 3. Drain Duty: Hose-end drain valves.
- B. **CPVC** ball, butterfly, and check valves may be used in matching piping materials.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping.

- 1. Install hose-end drain valves at low points in water mains, risers, and branches.
- 2. Install stop-and-waste drain valves where indicated.
- D. Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow.

3.4 PIPING INSTALLATION

- A. Basic piping installation requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- B. Install domestic water piping level and plumb.
- C. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

3.5 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- B. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-freealloy solder; and ASTM B 828 procedure, unless otherwise indicated.
- C. Extruded-Tee Connections: Form tee in copper tube according to ASTM F 2014. Use tool designed for copper tube; drill pilot hole, form collar for outlet, dimple tube to form seating stop, and braze branch tube into collar.

3.6 ROUGHING-IN FOR WATER METERS

- A. Rough-in domestic water piping for water meter installation according to utility company's requirements.
- B. Water meters will be furnished and installed by utility.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Pipe hanger and support devices are specified in Division 15 Section "Hangers and Supports." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.

- c. Longer Than 100 Feet: MSS Type 49, spring cushion rolls, if indicated.
- 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Install supports according to Division 15 Section "Hangers and Supports."
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced 1 size for double-rod hangers, to a minimum of 3/8 inch.
- E. Install hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 - 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
- F. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.
- G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.8 CONNECTIONS

- A. Install piping adjacent to equipment and machines to allow service and maintenance.
- B. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- C. Connect domestic water piping to water-service piping with shutoff valve, and extend and connect to the following:
 - 1. Water Heaters: Cold-water supply and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 2. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Refer to Division 15 Section "Plumbing Fixtures."
 - 3. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection.

3.9 FIELD QUALITY CONTROL

- A. Inspect domestic water piping as follows:
 - 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.

- 2. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- 3. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- B. Test domestic water piping as follows:
 - 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 4. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping using purging and disinfecting procedures prescribed by authorities having jurisdiction.
- B. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities.

END OF SECTION 15140

15140 - 5 DOMESTIC WATER PIPING October 17, 2016

SECTION 15145 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Balancing valves.
 - 2. Strainers.
 - 3. Drain valves.
 - 4. Water hammer arresters.
 - 5. Trap-seal primer valves.
- B. See Division 15 Section "Domestic Water Piping" for water meters.
- C. See Division 15 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.
- D. See Division 15 Section "Water Filtration Equipment" for water filters in domestic water piping.

1.2 PERFORMANCE REQUIREMENTS

- A. Minimum Working Pressure for Domestic Water Piping Specialties: **125 psig**, unless otherwise indicated.
- 1.3 SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Field quality-control test reports.
 - C. Operation and maintenance data.
- 1.4 QUALITY ASSURANCE
 - A. NSF Compliance:
 - 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
 - 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

15145 - 1 DOMESTIC WATER PIPING SPECIALTIES October 17, 2016

PART 2 - PRODUCTS

- 2.1 BALANCING VALVES
 - A. Memory-Stop Balancing Valves
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 3. Pressure Rating: 400-psig minimum CWP.
 - 4. Size: NPS 2 or smaller.
 - 5. Body: Copper alloy.
 - 6. Port: Standard or full port.
 - 7. Ball: Chrome-plated brass.
 - 8. Seats and Seals: Replaceable.
 - 9. End Connections: Solder joint or threaded.
 - 10. Handle: Vinyl-covered steel with memory-setting device.

2.2 STRAINERS FOR DOMESTIC WATER PIPING

- A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum, unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller.
 - 3. End Connections: Threaded for NPS 2 and smaller.
 - 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 - 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.033 inch.
 - 6. Drain: **Pipe plug**.

2.3 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.

15145 - 2 DOMESTIC WATER PIPING SPECIALTIES October 17, 2016

- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.4 WATER HAMMER ARRESTERS

- A. Water Hammer Arresters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIFAB, Inc.
 - b. PPP Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASSE 1010 or PDI-WH 201.
 - 3. Type: Copper tube with piston.
 - 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.5 TRAP-SEAL PRIMER VALVES

- A. Supply-Type, Trap-Seal Primer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIFAB, Inc.
 - b. PPP Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
 - 2. Standard: ASSE 1018.
 - 3. Pressure Rating: 125 psig minimum.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 - 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 - 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

15145 - 3 DOMESTIC WATER PIPING SPECIALTIES October 17, 2016

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 15 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install Y-pattern strainers for water on supply side of each **solenoid valve, and pump**.
- D. Install water hammer arresters in water piping according to PDI-WH 201.
- E. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- F. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping and specialties.
- G. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 15 Section "Mechanical Identification."

3.2 FIELD QUALITY CONTROL

A. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.3 ADJUSTING

A. Set field-adjustable flow of balancing valves.

END OF SECTION 15145

SECTION 15150 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following soil and waste, sanitary drainage and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.
- B. See Division 15 Section "Chemical-Waste Piping" for chemical-waste and vent piping systems.

1.2 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: **10-foot head of water**.

1.3 SUBMITTALS

A. Field quality-control inspection and test reports.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping; and "NSF-drain" for plastic drain piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Hub-and-Spigot, Cast-Iron Pipe and Fittings: ASTM A 74, Service class.
 - 1. Gaskets: ASTM C 564, rubber.
- B. Hubless Cast-Iron Pipe and Fittings: ASTM A 888 or CISPI 301.

- 1. Sovent Stack Fittings: ASME B16.45 or ASSE 1043, hubless, cast-iron aerator and deaerator drainage fittings.
- 2. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - a. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.
 - b. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainless-steel bands and tightening devices, and ASTM C 564, rubber sleeve.
- C. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
 - 1. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought-copper, solder-joint fittings.
- D. Solid-Wall PVC Pipe: ASTM D 2665, solid-wall drain, waste, and vent.
 - 1. PVC Socket Fittings: ASTM D 2665, socket type, made to ASTM D 3311, drain, waste, and vent patterns.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Special pipe fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated.
- B. Flanges and unions may be used on aboveground pressure piping, unless otherwise indicated.
- C. Aboveground, soil, waste, and vent piping **NPS 4 and smaller** shall be the following:
 - 1. Hubless cast-iron soil pipe and fittings; **standard**, shielded, stainless-steel couplings; and hubless-coupling joints.
- D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 - 1. **Solid-wall** PVC pipe, PVC socket fittings, and solvent-cemented joints.
- E. Condensate Drain **NPS 4 and smaller** shall be the following:
 - 1. Copper DWV tube, copper drainage fittings, and soldered joints.

3.2 PIPING INSTALLATION

- A. Basic piping installation requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- B. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
- C. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- D. Install wall penetration system at each service pipe penetration through foundation wall. Make installation watertight. Wall penetration systems are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- E. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- F. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- G. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- H. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- I. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.
- J. Install PVC soil and waste drainage and vent piping according to ASTM D 2665.
- K. Install underground **PVC** soil and waste drainage piping according to ASTM D 2321.

L. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- B. Cast-Iron, Soil-Piping Joints: Make joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Gasketed Joints: Make with rubber gasket matching class of pipe and fittings.
 - 2. Hubless Joints: Make with rubber gasket and sleeve or clamp.
- C. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 15 Section "Mechanical Vibration and Seismic Controls."
- B. Pipe hangers and supports are specified in Division 15 Section "Hangers and Supports." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 15 Section "Hangers and Supports."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.

- 4. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet (4.5 m).
- H. Install hangers for **PVC** piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
- I. Install supports for vertical **PVC** piping every 48 inches.
- J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
- K. Install supports for vertical copper tubing every 10 feet.
- L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- B. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Equipment: Connect drainage piping as indicated. Provide shutoff valve, if indicated, and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

3.6 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.

- 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction.
 - 1. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 2. Prepare reports for tests and required corrective action.

3.7 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.8 **PROTECTION**

A. Exposed **PVC** Piping: Protect plumbing vents exposed to sunlight with two coats of waterbased latex paint.

END OF SECTION 15150

SECTION 15155 - DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following drainage piping specialties:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Miscellaneous drainage piping specialties.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Cast-Iron Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Watts Drainage Products Inc.
 - e. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 3. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 4. Size: Same as connected drainage piping
 - 5. Closure: **plastic** plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

- B. Cast-Iron Wall Cleanouts
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - b. Watts Drainage Products Inc.
 - c. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 3. Standard: ASME A112.36.2M. Include wall access.
 - 4. Size: Same as connected drainage piping.
 - 5. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 6. Closure: **Countersunk** plug.
 - 7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 8. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.

2.2 FLOOR DRAINS

- A. Cast-Iron Floor Drains:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - b. Watts Drainage Products Inc.
 - c. Zurn Plumbing Products Group.
 - 3. Standard: ASME A112.6.3
 - 4. Body Material: **Gray iron**.
 - 5. Outlet: Bottom.
 - 6. Coating on Interior and Exposed Exterior Surfaces: Acid-resistant enamel.
 - 7. Top or Strainer Material: **Bronze**.
 - 8. Top of Body and Strainer Finish: Nickel bronze.
 - 9. Top Shape: **Square**.
 - 10. Inlet Fitting: Gray iron, with threaded inlet and threaded or spigot outlet, and trapseal primer valve connection.

2.3 MISCELLANEOUS DRAINAGE PIPING SPECIALTIES

- A. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.

2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 15 Section "Basic Mechanical Materials and Methods" for piping joining materials, joint construction, and basic installation requirements.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1inch total depression.
 - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.

G. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 **PROTECTION**

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 15155

SECTION 15194 - FUEL GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes fuel gas piping within the building. Products include the following:
 - 1. Pipe, tube, fittings, and joining materials.
 - 2. Protective pipe and fitting coating.
 - 3. Piping specialties.
 - 4. Specialty valves.
 - 5. Service meters.
 - 6. Pressure regulators.

1.2 PROJECT CONDITIONS

A. Gas System Pressure: One pressure range. **0.5 psig or less**

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.
- C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NFPA Standard: Comply with NFPA 54, "National Fuel Gas Code."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

15194 - 1 FUEL GAS PIPING October 17, 2016 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 PIPING MATERIALS

- A. Steel Pipe: ASTM A 53/A 53M; Type E or S; Grade B; black. Wall thickness of wrought-steel pipe shall comply with ASME B36.10M.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern, with threaded ends according to ASME B1.20.1.
 - 2. Steel Threaded Fittings: ASME B16.11, forged steel with threaded ends according to ASME B1.20.1.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends according to ASME B1.20.1.
 - 4. Cast-Iron Flanges and Flanged Fittings: ASME B16.1, Class 125.
 - 5. Joint Compound and Tape: Suitable for natural gas.

2.3 PROTECTIVE COATING

- A. Furnish pipe and fittings with factory-applied, corrosion-resistant polyethylene coating for use in contact with materials that may corrode the pipe.
- B. All exposed piping shall be painted yellow.

2.4 PIPING SPECIALTIES

A. Quick-Disconnect Devices: ANSI Z21.41, convenience outlets and matching plug connector.

2.5 SPECIALTY VALVES

- A. Valve End Connections: Threaded, according to ASME B1.20.1.
- B. Appliance Connector Valves: ANSI Z21.15 and CSA International listed.
- C. Gas Stops: Bronze body with AGA stamp, plug type with bronze plug and flat or square head, ball type with chrome-plated brass ball and lever handle, or butterfly valve with stainless-steel disc and fluorocarbon elastomer seal and lever handle; 2-psig minimum pressure rating.
- D. Gas Valves: ASME B16.33 and CSA International-listed bronze body and 125-psig pressure rating.

PART 3 - EXECUTION

3.1 PREPARATION

A. Close equipment shutoff valves before turning off fuel gas to premises or section of piping. Perform leakage test as specified in "Field Quality Control" Article to determine that all equipment is turned off in affected piping section.

3.2 PIPING APPLICATIONS

- A. Use flanges, unions, transition, and special fittings in applications below, unless otherwise indicated.
- B. Fuel Gas Piping, 2 psig (13.8 kPa) or Less:
 - 1. NPS 3/4 and smaller: Steel pipe, malleable-iron threaded fittings, and threaded joints

3.3 VALVE APPLICATIONS

- A. Appliance Shutoff Valves for Pressure 0.5 psig or Less: Appliance connector valve or gas stop.
- B. Appliance Shutoff Valves for Pressure 0.5 to 2 psig: Gas stop or gas valve.
- C. Piping Line Valves, NPS 2 and Smaller: Gas valve.
- D. Valves at Service Meter, NPS 2 and Smaller: Gas valve.

3.4 INSTALLATION

- A. Basic piping installation requirements and piping joint construction are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- B. Install pressure gage **downstream** from each service pressure regulator. Pressure gages are specified in Division 15 Section "Meters and Gages."
- C. Concealed Locations: Except as specified below, install concealed gas piping in airtight conduit constructed of Schedule 40, seamless, black steel pipe with welded joints. Vent conduit to outside and terminate with screened vent cap.
 - 1. Above-Ceiling Locations: Gas piping may be installed in accessible spaces, subject to approval of authorities having jurisdiction, whether or not such spaces are used as plenums. Do not locate valves above ceilings.
 - 2. In Partitions: Do not install concealed piping in solid partitions. Protect tubing from physical damage when installed inside partitions or hollow walls.

- 3. In Walls: Gas piping with welded joints and protective wrapping specified in Part 2 "Protective Coating" Article may be installed in masonry walls, subject to approval of authorities having jurisdiction.
- 4. Prohibited Locations: Do not install gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- D. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings unless specifically shown to be exposed to view.
- E. Install fuel gas piping at uniform grade of 0.1 percent slope upward toward risers.
- F. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- G. Connect branch piping from top or side of horizontal piping.
- H. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment, and elsewhere as indicated. Unions are not required on flanged devices.
- I. Install corrugated, stainless-steel tubing system according to manufacturer's written instructions. Include striker plates to protect tubing from puncture where tubing is restrained and cannot move.
- J. Install strainer on inlet of each line pressure regulator and automatic and electrically operated valve.
- K. Install pressure gage **downstream** from each line pressure regulator. Pressure gages are specified in Division 15 Section "Meters and Gages."
- L. Install vent piping for gas pressure regulators and gas trains, extend outside building, and vent to atmosphere. Terminate vents with turned-down, reducing-elbow fittings with corrosion-resistant insect screens in large end.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Pipe hanger and support devices are specified in Division 15 Section "Hangers and Supports."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

A. Install piping adjacent to appliances to allow service and maintenance. Connect piping to appliances using gas with shutoff valves and unions. Install valve upstream from and within 72 inches of each appliance. Install union downstream from valve.

3.7 FIELD QUALITY CONTROL

A. Test, inspect, and purge piping according to NFPA 54 and requirements of authorities having jurisdiction. Repair leaks and defects with new materials and retest system until satisfactory results are obtained.

END OF SECTION 15194

SECTION 15300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.2 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:1. Hot-Gas and Liquid Lines: 325 psig (2241 kPa).

1.3 SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop based on manufacturer's test data.
- B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 - 1. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
- C. Field quality-control test reports.
- D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.5 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

15300 - 1 REFRIGERANT PIPING October 17, 2016 PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Copper Tube: ASTM B 280, Type ACR.
 - B. Wrought-Copper Fittings: ASME B16.22.
 - C. Wrought-Copper Unions: ASME B16.22.
 - D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
 - E. Brazing Filler Metals: AWS A5.8.
 - F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, flexible, tinned-bronze-wire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch (20-mm) misalignment in minimum 7-inch- (180-mm-) long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig (3450 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

2.2 VALVES AND SPECIALTIES

- A. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.
 - 2. Core: Removable ball-type check valve with stainless-steel spring.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Copper spring.
 - 5. Working Pressure Rating: 500 psig (3450 kPa).
- B. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig (3450 kPa).
 - 7. Maximum Operating Temperature: 240 deg F (116 deg C).
- C. Replaceable-Core Filter Dryers: Comply with ARI 730.
Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
- 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
- 3. Desiccant Media: Activated alumina.
- 4. Designed for reverse flow (for heat-pump applications).
- 5. End Connections: Socket.
- 6. Access Ports: NPS 1/4 (DN 8) connections at entering and leaving sides for pressure differential measurement.
- 7. Maximum Pressure Loss: 2 psig (14 kPa)]
- 8. Rated Flow: 15
- 9. Working Pressure Rating: 500 psig (3450 kPa).
- 10. Maximum Operating Temperature: 240 deg F (116 deg C).
- D. Liquid Accumulators: Comply with ARI 495.
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. End Connections: Socket or threaded.
 - 3. Working Pressure Rating: 500 psig (3450 kPa).
 - 4. Maximum Operating Temperature: 275 deg F (135 deg C).

2.3 REFRIGERANTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. R-410A

PART 3 - EXECUTION

- 3.1 PIPING APPLICATIONS
 - A. Hot-Gas and Liquid Lines: Copper, Type ACR, drawn-temper tubing and wroughtcopper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

- A. Install service valves for gage taps at strainers if they are not an integral part of strainers.
- B. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- C. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping adjacent to machines to allow service and maintenance.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Division 08 Section "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- L. Install refrigerant piping in protective conduit where installed belowground.
- M. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- N. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- O. Install pipe sleeves at penetrations in exterior walls and floor assemblies.
- P. Seal penetrations through fire and smoke barriers.

- Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- R. Install sleeves through floors, walls, or ceilings, sized to permit installation of full-thickness insulation.
- S. Seal pipe penetrations through exterior walls according to Division 07 Section "Joint Sealants" for materials and methods.
- 3.4 PIPE JOINT CONSTRUCTION
 - A. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."
 - B. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet (6 m) long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).

- 4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
- 5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
- 6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
- 7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
- 8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
- 9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
- D. Support multifloor vertical runs at least at each floor.
- 3.6 FIELD QUALITY CONTROL
 - A. Perform tests and inspections and prepare test reports.
 - B. Tests and Inspections:
 - 1. Comply with ASME B31.5, Chapter VI.
 - 2. Test refrigerant piping and specialties. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 - 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using manufacturer approved guidelines.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

- C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Open shutoff valves in condenser water circuit.
 - 2. Verify that compressor oil level is correct.
 - 3. Open compressor suction and discharge valves.
 - 4. Open refrigerant valves except bypass valves that are used for other purposes.
 - 5. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 15300

15300 - 7 REFRIGERANT PIPING October 17, 2016 SECTION 15301 - DUCT ACCESSORIES`

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Volume dampers
 - 2. Turning vanes
 - 3. Duct-mounting access doors
 - 4. Flexible connectors
 - 5. Flexible ducts
 - 6. Duct accessory hardware

1.2 SUBMITTALS

- A. Product Data: For the following:
 - 1. Volume dampers
 - 2. Turning vanes
 - 3. Duct-mounting access doors
 - 4. Flexible connectors
 - 5. Flexible ducts

1.3 QUALITY ASSURANCE

A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

15301 - 1 DUCT ACCESSORIES October 17, 2016

2.2 SHEET METAL MATERIALS

- A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.
- B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 (Z275) coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. Stainless Steel: ASTM A 480/A 480M.
- D. Aluminum Sheets: ASTM B 209 (ASTM B 209M), alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- E. Extruded Aluminum: ASTM B 221 (ASTM B 221M), alloy 6063, temper T6.
- F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).
- 2.3 VOLUME DAMPERS
 - A. Manufacturers:
 - 1. Air Balance, Inc
 - 2. American Warming and Ventilating
 - 3. Flexmaster U.S.A., Inc
 - 4. McGill AirFlow Corporation
 - 5. METALAIRE, Inc
 - 6. Nailor Industries Inc
 - 7. Penn Ventilation Company, Inc
 - 8. Ruskin Company
 - 9. Vent Products Company, Inc
 - B. General Description: Factory fabricated, with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
 - C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating and suitable for horizontal or vertical applications.

15301 - 2 DUCT ACCESSORIES October 17, 2016

- 1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 0.064 inch (1.62 mm) thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls and flangeless frames where indicated for installing in ducts.
- 2. Roll-Formed Steel Blades: 0.064-inch- (1.62-mm-) thick, galvanized sheet steel.
- 3. Blade Axles: Galvanized steel.
- 4. Bearings: [Oil-impregnated bronze] [Molded synthetic] [Stainless-steel sleeve].
- 5. Tie Bars and Brackets: Galvanized steel.
- D. Jackshaft: 1-inch- (25-mm-) diameter, galvanized-steel pipe rotating within pipebearing assembly mounted on supports at each mullion and at each end of multipledamper assemblies.
 - 1. Length and Number of Mountings: Appropriate to connect linkage of each damper in multiple-damper assembly.
- E. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch-(2.4-mm-) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.4 TURNING VANES

- A. Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for vanes and vane runners. Vane runners shall automatically align vanes.
- B. Manufactured Turning Vanes: Fabricate 1-1/2-inch- (38-mm-) wide, [single] [double]vane, curved blades of galvanized sheet steel set 3/4 inch (19 mm) o.c.; support with bars perpendicular to blades set 2 inches (50 mm) o.c.; and set into vane runners suitable for duct mounting.
 - 1. Manufacturers:
 - a. Ductmate Industries, Inc
 - b. Duro Dyne Corp
 - c. METALAIRE, Inc
 - d. Ward Industries, Inc
- C. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.

2.5 DUCT-MOUNTING ACCESS DOORS

- A. General Description: Fabricate doors airtight and suitable for duct pressure class.
- B. Door: Double wall, duct mounting, and rectangular; fabricated of galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class. Include

15301 - 3 DUCT ACCESSORIES October 17, 2016 vision panel where indicated. Include 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.

- 1. Manufacturers:
 - a. American Warming and Ventilating
 - b. CESCO Products
 - c. Ductmate Industries, Inc
 - d. Flexmaster U.S.A., Inc
 - e. Greenheck
 - f. McGill AirFlow Corporation
 - g. Nailor Industries Inc
 - h. Ventfabrics, Inc
 - i. Ward Industries, Inc
- 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
- 3. Provide number of hinges and locks as follows:
 - a. Less Than 12 Inches (300 mm) Square: Secure with two sash locks.
 - b. Up to 18 Inches (450 mm) Square: Two hinges and two sash locks.
 - c. Up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches[with outside and inside handles].
 - d. Sizes 24 by 48 Inches (600 by 1200 mm) and Larger: One additional hinge.
- C. Door: Double wall, duct mounting, and round; fabricated of galvanized sheet metal with insulation fill and 1-inch (25-mm) thickness. Include cam latches.
 - 1. Manufacturers:
 - a. Ductmate Industries, Inc. or approved equal
 - 2. Frame: Galvanized sheet steel, with spin-in notched frame.
- D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.
- E. Insulation: 1-inch- (25-mm-) thick, fibrous-glass or polystyrene-foam board.

2.6 FLEXIBLE CONNECTORS

- A. Manufacturers:
 - 1. Ductmate Industries, Inc
 - 2. Duro Dyne Corp
 - 3. Ventfabrics, Inc
 - 4. Ward Industries, Inc

15301 - 4 DUCT ACCESSORIES October 17, 2016

- B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
- C. Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 - 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

2.7 FLEXIBLE DUCTS

- A. Manufacturers:
 - 1. Flexmaster U.S.A., Inc
 - 2. Hart & Cooley, Inc
 - 3. McGill AirFlow Corporation
- B. Noninsulated-Duct Connectors: UL 181, Class 1, multiple layers of aluminum laminate supported by helically wound, spring-steel wire.
 - 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg250 Pa negative.
 - 2. Maximum Air Velocity: 4000 fpm (20.3 m/s).
 - 3. Temperature Range: Minus 20 to plus 210 deg F (Minus 28 to plus 99 deg C).
- C. Insulated-Duct Connectors: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor barrier film.
 - 1. Pressure Rating: 10-inch wg (2500 Pa) positive and 1.0-inch wg (250 Pa) negative.
 - 2. Maximum Air Velocity: 4000 fpm (20.3 m/s).
 - 3. Temperature Range: Minus 10 to plus 160 deg F (Minus 23 to plus 71 deg C).
- D. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 through 18 inches (75 to 450 mm) to suit duct size.

2.8 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

15301 - 5 DUCT ACCESSORIES October 17, 2016

PART 3 - EXECUTION

3.1 APPLICATION AND INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install volume dampers in ducts with liner; avoid damage to and erosion of duct liner.
- D. Provide balancing dampers at points on supply, return, and exhaust systems where branches lead from larger ducts as required for air balancing. Install at a minimum of two duct widths from branch takeoff.
- E. Provide test holes at fan inlets and outlets and elsewhere as indicated.
- F. Install duct access doors to allow for inspecting, adjusting, and maintaining accessories and terminal units as follows:
 - 1. On both sides of duct coils.
 - 2. Downstream from volume dampers[, turning vanes,] and equipment.
 - 3. Adjacent to fire or smoke dampers, providing access to reset or reinstall fusible links.
 - 4. To interior of ducts for cleaning; before and after each change in direction, at maximum 50-foot (15-m) spacing.
 - 5. On sides of ducts where adequate clearance is available.
- G. Install the following sizes for duct-mounting, rectangular access doors:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body Plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- H. Label access doors according to Division 15 Section "Mechanical Identification."
- I. Install flexible connectors for metal ducts connecting to grilles at all walls penetrating into auditorium area from mechanical rooms. Provide additional wrap insulation over flexible connector.
- J. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators.

- K. For fans developing static pressures of 5-inch wg (1250 Pa) and higher, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- L. Connect terminal units to supply ducts[directly or] with maximum 12-inch (300-mm) lengths of flexible duct. Do not use flexible ducts to change directions.
- M. Connect diffusers or light troffer boots to low pressure ducts with maximum 60-inch (1500-mm) lengths of flexible duct clamped or strapped in place.
- N. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.
- O. Install duct test holes where indicated and required for testing and balancing purposes.

3.2 ADJUSTING

- A. Adjust duct accessories for proper settings.
- B. Adjust fire and smoke dampers for proper action.
- C. Final positioning of manual-volume dampers is specified in Division 15 Section "Testing, Adjusting, and Balancing."

END OF SECTION 15301

15301 - 7 DUCT ACCESSORIES October 17, 2016

SECTION 15410 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Faucets for **lavatories and sinks**.
 - 2. Toilet seats.
 - 3. Protective shielding guards.
 - 4. Fixture supports.
 - 5. Disposers.
 - 6. Water closets.
 - 7. Lavatories.
 - 8. Kitchen sinks.
 - 9. Service sinks.

1.2 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- C. FRP: Fiberglass-reinforced plastic.
- D. PMMA: Polymethyl methacrylate (acrylic) plastic.
- E. PVC: Polyvinyl chloride plastic.
- F. Solid Surface: Nonporous, homogeneous, cast-polymer-plastic material with heat-, impact-, scratch-, and stain-resistance qualities.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for plumbing fixtures for people with disabilities.
- C. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- D. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- F. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 - 1. Enameled, Cast-Iron Fixtures: ASME A112.19.1M.
 - 2. Stainless-Steel Residential Sinks: ASME A112.19.3.
 - 3. Vitreous-China Fixtures: ASME A112.19.2M.
 - 4. Water-Closet, Flush Valve, Tank Trim: ASME A112.19.5.
- G. Comply with the following applicable standards and other requirements specified for **lavatory** and sink faucets:
 - 1. Faucets: ASME A112.18.1.
 - 2. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
 - 3. NSF Potable-Water Materials: NSF 61.
 - 4. Pipe Threads: ASME B1.20.1.
 - 5. Supply Fittings: ASME A112.18.1.
 - 6. Brass Waste Fittings: ASME A112.18.2.

PART 2 - PRODUCTS

2.1 LAVATORY FAUCETS

- A. Lavatory Faucets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:

- a. American Standard Companies, Inc.
- b. Just Manufacturing Company.
- c. Kohler Co.
- d. Moen, Inc.
- e. T & S Brass and Bronze Works, Inc.
- f. Zurn Plumbing Products Group; Commercial Brass Operation.

2.2 SINK FAUCETS

- A. Sink Faucets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Just Manufacturing Company.
 - b. Kohler Co.
 - c. Moen, Inc.
 - d. T & S Brass and Bronze Works, Inc.
 - e. Zurn Plumbing Products Group; Commercial Brass Operation.

2.3 TOILET SEATS

- A. Toilet Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. Bemis Manufacturing Company.
 - c. Centoco Manufacturing Corp.
 - 3. Description: Toilet seat for water-closet-type fixture.
 - a. Material: Molded, solid plastic with antimicrobial agent.
 - b. Class: **Standard commercial**
 - c. Color: White

2.4 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers, <**Insert drawing designation**>:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Plumberex Specialty Products Inc.
 - b. TRUEBRO, Inc.
 - c. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
- 3. Description: Manufactured plastic wraps for covering plumbing fixture **hot- and cold-water supplies** and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.5 FIXTURE SUPPORTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Smith, Jay R. Mfg. Co.
 - 2. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 3. Zurn Plumbing Products Group; Specification Drainage Operation.
- C. Lavatory Supports:
 - 1. Description: Type **II**, **lavatory carrier with concealed arms and tie rod** for wallmounting, lavatory-type fixture. Include steel uprights with feet.
 - 2. Accessible-Fixture Support: Include rectangular steel uprights.

2.6 DISPOSERS

- A. Disposers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. In-Sink-Erator; a div. of Emerson Electric Co.
 - c. Maytag Co.
 - 3. Description: **Continuous**-feed household, food-waste disposer. Include reset button; wall switch; corrosion-resistant chamber with jam-resistant, cutlery- or stainless-steel

grinder or shredder; NPS 1-1/2 outlet; quick-mounting, stainless-steel sink flange; antisplash guard; and combination cover/stopper.

a. Motor: 115-V ac, 1725 rpm, **3/4** hp with overload protection.

2.7 WATER CLOSETS

- A. Water Closets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. Kohler Co.
 - c. Zurn Plumbing Products Group
 - 3. Description: Accessible, floor-mounting, floor-outlet, vitreous-china fixture designed for gravity-type tank operation.
 - 4. Style: **One piece**.
 - a. Bowl Type: **Elongated** with [**iphon-jet** design. Include bolt caps matching fixture.
 - b. Height: Accessible.
 - c. Design Consumption: **1.6 gal./flush**.
 - d. Tank: Gravity type with trim. Include cover.
 - e. Trip Mechanism: Lever-handle actuator.
 - f. Color: White.

2.8 LAVATORIES

- A. Lavatories,:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. Kohler Co.
 - c. Zurn Plumbing Products Group
 - 3. Description: Accessible, wall-mounting, vitreous-china fixture.
 - a. Faucet Hole Punching: Three holes, 2-inch (51-mm) centers.
 - b. Faucet Hole Location: **Top**.

- c. Color: White
- d. Supplies: NPS 3/8 chrome-plated copper with stops.
- e. Drain: Grid with offset waste.
- f. Drain Piping: **NPS 1-1/4** chrome-plated, cast-brass P-trap; thick tubular brass waste to wall; and wall escutcheon.

2.9 KITCHEN SINKS

- A. Kitchen Sinks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Kohler Co.
 - b. Elkay Manufacturing Co.
 - c. Franke Consumer Products, Inc., Kitchen Systems Div.
 - d. Just Manufacturing Company.
 - 3. Description: **Two**-bowl, residential, counter-mounting, **stainless-steel** kitchen sink.
 - a. Supplies: NPS 1/2 chrome-plated copper with stops.
 - b. Drain Piping: NPS 1-1/2 chrome-plated P-trap; and wall escutcheon(s).

2.10 SERVICE SINKS

- A. Service Sinks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. American Standard Companies, Inc.
 - b. Stern Williams
 - c. Zurn Plumbing Products Group; Specification Drainage Operation

PART 3 - EXECUTION

3.1 INSTALLATION

A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.

- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install fixtures level and plumb according to roughing-in drawings.
- G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
- H. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- I. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- J. Install tanks for accessible, tank-type water closets with lever handle mounted on wide side of compartment.
- K. Install toilet seats on water closets.
- L. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- M. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- N. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- O. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- P. Install disposer in outlet of each sink indicated to have disposer. Install switch where indicated or in wall adjacent to sink if location is not indicated.
- Q. Install escutcheons at piping wall and ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding

fittings. Escutcheons are specified in Division 15 Section "Basic Mechanical Materials and Methods."

R. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 7 Section "Joint Sealants."

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

3.3 FIELD QUALITY CONTROL

- A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.

3.4 **PROTECTION**

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 15410

SECTION 15415 - DRINKING FOUNTAINS AND WATER COOLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Type PB, pressure with bubbler, Style W, wall-mounting water coolers.
 - 2. Fixture supports.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"; Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act"; for fixtures for people with disabilities.
- C. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- D. ARI Standard: Comply with ARI's "Directory of Certified Drinking Water Coolers" for style classifications.
- E. ARI Standard: Comply with ARI 1010, "Self-Contained, Mechanically Refrigerated Drinking-Water Coolers," for water coolers and with ARI's "Directory of Certified Drinking Water Coolers" for type and style classifications.
- F. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants" for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant unless otherwise indicated.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

- A. Water Coolers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 3. Basis-of-Design Product: Subject to compliance with requirements, provide **the product indicated on Drawings** or a comparable product by one of the following:
 - a. Elkay Manufacturing Co.
 - b. Halsey Taylor.
 - c. Oasis Corporation.
 - 4. Description: Accessible, ARI 1010, Type PB, pressure with bubbler, Style W, wallmounting water cooler for adult-mounting height.
 - a. Cabinet: Single vinyl-covered steel with stainless-steel top.
 - b. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
 - c. Control: **Push button**
 - d. Supply: NPS 3/8 with ball, gate, or globe valve.
 - e. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
 - f. Drain(s): Grid with NPS 1-1/4 minimum horizontal waste and trap complying with ASME A112.18.1.
 - g. Cooling System: Electric, with hermetically sealed compressor, cooling coil, aircooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistantmetal storage tank, and adjustable thermostat.
 - Capacity: 8 gph of 50 deg F cooled water from 80 deg F inlet water and 90 deg F ambient air temperature.
 - 2) Electrical Characteristics: 120-V ac; single phase; 60 Hz.

2.2 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Co.
 - 2. MIFAB Manufacturing, Inc.
 - 3. Smith, Jay R. Mfg. Co.
 - 4. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 5. Zurn Plumbing Products Group; Specification Drainage Operation.

- B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 - 1. Type I: Hanger-type carrier with two vertical uprights.
 - 2. Supports for Accessible Fixtures: Include rectangular, vertical, steel uprights instead of steel pipe uprights.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.
- B. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view.

3.2 INSTALLATION

- A. Attach wall-mounting fixtures, unless otherwise indicated.
- B. Install fixtures level and plumb.
- C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball valve. Install valves in locations where they can be easily reached for operation.
- D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- E. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 15 Section "Basic Mechanical Materials and Methods."
- F. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Connect fixtures with water supplies, traps, and risers, and with soil, waste, and vent piping. Use size fittings required to match fixtures.

3.4 FIELD QUALITY CONTROL

- A. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
 - 1. Remove and replace malfunctioning units and retest as specified above.

15415 - 3. DRINKING FOUNTAINS AND WATER COOLERS October 17, 2016 2. Report test results in writing.

3.5 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust water cooler temperature settings.

END OF SECTION 15415

SECTION 15486 - FUEL-FIRED WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following fuel-fired water heaters:
 - 1. Commercial, atmospheric, storage, gas water heaters.
 - 2. Commercial, power-burner, storage, gas water heaters.
 - 3. Water heater accessories.

1.2 SUBMITTALS

- A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and maintenance data.
- D. Warranty.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- C. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9" for all components that will be in contact with potable water.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.

- b. Faulty operation of controls.
- c. Deterioration of metals, metal finishes, and other materials beyond normal use.
- 2. Warranty Period(s): From date of Substantial Completion:
 - a. Gas-Fired, Tankless, Domestic-Water Heaters: **Five** years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 GAS-FIRED, TANKLESS, DOMESTIC-WATER HEATERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide Bradford White Corporation; A.O. Smith or comparable product by one of the following:
 - 1. NORITZ America Corp.
 - 2. Rinnai Corporation.
 - 3. A.O. Smith
- B. Standard: ANSI Z21.10.3/CSA 4.3 for gas-fired, instantaneous, domestic-water heaters for indoor application.
- C. Construction: Copper piping or tubing complying with NSF 61 barrier materials for potable water, without storage capacity.
 - 1. Tappings: ASME B1.20.1 pipe thread.
 - 2. Pressure Rating: 150 psig (1035 kPa).
 - 3. Heat Exchanger: Copper tubing.
 - 4. Insulation: Comply with ASHRAE/IESNA 90.1.
 - 5. Jacket: Metal, with painted finish, or plastic.
 - 6. Burner: For use with tankless, domestic-water heaters and natural gas fuel.
 - 7. Automatic Ignition: Automatic, gas ignition.
 - 8. Temperature Control: Adjustable thermostat.
- D. Support: Bracket for wall mounting.
- E. Capacity and Characteristics:
 - 1. Flow Rate: 8.5 gpm 80 deg F temperature rise.

- 2. Temperature Setting: 140 deg F.
- 3. Fuel Gas Input: 120,000 BTUH
- 4. Gas Pressure Regulator:
 - a. Inlet Pressure: 7.0 water column (GAS), 10.0 water column (PROPANE).
- 5. Electrical Characteristics:
 - a. Volts: 120v.
 - b. Phase: Single.
 - c. Hertz: 60.
 - d. Full-Load Amperes: 1.94 AMP.
- 6. Minimum Vent Diameter: 5" (or as allowed by manufacturer).

2.3 SERVICE VALVES, ISOLATION BYPASS VALVE AND PRESSURE RELIEF VALVE

- A. Gas Shutoff Valves: ANSI Z21.15/CGA 9.1, manually operated. Furnish for installation in piping.
- B. Water Heater Mounting Brackets: Water heater manufacturer's factory-fabricated steel bracket for wall mounting and capable of supporting water heater and water.
- C. All pipes, pipe fittings, valves and other components. Including soldering materials must be suitable for potable water systems.
- D. Tankless Water Heater Valves
 - 1. Basis of Design:
 - a. Watts LFTWH
 - b. Webstone Isolator E-X-P
 - 2. Full-port, quarter-turn ball valve with color-coded tee handle and union certified to NSF/ANSI 61.
 - 3. Quarter-turn purge and drain valve with hose connection and tethered brass cap.
 - 4. Integral spring check valve in cold water valves.
 - 5. Minimum 500 WOG rated.
 - 6. Pressure relief valve conforming to ANSI Z21.22 or CSA 4.4 rated for 150 psi. Pressure valve must conform to and installed in accordance to ASME code.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Tankless, Domestic-Water Heater Mounting: Install tankless, domestic-water heaters at least 18 inches above floor on wall bracket.

- 1. Maintain manufacturer's recommended clearances.
- 2. Arrange units so controls and devices that require servicing are accessible.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 5. Anchor domestic-water heaters to substrate.

3.2 CONNECTIONS

A. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.

3.3 FIELD QUALITY CONTROL

- A. Engage a factory-authorized service representative to inspect installation, including connections.
- B. Perform the following field tests and inspections:
 - 1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial water heaters.

END OF SECTION 15486

15486 - 4 FUEL-FIRED WATER HEATERS October 17, 2016

SECTION 15500 - BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings
 - 3. Mechanical sleeve seals
 - 4. Sleeves
 - 5. Escutcheons
 - 6. Grout
 - 7. Equipment installation requirements common to equipment sections.
 - 8. Concrete bases
 - 9. Supports and anchorages

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

> 15500 - 1 MECHANICAL BASIC MATERIAL + METHODS October 17, 2016

- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Mechanical Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

- 2.1 PIPE, TUBE, AND FITTINGS
 - A. Refer to individual Division 15 piping Sections for pipe, tube, and fitting materials and joining methods.
 - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 15 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.

- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Carbon steel Include two for each sealing element.
- D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chromeplated finish.
- C. One-Piece, Cast-Brass Type: With set screw
 - 1. Finish: Polished chrome-plated
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 15 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 7 Section "Through-Penetration Firestop Systems" for materials.
- Q. Verify final equipment locations for roughing-in.

- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- 3.2 PIPING JOINT CONSTRUCTION
 - A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.
 - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
 - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
 - D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
 - E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
 - F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
 - G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
 - H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
- B. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.8 GROUTING

- A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors
- H. Cure placed grout

END OF SECTION 15500
SECTION 15529 - HANGERS & SUPPORTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Steel pipe hangers and supports
 - 2. Trapeze pipe hangers
 - 3. Metal framing systems
 - 4. Thermal-hanger shield inserts
 - 5. Fastener systems
 - 6. Equipment supports
- B. See Division 15 Section(s) "Metal Ducts" and "Nonmetal Ducts for additional duct hangers and supports.

1.2 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports
 - 2. Thermal-hanger shield inserts
 - 3. Powder-actuated fastener systems
- B. Welding certificates

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

15529 - 1 HANGER + SUPPORTS October 17, 2016

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc
 - 2. Bergen-Power Pipe Supports
 - 3. B-Line Systems, Inc.; a division of Cooper Industries
 - 4. Carpenter & Paterson, Inc
 - 5. Empire Industries, Inc
 - 6. ERICO/Michigan Hanger Co
 - 7. Globe Pipe Hanger Products, Inc
 - 8. Grinnell Corp
 - 9. GS Metals Corp
 - 10. National Pipe Hanger Corporation
 - 11. PHD Manufacturing, Inc
 - 12. PHS Industries, Inc
 - 13. Piping Technology & Products, Inc
 - 14. Tolco Inc
- C. Galvanized, Metallic Coatings: Pre-galvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div
 - 3. GS Metals Corp
 - 4. Power-Strut Div.; Tyco International, Ltd
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc
 - 7. Unistrut Corp.; Tyco International, Ltd
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- (690-kPa-) minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc
 - 2. ERICO/Michigan Hanger Co
 - 3. PHS Industries, Inc
 - 4. Pipe Shields, Inc
 - 5. Rilco Manufacturing Company, Inc
 - 6. Value Engineered Products, Inc
- C. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc
 - b. ITW Ramset/Red Head
 - c. Masterset Fastening Systems, Inc
 - d. MKT Fastening, LLČ
 - e. Powers Fasteners
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries
 - b. Empire Industries, Inc
 - c. Hilti, Inc
 - d. ITW Ramset/Red Head
 - e. MKT Fastening, LLC
 - f. Powers Fasteners

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Non-staining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
 - Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.
 - 8. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN 50 to DN 1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).

- Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg)
 - b. Medium (MSS Type 32): 1500 lb (680 kg)
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg)
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
- 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
- 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricates from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.

- 5. Pipes NPS 8 (DN 200) and Larger: Include wood inserts.
- 6. Insert Material: Length at least as long as protective shield.
- 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

15529 - 9 HANGER + SUPPORTS October 17, 2016

- 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 15529

15529 - 10 HANGER + SUPPORTS October 17, 2016 SECTION 15553 - MECHANICAL IDENTIFICATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following mechanical identification materials and their installation:
 - 1. Equipment nameplates
 - 2. Equipment markers
 - 3. Equipment signs
 - 4. Access panel and door markers
 - 5. Pipe markers
 - 6. Duct markers
 - 7. Valve tags

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping.

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

- A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 - 1. Data:
 - a. Manufacturer, product name, model number, and serial number.
 - b. Capacity, operating and power characteristics, and essential data.
 - c. Labels of tested compliances.
 - 2. Location: Accessible and visible.
 - 3. Fasteners: As required to mount on equipment.
- B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.

- 1. Terminology: Match schedules as closely as possible.
- 2. Data:
 - a. Name and plan number
 - b. Equipment service
 - c. Design capacity
 - d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
- 3. Size: 2-1/2 by 4 inches (64 by 100 mm) for control devices, dampers, and valves; 4-1/2 by 6 inches (115 by 150 mm) for equipment.
- C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 - 1. Data: Instructions for operation of equipment and for safety procedures.
 - 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
 - 3. Thickness: [1/16 inch (1.6 mm)] [1/8 inch (3.2 mm)], unless otherwise indicated.
 - 4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.
- D. Access Panel and Door Markers: 1/16-inch- (1.6-mm-) thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch (3.2-mm) center hole for attachment.
 - 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.2 PIPING IDENTIFICATION DEVICES

- A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 - 1. Colors: Comply with ASME A13.1, unless otherwise indicated.
 - 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 - 3. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Full-band pipe markers extending 360 degrees around pipe at each location.
 - 4. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Either fullband or strip-type pipe markers at least three times letter height and of length required for label.
 - 5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.
- B. Pretension Pipe Markers: Precoiled semi rigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.

- C. Shaped Pipe Markers: Preformed semi rigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.
- D. Self-Adhesive Pipe Markers: Plastic with pressure-sensitive, permanent-type, self-adhesive back.
- E. Plastic Tape: Continuously printed, vinyl tape at least 3 mils (0.08 mm) thick with pressure-sensitive, permanent-type, self-adhesive back.
 - 1. Width for Markers on Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): 3/4 inch (19 mm) minimum.
 - 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches (150 mm) or Larger: 1-1/2 inches (38 mm) minimum.

2.3 DUCT IDENTIFICATION DEVICES

A. Duct Markers: Engraved, color-coded laminated plastic. Include direction and quantity of airflow and duct service (such as supply, return, and exhaust). Include contact-type, permanent adhesive.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers, with numbering scheme. Provide 5/32-inch (4-mm) hole for fastener.
 - 1. Material: 0.032-inch- (0.8-mm-) thick brass.
 - 2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 15 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:

- 1. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
- 2. Pumps, compressors, chillers, condensers, and similar motor-driven units.
- 3. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
- 4. Fans, blowers, primary balancing dampers, and mixing boxes.
- 5. Packaged HVAC central-station and zone-type units.
- B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.
 - 1. Letter Size: Minimum 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 - 3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Meters, gages, thermometers, and similar units.
 - c. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - d. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - e. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - f. Fans, blowers, primary balancing dampers, and mixing boxes.
 - g. Packaged HVAC central-station and zone-type units.
 - h. Tanks and pressure vessels.
 - i. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- C. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible.
 - 1. Identify mechanical equipment with equipment markers in the following color codes:
 - a. Green: For cooling equipment and components.
 - b. Yellow: For heating equipment and components.
 - Letter Size: Minimum 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

- 3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
- 4. Include signs for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - c. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - e. Fans, blowers, primary balancing dampers, and mixing boxes.
 - f. Packaged HVAC central-station and zone-type units.
 - g. Tanks and pressure vessels.
 - h. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- D. Install access panel markers with screws on equipment access panels.

3.3 PIPING IDENTIFICATION

- A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.
 - 1. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Pretensioned pipe markers. Use size to ensure a tight fit.
 - 2. Pipes with OD, Including Insulation, Less Than 6 Inches (150 mm): Selfadhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 3/4 inch (19 mm) wide, lapped at least 1-1/2 inches (38 mm) at both ends of pipe marker, and covering full circumference of pipe.
 - 3. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Shaped pipe markers. Use size to match pipe and secure with fasteners.
 - 4. Pipes with OD, Including Insulation, 6 Inches (150 mm) and Larger: Selfadhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches (38 mm) wide, lapped at least 3 inches (75 mm) at both ends of pipe marker, and covering full circumference of pipe.
- B. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.

- 6. Spaced at maximum intervals of 50 feet (15 m) along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced markers.

3.4 DUCT IDENTIFICATION

- A. Install duct markers with permanent adhesive on air ducts in the following color codes:
 - 1. Green: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Blue: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. Letter Size: Minimum 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- B. Locate markers near points where ducts enter into concealed spaces and at maximum intervals of 50 feet (15 m) in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following:
 - 1. Valve-Tag Size and Shape:
 - a. 1-1/2 inches square
 - 2. Valve-Tag Color:
 - a. Yellow
 - 3. Letter Color:
 - a. Black

3.6 ADJUSTING AND CLEANING

- A. Relocate mechanical identification materials and devices that have become visually blocked by other work.
- B. Clean faces of mechanical identification devices and glass frames of valve schedules.

END OF SECTION 15553

SECTION 15593 - TESTING AND BALANCING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-volume air systems
 - b. Variable-air-volume systems
 - 2. HVAC equipment quantitative-performance settings.
 - 3. Existing systems TAB
 - 4. Verifying that automatic control devices are functioning properly.
 - 5. Reporting results of activities and procedures specified in this Section.

1.2 SUBMITTALS

- A. Strategies and Procedures Plan: Within 30days from CONTRACTOR's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- B. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- C. Warranties specified in this Section.

1.3 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.
- B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard forms from NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."

1.4 PROJECT CONDITIONS

- A. Full City Occupancy: CITY will occupy the site and existing building during entire TAB period. Cooperate with CITY during TAB operations to minimize conflicts with CITY's operations.
- B. Partial City Occupancy: CITY may occupy completed areas of building before Substantial Completion. Cooperate with CITY during TAB operations to minimize conflicts with CITY's operations.

1.5 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.6 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
- B. Special Guarantee: Provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

15593 - 2 TESTING AND BALANCING October 17, 2016

- 1. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 1 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- L. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.

- M. Examine strainers for clean screens and proper perforations.
- N. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- O. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- P. Examine system pumps to ensure absence of entrained air in the suction piping.
- Q. Examine equipment for installation and for properly operating safety interlocks and controls.
- R. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and threeway mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- S. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.

- 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fanspeed-control levers, and similar controls and devices, to show final settings.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- D. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling unit components.
- K. Check for proper sealing of air duct system.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
 - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
 - 5. Obtain approval from CITY and CONSULTANT for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
 - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

- 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Electric-Heating Coils: Measure the following data for each coil:
 - 1. Nameplate data
 - 2. Airflow
 - 3. Entering- and leaving-air temperature at full load
 - 4. Voltage and amperage input of each phase at full load and at each incremental stage.
 - 5. Calculated kilowatt at full load
 - 6. Fuse or circuit-breaker rating for overload protection.
- B. Refrigerant Coils: Measure the following data for each coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow
 - 4. Air pressure drop
 - 5. Refrigerant suction pressure and temperature.

3.7 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.8 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- C. Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Check free travel and proper operation of control devices such as damper and valve operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.9 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 to plus 10 percent.
 - 2. Air Outlets and Inlets: 0 to minus 10 percent.

3.10 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.

- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing Consultant.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves
 - 2. Fan curves
 - 3. Manufacturers' test data
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page
 - 2. Name and address of TAB firm
 - 3. Project name
 - 4. Project location
 - 5. CITY's name and address
 - 6. CONSULTANT's name and address
 - 7. CONTRACTOR's name and address
 - 8. Report date
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer, type size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports varies from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates
 - 3. Duct, outlet, and inlet sizes
 - 4. Pipe and valve sizes and locations
 - 5. Terminal units
 - 6. Balancing stations
 - 7. Position of balancing devices

3.11 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION 15593

15593 - 10 TESTING AND BALANCING October 17, 2016

SECTION 15700 – VARIABLE REFRIGERANT VOLUME HEAT RECOVERY SYSTEMS

Part 1 – GENERAL

VARIABLE REFRIGERANT VOLUME (VRV IV) AIR CONDITIONING SPECIFICATION – Three Pipe Heat Recovery

1.1 SYSTEM DESCRIPTION

The variable capacity, heat recovery air conditioning system shall be a Daikin Variable Refrigerant Volume Series (heat and cool model) split system as specified. The system shall consist of multiple evaporators, branch selector boxes, REFNET[™] joints and headers, a three pipe refrigeration distribution system using PID control and Daikin VRV[®] condenser unit. The condenser shall be a direct expansion (DX), air-cooled heat recovery, multi-zone air-conditioning system with variable speed inverter driven compressors using R-410A refrigerant. The condensing unit may connect an indoor evaporator capacity up to 200% of the condensing unit capacity. All zones are each capable of operating separately with individual temperature control. A dedicated hot gas pipe shall be required to ensure optimum heating operation performance. Two-pipe, heat recovery systems utilizing a lower temperature mixed liquid/gas refrigerant to perform heat recovery are not acceptable due to reduced heating capabilities.

The Daikin condensing unit shall be interconnected to indoor unit models FXFQ, FXHQ, FXMQ, FXLQ, FXNQ, FXTQ, FXDQ, FXZQ, FXAQ, FXMQ_MF and FXUQ and shall range in capacity from 7,500 Btu/h to 96,000 Btu/h in accordance with Daikin's engineering data book detailing each available indoor unit. The indoor units shall be connected to the condensing unit utilizing Daikin's REFNET[™] specified piping joints and headers to ensure correct refrigerant flow and balancing. T style joints are not acceptable for a variable refrigerant system.

Operation of the system shall permit either individual cooling or heating of each indoor unit simultaneously or all of the indoor units associated with each branch of the cool/heat selector box (BSQ_T / BS_Q54T). Each indoor unit or group of indoor units shall be able to provide set temperature independently via a local remote controller, an Intelligent Manager or a BMS interface.

Branch selector boxes shall be located as shown on the drawing. The branch selector boxes shall have the capacity to control up to 290 MBH (cooling) downstream of the branch selector box. Each branch of the branch selector box shall consist of three electronic expansion valves, refrigerant control piping and electronics to facilitate communications between the box and main processor and between the box and indoor units. The branch selector box shall control the operational mode of the subordinate indoor units. The use of three EEV's ensures continuous heating during defrost (multiple condenser systems), no heating impact during changeover and reduced sound levels. The use of solenoid valves for changeover and pressure equalization shall not be acceptable due to refrigerant noise.

The REYQ_T condensing unit model numbers and the associated number of connectable indoor units per REYQ_T condensing unit is indicated in the following table. Each indoor unit or group of indoor units shall be independently controlled.

Model Number	Nominal Capacity (Tons)	Number of Connectable Indoor Units
REYQ120 PBTJ	10	20

1.2 VRV IV FEATURES AND BENEFITS

- A. Voltage Platform –Heat recovery condensing units shall be available with a 208-230V/3/60 power supply.
- B. Advanced Zoning A single system shall provide for up to 64 zones.
- C. Independent Control Each indoor unit shall use a dedicated electronic expansion valve with 2000 positions for independent control.
- D. VFD Inverter Control and Variable Refrigerant Temperature Each condensing unit shall use high efficiency, variable speed all "inverter" compressor(s) coupled with inverter fan motors to optimize part load performance. The system capacity and refrigerant temperatures shall be modulated automatically to set suction and condensing pressures while varying the refrigerant volume for the needs of the cooling or heating loads. The control will be automatic and customizable depending on load and weather conditions.

Indoor units shall use PID to control superheat to deliver a comfortable room temperature condition and optimize efficiency.

- E. Configurator software Each system shall be available with configurator software package to allow for remote configuration of operational settings and also for assessment of operational data and error codes. If this software is not provided by an alternate manufacturer, for each individual outdoor unit the contractor shall do the settings manually and keep detailed records for future maintenance purposes.
- F. Autocharging Each system shall have a refrigerant auto-charging function.
- G. Defrost Heating Multiple condenser VRV systems shall maintain continuous heating during defrost operation. Reverse cycle (cooling mode) defrost operation shall not be permitted due to the potential reduction in space temperature.
- H. Oil Return Heating Multiple condenser VRV systems shall maintain continuous heating during oil return operation. Reverse cycle (cooling mode) oil return during heating operation shall not be permitted due to the potential reduction in space temperature.
- I. Low Ambient Cooling Each system shall be capable of low ambient cooling operation to -4°F DB.
- J. Independent Control Each indoor unit shall use a dedicated electronic expansion valve for independent control.
- K. Flexible Design -
 - 1. Systems shall be capable of up to 540ft (623ft equivalent) of linear piping between the condensing unit and furthest located indoor unit.
 - 2. Systems shall be capable of up to 3,280ft total "one-way" piping in the piping network.
 - 3. Systems shall have a vertical (height) separation of up to 295ft between the condensing unit and the indoor units.
 - 4. Systems shall be capable of up to 295ft from the first REFNET[™] / branch point.

- 5. The condensing unit shall have the ability to connect an indoor unit evaporator capacity of up to 200% of the condensing unit capacity.
- 6. Systems shall be capable of 98ft vertical separation between indoor units.
- 7. Condensing units shall be supported with a fan motor ESP up to 0.32". WG as standard to allow connection of discharge ductwork and to prevent discharge air short circuiting.
- L. Oil Return Each system shall be furnished with a centrifugal oil separator and active oil recovery cycle
- M. Simple Wiring Systems shall use 16/18 AWG, 2 wire, multi-stranded, non-shielded and non-polarized daisy chain control wiring.
- N. Outside Air Systems shall provide outside air capability.
- O. Space Saving Each system shall have a condensing unit module footprint as small as 36-5/8" x 30-1/8".
- P. Advanced Diagnostics Systems shall include a self diagnostic, auto-check function to detect a malfunction and display the type and location.
- Q. Each condensing unit shall incorporate contacts for electrical demand shedding with optional 3 stage demand control with 12 customizable demand settings.
- R. Advanced Controls Each system shall have at least one remote controller capable of controlling up to 16 indoor units.
- S. Each system shall be capable of integrating with open protocol BACnet and LonWorks building management systems.
- T. Low Sound Levels Each system shall use indoor and condensing units with quiet operation as low as 27 dB(A).

1.3 QUALITY ASSURANCE

- A. The units shall be tested by a Nationally Recognized Testing Laboratory (NRTL), in accordance with ANSI/UL 1995 – Heating and Cooling Equipment and bear the Listed Mark.
- B. All wiring shall be in accordance with the National Electric Code (NEC).
- C. The system will be produced in an ISO 9001 and ISO 14001 facility, which are standards set by the International Standard Organization (ISO). The system shall be factory tested for safety and function.
- D. Mechanical equipment for wind-born debris regions shall be designed in accordance with ASCE 7-2010 and installed to resist the wind pressures on the equipment and the supports.
- E. The condensing unit will be factory charged with R-410A.
- 1.4 DELIVERY, STORAGE AND HANDLING
 - A. Unit shall be stored and handled according to the manufacturer's recommendations.

Part 2 – WARRANTY

2.1 STANDARD LIMITED WARRANTY

Daikin North America LLC warrants original owner of the non-residential building, multifamily residence or residence in which the Daikin products are installed that under normal use and maintenance for comfort cooling and conditioning applications such products (the "Products") will be free from defects in material and workmanship. This warranty applies to compressor and all parts and is limited in duration to ten (10) years starting from the 'installation date" which is one of the two dates below:

- a. The installation date is the date that the unit is originally commissioned, but no later than 18 months after the manufacture date noted on the unit's rating plate.
- b. If the date the unit is originally commissioned cannot be verified, the installation date is three months after the manufacture date.

Complete warranty details available from your local Daikin representative or at www.daikincomfort.com –

Part 3 – PERFORMANCE

3.1 PRODUCTS

- A. ACCEPTABLE MANUFACTURERS
 - 1. Daikin AC (Basis of Design)
 - 2. LG
 - 3. Trane

3.2 The VRV IV REYQ_P system shall perform as indicated below:

Model Number	System IEER* (part load - ducted)	System IEER* (part load – non-ducted)	System IEER* (part load - mixed)
REYQ120 PBTJ	20.70	25.40	23.05
Model Number	System SCHE* (part load - ducted)	System SCHE* (part load – non-ducted)	System SCHE* (part load - mixed)
REYQ120 PBTJ	25.10	27.90	26.50

Model Number	System EER* (full load - ducted)	System EER* (full load – non- ducted)	System EER* (full load - mixed)
REYQ120PBTJ	12.60	13.90	13.25

Model Number	System COP@17F*	System COP@17F*	System COP@17F*
	(full load - ducted)	(full load – non-ducted)	(full load - mixed)
REYQ120 PBTJ	2.32	2.54	2.43

Model Number	System COP@47F*	System COP@47F*	System COP@47F*
	(full load - ducted)	(full load – non-ducted)	(full load - mixed)
REYQ120PBTJ	3.4	3.6	3.75

Performance Conditions

Cooling: indoor temp. of 80°F DB, 67°F WB and outdoor temp. of 95°F DB. Heating: indoor temp. of 70°F DB and outdoor temp. of 47°F DB, 43°F WB. Equivalent piping length: 25ft

3.3 OPERATING RANGE

The operating range in cooling or cooling dominant simultaneous cooling/heating will be (-4°F) 23°F DB ~ 122°F DB.

Model Number	Cooling (Indoor 80°F DB / 67°F WB, Outdoor 95°F DB, 25 ft pipe length)	Heating (Indoor 47°F DB / 43°F WB, Outdoor 70°F DB, 25 ft pipe length)
FXZQ07MVJU	7,500	8,700
FXZQ09MVJU	9,500	11,100
FXZQ12MVJU	12,000	14,000
FXZQ15MVJU	15,000	16,500
FXZQ18MVJU	18,000	21,000

Each system as standard shall be capable of onsite reprogramming to allow low ambient cooling operation down to $-4^{\circ}F$ DB

The operating range in heating or heating dominant simultaneous cooling/heating will be $-13^{\circ}FWB - 60^{\circ}FWB$.

If an alternate equipment manufacturer is selected, the mechanical contractor shall provide, at their own risk and cost, all additional material and labor to meet low ambient operating condition and performance.

Cooling mode indoor room temperature range will be 57°F-77°F WB. Heating mode indoor room temperature range will be 59°F-80°F DB.

3.4 REFRIGERANT PIPING

The system shall be capable of refrigerant piping up to 540 actual feet or 623 equivalent feet from the condensing unit to the furthest indoor unit, a total combined liquid line length of 3,280 feet of piping between the condensing and indoor units with 295 feet maximum vertical difference, without any oil traps.

REFNET[™] piping joints and headers shall be used to ensure proper refrigerant balance and flow for optimum system capacity and performance. T style joints shall not be acceptable as this will negatively impact proper refrigerant balance and flow for optimum system capacity and performance.

3.5 DESIGN BASIS

The HVAC equipment basis of design is Daikin North America. All bidders shall furnish the minimum system standards as defined by the base bid model numbers, model

families or as otherwise specified herein (see Key General Specifications Alternate Supplier Checklist). In any event, the contractor shall be responsible for all specified items and intents of this document without further compensation.

Part 4 – PRODUCTS

4.1 CONDENSING UNIT

A. General

The condensing unit is designed specifically for use with VRV IV series components.

1. The condensing unit shall be factory assembled in the USA and pre-wired with all necessary electronic and refrigerant controls. The refrigeration circuit of the condensing unit shall consist of Daikin inverter scroll compressors, motors, fans, condenser coil, electronic expansion valves, solenoid valves, 4-way valve, distribution headers, capillaries, filters, shut off valves, oil separators, service ports, liquid receiver and suction accumulator.

High/low pressure gas line, liquid and suction lines must be individually insulated between the condensing and indoor units.

- 2. The condensing unit can be wired and piped with access from the left, right, rear or bottom.
- 3. The connection ratio of indoor units to condensing unit shall be permitted up to 200%.
- 4. Each condensing system shall be able to support the connection of up to 64 indoor units dependent on the model of the condensing unit.
- 5. The sound pressure level standard shall be that value as listed in the Daikin engineering manual for the specified models at 3 feet from the front of the unit. The condensing unit shall be capable of operating automatically at further reduced noise during night time or via an external input.
- 6. The system will automatically restart operation after a power failure and will not cause any settings to be lost, thus eliminating the need for reprogramming.
- 7. The unit shall incorporate an auto-charging feature. Manual changing should be support with a minimum of 2 hours of system operation data to ensure correct operation.
- 8. The condensing unit shall be modular in design and should allow for sideby-side installation with minimum spacing.
- 9. The following safety devices shall be included on the condensing unit; high pressure sensor and switch, low pressure sensor, control circuit fuses, crankcase heaters, fusible plug, overload relay, inverter overload protector, thermal protectors for compressor and fan motors, over current protection for the inverter and anti-recycling timers.
- 10. To ensure the liquid refrigerant does not flash when supplying to the various indoor units, the circuit shall be provided with a sub-cooling feature.

- 11. Oil recovery cycle shall be automatic occurring 2 hours after start of operation and then every 8 hours of operation. Each system shall maintain continuous heating during oil return operation.
- 12. The condensing unit shall be capable of heating operation at -13°F wet bulb ambient temperature without additional low ambient controls or an auxiliary heat source.
- 13. The multiple condenser VRV systems shall continue to provide heat to the indoor units in heating operation while in the defrost mode.
- B. Unit Cabinet:
 - 1. The condensing unit shall be completely weatherproof and corrosion resistant. The unit shall be constructed from rust-proofed mild steel panels coated with a baked enamel finish.
- C. Fan:
 - 1. The condensing unit shall consist of one or more propeller type, directdrive 350 or 750 W fan motors that have multiple speed operation via a DC (digitally commutating) inverter.

Model Number	Fan Motor Output (kW) & Quantity
REYQ120PBTJ	0.35 x 2

- 2. The condensing unit fan motor shall have multiple speed operation of the DC (digitally commutating) inverter type, and be of high external static pressure and shall be factory set as standard at 0.12 in. WG. A field setting switch to a maximum 0.32 in. WG pressure is available to accommodate field applied duct for indoor mounting of condensing units.
- 3. The fan shall be a vertical discharge configuration with a nominal airflow maximum range of 5,544 CFM to 24,684 CFM dependent on model specified.
- 4. Nominal sound pressure levels shall be as shown below.

Model Number	Sound Pressure Level dB(A)
REYQ120PBTJ	61

- 5. The fan motor shall have inherent protection and permanently lubricated bearings and be mounted.
- 6. The fan motor shall be provided with a fan guard to prevent contact with moving parts.
- Night setback control of the fan motor for low noise operation by way of automatically limiting the maximum speed shall be a standard feature. Operation sound level shall be selectable from 3 steps as shown below.

Operation Sound dB(A)	Night Mode Sound Pressure Level dB(A)
Step 1 max.	55
Step 2 max.	50
Step 3 max.	45

D. Condenser Coil:

- 1. The condenser coil shall be manufactured from copper tubes expanded into aluminum fins to form a mechanical bond.
- 2. The heat exchanger coil shall be of a waffle louver fin and rifled bore tube design to ensure high efficiency performance.
- 3. The heat exchanger on the condensing units shall be manufactured from Hi-X seamless copper tube with N-shape internal grooves mechanically bonded on to aluminum fins to an e-Pass Design.
- The fins are to be covered with an anti-corrosion Ulta Gold coating as standard with a salt spray test rating of 1000hr (ASTM B117 & Blister Rating:10), Acetic acid salt spray test: 500hr (ASTM G85 & Blister Rating:10)
- The pipe plates shall be treated with powdered polyester resin for corrosion prevention. The thickness of the coating must be between 2.0 to 3.0 microns.
- 6. The outdoor coil shall have three-circuit heat exchanger design eliminating the need for bottom plate heater. The lower part of the coil shall be used for inverter cooling and be on or off during heating operation enhancing the defrost operation.
- 7. The condensing unit shall be factory equipped with condenser coil guards on all sides.
- E. Compressor:
 - 1. The Daikin inverter scroll compressors shall be variable speed (PVM inverter) controlled which is capable of changing the speed to follow the variations in total cooling and heating load as determined by the suction gas pressure as measured in the condensing unit. In addition, samplings of evaporator and condenser temperatures shall be made so that the high/low pressures detected are read every 20 seconds and calculated. With each reading, the compressor capacity (INV frequency) shall be controlled to eliminate deviation from target value. Non inverter-driven compressors, which may cause starting motor current to exceed the nominal motor current (RLA) and require larger wire sizing, shall not be allowed.
 - 2. The inverter driven compressor in each condensing unit shall be of highly efficient reluctance DC (digitally commutating), hermetically sealed scroll "G-type" or "J-type".
 - 3. Neodymium magnets shall be adopted in the rotor construction to yield a higher torque and efficiency in the compressor instead of the normal ferrite magnet type. At complete stop of the compressor, the neodymium magnets will position the rotor into the optimum position for a low torque start.
 - 4. The capacity control range shall be as low as 3% to 100%.
 - 5. The compressors' motors shall have a cooling system using discharge gas, to avoid sudden changes in temperature resulting in significant stresses on winding and bearings.
 - 6. Each compressor shall be equipped with a crankcase heater, high pressure safety switch, and internal thermal overload protector.
 - 7. Oil separators shall be standard with the equipment together with an intelligent oil management system.

- 8. The compressor shall be spring mounted to avoid the transmission of vibration eliminating the standard need for spring insolation.
- 9. Compressor configurations

Tonnage	Number of Compressors	Compressor Types
10	2	All inverter controlled

- 10. In the event of compressor failure the remaining compressors shall continue to operate and provide heating or cooling as required at a proportionally reduced capacity. The microprocessor and associated controls shall be designed to specifically address this condition.
- 11. In the case of multiple condenser modules, conjoined operation hours of the compressors shall be balanced by means of the Duty Cycling Function, ensuring sequential starting of each module at each start/stop cycle, completion of oil return, completion of defrost or every 8 hours and extending the operating life of the system. When connected to a central control system, sequential start is activated for all system on each DIII network.
- F. Electrical:
 - 1. The power supply to the condensing unit shall be 208-230 volts, 3 phase, 60 hertz +/- 10%.

Power Supply Voltage	Voltage Range
208-230V/3/60	187V-253V

Mode I	MCA	МОР	Compressor RLA
REYQ120PB TJ	44.2	50	15.0 + 15.0

- 2. The control voltage between the indoor and condensing unit shall be 16VDC non-shielded, stranded 2 conductor cable.
- 3. The control wiring shall be a two-wire multiplex transmission system, making it possible to connect multiple indoor units to one condensing unit with one 2-cable wire, thus simplifying the wiring installation.
- 4. The control wiring lengths shall be as shown below.

	Condenser to Indoor Unit	Condenser to Central Controller	Indoor Unit to Remote Control
Control Wiring Length	6,665 ft	3,330 ft	1,665 ft
Wire Type	16/18 AWG, 2 wire, non-polarity, non-shielded, stranded		
4.2 BS(4/6/8/10/12)Q_T BRANCH SELECTOR BOX FOR VRV IV HEAT RECOVERY SYSTEM

A. General

The BSQ36TVJ, BSQ60TVJ, BSQ96TVJ, BS4Q54TVJ, BS6Q54TVJ, BS8Q54TVJ, BS10Q54TVJ and BS12Q54TVJ branch selector boxes are designed specifically for use with VRV IV series heat recovery system components.

- 1. These selector boxes shall be factory assembled, wired, and piped.
- 2. These BSQ_T / BS(4/6/8/10/12)Q54T branch controllers must be run tested at the factory.
- 3. These selector boxes must be mounted indoors.
- 4. When simultaneously heating and cooling, the units in heating mode shall energize their subcooling electronic expansion valve.
- 5. The number of connectable indoor units shall be in accordance with the table below:

Model Number	Maximum Connectable Cooling Capacity	Maximum Number of Connectable Indoor Units Per Branch
BSQ36TVJ	36,000 Btu/h	4

- B. Unit Cabinet:
 - 1. These units shall have a galvanized steel plate casing.
 - 2. Each cabinet shall house 3 electronic expansion valves for refrigerant control per branch.
 - 3. The cabinet shall contain one subcooling heat exchanger per branch.
 - 4. The unit shall have sound absorption thermal insulation material made of flame and heat resistant foamed polyethylene.
 - 5. Nominal sound pressure levels must be measured and published on the submittals by the manufacturer. These sound levels must not exceed the values below.

Model Number	Sound Level dB(A) Operating	Sound Level dB(A) Max	
BSQ36TVJ	42	32	

If an alternate manufacturer is selected, the mechanical contractor shall provide, at their own cost and expense, any additional material and labor to meet the published sound levels above.

- C. Dimensions:
 - 1. Each BSQ_T unit shall be no larger than 8-1/8" x 15-1/4" x 12-13/16".
 - 2. Each BS4Q_T shall be no larger than 11-3/4" x 14-9/16" x 18-15/16".
 - 3. Each BS(6/8)Q_T shall be no larger than 11-3/4" x 22-13/16" x 18-15/16".
 - 4. Each BS(10/12)Q_T shall be no larger than 11-3/4" x 32-5/16" x 18-15/16".
- D. Refrigerant Valves:

- 1. The unit shall be furnished with 3 electronic expansion valves per branch to control the direction of refrigerant flow. The use of solenoid valves for changeover and pressure equalization shall not be acceptable due to refrigerant noise.
- 2. The refrigerant connections must be of the braze type.
- 3. In multi-port units, each port shall have its own electronic expansion valves. If common expansion/solenoid valves are used, redundancy must be provided.
- Each circuit shall have at least one (36,000 Btu/h indoor unit or smaller for the BSQ36TVJ, 54,000 Btu/h indoor unit or smaller for the BS(4/6/8/10/12)Q54TVJ, 60,000 Btu/h indoor unit or smaller for the BSQ60TVJ and 96,000 Btu/h indoor unit or smaller for the BSQ96TVJ) branch selector box.
- 5. Multiple indoor units may be connected to a branch selector box with the use of a REFNET[™] joint provided they are within the capacity range of the branch selector.
- E. Condensate Removal:
 - 1. The unit shall not require provisions for condensate removal. A safety device or secondary drain pan shall be installed by the mechanical contractor to comply with the applicable mechanical code, if an alternate manufacturer is selected.
- F. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1 phase, 60 hertz.
 - 2. The unit shall be capable of operation within the limits of 187 volts to 255 volts.
 - 3. The minimum circuit amps (MCA) shall be 0.1 and the maximum overcurrent protection amps (MOP) shall be 15.
 - 4. The control voltage between the indoor and condensing unit shall be 16VDC non-shielded 2 conductor cable.

4.3 VRV INDOOR UNITS

FXFQ_T – ROUND FLOW SENSING CEILING CASSETTE UNIT

A. General

Daikin indoor unit model FXFQ_T shall be a round flow ceiling cassette fan coil unit, operable with R-410A refrigerant, equipped with an electronic expansion valve, direct drive DC (ECM) type fan, for installation into the ceiling cavity equipped with an air panel grill. It shall be available in capacities from 7,500 Btu/h to 48,000 Btu/h. Model numbers are FXFQ07TVJU, FXFQ09TVJU, FXFQ12TVJU, FXFQ15TVJU to be connected to outdoor unit model RXYQ / RXYMQ / RWEYQ heat pump and REYQ / RWEYQ heat recovery model. It shall be a round flow air distribution type, fresh white, impact resistant decoration panel, or optional self-cleaning filter panel. The supply air is distributed via four individually motorized louvers. To save energy and optimize occupancy comfort, the indoor unit shall be

	Cooling	Heating	
	(Indoor 80°F DB / 67°F WB,	(Indoor 47°F DB / 43°F WB,	
Model Number	Outdoor 95°F DB, 25 ft pipe length)	Outdoor 70°F DB, 25 ft pipe length)	
FXFQ07TVJU	7,500	8,500	
FXFQ09TVJU	9,500	10,500	
FXFQ12TVJU	12,000	13,500	
FXFQ15TVJU	15,000	16,500	

equipped with built in occupancy sensor and surface temperature sensor. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism that dehumidifies while limiting changes in room temperature when used with Daikin remote control BRC1E72, BRC1E73, BRC2A71 and BRC1E52B7. The indoor units sound pressure shall range from 30 dB(A) to 45 dB(A) at High speed measured at 5 feet below the unit.

B. Performance

Each unit's performance is based on nominal operating conditions:

- C. Indoor Unit:
 - The Daikin indoor unit FXFQ_T shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, flare connections, condensate drain pan, condensate drain pump, condensate safety shutoff and alarm, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch.
 - 2. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
 - 3. Both refrigerant lines shall be insulated from the outdoor unit.
 - 4. The round flow supply air flow can be field modified to 23 different airflow patterns to accommodate various installation configurations including corner installations.
 - 5. Return air shall be through the concentric panel, which includes a resin net, mold resistant, antibacterial filter.
 - 6. The indoor units shall be equipped with a condensate pan with antibacterial treatment and condensate pump. The condensate pump provides up to 33-1/2" of lift from bottom of unit to top of drain piping and has a built in safety shutoff and alarm.
 - 7. The indoor units shall be equipped with a return air thermistor.
 - 8. The indoor unit will be separately powered with 208~230V/1-phase/60Hz.
 - 9. The voltage range will be 253 volts maximum and 187 volts minimum.
 - 10. To save energy and optimize occupancy comfort, the indoor unit shall be equipped with built in occupancy sensor and surface temperature sensor.
 - 11. Supplied air shall be directed automatically by four individually controlled louvers.

D. Unit Cabinet:

- 1. The cabinet shall be space saving and shall be located into the ceiling.
- 2. Four auto-adjusted louvers shall be available to choose, which include standard, draft prevention and ceiling stain prevention.
- 3. The airflow of the unit shall have the ability to shut down outlets with multiple patterns allowing for simpler installation in irregular spaces.
- 4. Fresh air intake shall be possible by way of Daikin's optional fresh air intake kit.
- 5. A branch duct knockout shall exist for branch ducting of supply air.
- 6. The cabinet shall be constructed with sound absorbing foamed polystyrene and polyethylene insulation.
- 7. Optional high efficiency air filters are available for each model unit.
- A. Fan:
 - 1. The fan shall be direct-drive DC (ECM) type fan, statically and dynamically balanced impeller with three fan speeds available.
 - 2. The fan motor shall operate on 208/230 volts, 1 phase, 60 hertz with a motor output range from 0.08 to 0.16 HP.
 - 3. The airflow rate shall be available in three manual settings.
 - 4. The DC fan shall be able to automatically adjust the fan speed in 5 speeds based on the space load.
 - 5. The fan motor shall be equipped as standard with adjustable external static pressure (ESP) settings to allow operation with the high efficiency air filter options.
 - 6. The fan motor shall be thermally protected.
- B. Filter:
 - 1. The return air shall be filtered by means of a washable long-life filter with mildew proof resin and antibacterial treatment.
 - 2. Optional high efficiency disposable air filters shall be available.
 - 3. Optional Self-Cleaning Filter Panel, which performs automatic filter cleaning up to once a day, with dust collection box that indicates when to be emptied.
- C. Coil:
 - 1. Coils shall be of the direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
 - 2. The coil shall be of a waffle louver fin and high heat exchange, rifled bore tube design to ensure highly efficient performance.
 - 3. The coil shall be a 2, or 3-row cross fin copper evaporator coil with up to 21 FPI design completely factory tested.
 - 4. The refrigerant connections shall be flare connections and the condensate will be 1 -1/4 inch outside diameter PVC.
 - 5. A condensate pan with antibacterial treatment shall be located under the coil.
 - 6. A thermistor will be located on the liquid and gas line.

D. Electrical:

- 1. A separate power supply will be required of 208/230 volts, 1 phase, 60 hertz. The acceptable voltage range shall be 187 to 253 volts.
- 2. Transmission (control) wiring between the indoor and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
- 3. Transmission (control) wiring between the indoor unit and remote controller shall be a maximum distance of 1,640 feet.
- E. Control:
 - 1. The unit shall have controls provided by Daikin to perform input functions necessary to operate the system.
 - 2. The unit shall be compatible with interfacing with a BMS system via optional LonWorks or BACnet gateways.
 - 3. The unit shall be compatible with a Daikin Intelligent Touch Manager advanced multi-zone controller.
 - 4. For the Sensing functions and the optional Self-Cleaning Filter functions, Remote controller BRC1E73/BRC1E52B7 shall be used. Consult with Daikin prior to applying controls.
- F. Optional Accessories Available:
 - 1. A high efficiency disposable air filter kit
 - 2. Air intake kit
 - 3. Self-Cleaning Filter Panel, which performs automatic filter cleaning up to once a day, with dust collection box that indicates when to be emptied.
 - 4. Remote "in-room" sensor kit (KRCS01-4B).
 - i. The Daikin wall mounted, hard wired remote sensor kit is recommended for when a NAV controller is not used or when the NAV controller is not located in the space that is being controlled. The sensor for detecting the temperature can be placed away from the indoor unit (branch wiring is included in the kit

4.4 FXAQ – WALL MOUNTED UNIT

A. General

Daikin indoor unit FXAQ shall be a wall mounted fan coil unit, operable with refrigerant R-410A, equipped with an electronic expansion valve, for installation onto a wall within a conditioned space. This compact design with finished white casing shall be available in capacities from 7,500 Btu/h to 24,000 Btu/h. Model numbers are FXAQ07PVJU, FXAQ09PVJU, FXAQ12PVJU, FXAQ18PVJU and FXAQ24PVJU to be connected to outdoor unit model RXYQ / RXYMQ / RWEYQ heat pump and REYQ / RWEYQ heat recovery model. Computerized PID control shall be used to control superheat to deliver a comfortable room temperature condition. The unit shall be equipped with a programmed drying mechanism that dehumidifies while limiting changes in room temperature when used with Daikin remote control BRC1E72, BRC1E73 and BRC2A71. A mildew-proof, polystyrene condensate drain pan and resin net mold resistant filter shall be included as

standard equipment. The indoor units sound pressure shall range from 31 dB(A) to 41 dB(A) at low speed measured at 3.3 feet below and from the unit.

Model Number	Cooling	Heating	
	(Indoor 80°F DB / 67°F WB,	(Indoor 47°F DB / 43°F WB,	
	Outdoor 95°F DB, 25 ft pipe length)	Outdoor 70°F DB, 25 ft pipe length)	
FXAQ07PVJU	7,500	8,500	

B. Performance:

Each unit's performance is based on nominal operating conditions:

- C. Indoor Unit:
 - The Daikin indoor unit FXAQ shall be completely factory assembled and tested. Included in the unit is factory wiring, piping, electronic proportional expansion valve, control circuit board, fan motor thermal protector, flare connections, condensate drain pan, self-diagnostics, auto-restart function, 3-minute fused time delay, and test run switch. The unit shall have an autoswing louver which ensures efficient air distribution, which closes automatically when the unit stops. The remote controller shall be able to set five (5) steps of discharge angle. The front grille shall be easily removed for washing. The discharge angle shall automatically set at the same angle as the previous operation upon restart. The drain pipe can be fitted to from either left or right sides.
 - 2. Indoor unit and refrigerant pipes will be charged with dehydrated air prior to shipment from the factory.
 - 3. Both refrigerant lines shall be insulated from the outdoor unit.
 - 4. Return air shall be through a resin net mold resistant filter.
 - 5. The indoor units shall be equipped with a condensate pan.
 - 6. The indoor units shall be equipped with a return air thermistor.
 - 7. The indoor unit will be separately powered with 208~230V/1-phase/60Hz.
 - 8. The voltage range will be 253 volts maximum and 187 volts minimum.
- D. Unit Cabinet:
 - 1. The cabinet shall be affixed to a factory supplied wall mounting template and located in the conditioned space.
 - 2. The cabinet shall be constructed with sound absorbing foamed polystyrene and polyethylene insulation.
- E. Fan:
 - 1. The fan shall be a direct-drive cross-flow fan, statically and dynamically balanced impeller with high and low fan speeds available.
 - 2. The fan motor shall operate on 208/230 volts, 1 phase, 60 hertz with a motor output range 0.054 to 0.058 HP.
 - 3. The airflow rate shall be available in high and low settings.
 - 4. The fan motor shall be thermally protected.

- F. Coil:
 - 1. Coils shall be of the direct expansion type constructed from copper tubes expanded into aluminum fins to form a mechanical bond.
 - 2. The coil shall be of a waffle louver fin and high heat exchange, rifled bore tube design to ensure highly efficient performance.
 - 3. The coil shall be a 2-row cross fin copper evaporator coil with 14 fpi design completely factory tested.
 - 4. The refrigerant connections shall be flare connections and the condensate will be 11/16 inch outside diameter PVC.
 - 5. A thermistor will be located on the liquid and gas line.
 - 6. A condensate pan shall be located in the unit.
- G. Electrical:
 - 1. A separate power supply will be required of 208/230 volts, 1 phase, 60 hertz. The acceptable voltage range shall be 187 to 253 volts.
 - 2. Transmission (control) wiring between the indoor and outdoor unit shall be a maximum of 3,280 feet (total 6,560 feet).
 - 3. Transmission (control) wiring between the indoor unit and remote controller shall be a maximum distance of 1,640 feet.
- H. Control:
 - 1. The unit shall have controls provided by Daikin to perform input functions necessary to operate the system.
 - 2. The unit shall be compatible with interfacing with a BMS system via optional LonWorks or BACnet gateways.
 - 3. The unit shall be compatible with a Daikin Intelligent Touch Manager advanced multi-zone controller.
- I. Optional Accessories Available:
 - 1. Remote "in-room" sensor kit KRCS01-1B.
 - 2. A condensate pump (DACA-CP3-1)

PART 5 - EXECUTION

5.1 INSTALLATION

- A. Install in accordance with manufacturer's instructions. Install all piping, fittings, and insulation to meet manufacturer's requirements. Install units level and plumb. Evaporator fan components shall be installed using manufacturer's standard mounting devices securely fastened to building structure. Install and connect refrigerant tubing and fittings.
- B. Installing contractor shall attend manufacturer sponsored training to obtain installation certification.

- C. Installer shall supply isolation ball valves for zoned refrigerant isolation. Installer shall supply isolation ball valves with Schrader connection for isolating refrigerant charge and evacuation at each connected indoor unit and outdoor unit. Isolation ball valves, with Schrader connection, are required for instances of indoor unit isolation for troubleshooting, repair, or replacement without affecting the remainder of the system. Isolation ball valves with Schrader connection are also required at outdoor unit connection to isolate unit for troubleshooting, repair, or replacement and as required to provide partial capacity heating/cooling in the instance of a failure of one of the multiple outdoor unit compressors.
- D. Engage manufacturer or factory-authorized service representative to perform startup service. Manufacturer shall provide on-site startup and commissioning assistance through job completion. Complete installation and startup checks according to manufacturer's written instructions.
- E. Fully charge system with refrigerant per manufacturer's requirements.
- F. Field Quality Control:
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including connections, and to assist in field testing.
 - 2. Perform the following field tests and inspections, and prepare test reports:
 - a. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - b. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - c. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- G. Coordinate installation of units with architectural and electrical work. Coordinate installation of ceiling recessed units with ceiling grid layout. Additional ceiling grid reinforcement or modification is the responsibility of the Mechanical Contractor and shall be coordinated with the General Contractor.
- H. Verify locations of wall-mounted devices (such as thermostats, temperature and humidity sensors, and other exposed sensors) with drawings and room details before installation. Coordinate mounting heights to be consistent with other wall-mounted devices. Height above finished floor shall not exceed 48".
- I. Contractor is responsible for routing all condensate drains from all indoor equipment to a nearby floor drain or standpipe. If ceiling heights or space finish does not accommodate gravity drainage, Contractor is responsible for providing a condensate pump and all electrical work required.
- J. Contractor is responsible for installing VRF heat pump control system. Contractor shall coordinate with the Temperature Controls Contractor to determine extent of integration with building automation system (BAS). Equipment that is required to integrate the VRF heat pump system with the BAS is the responsibility of the VRF heat pump installing

contractor. Final connections between VRF heat pump system and BAS shall be by the Temperature Controls Contractor.

END OF SECTION 15700

SECTION 15701 - BUILDING AUTOMATION SYSTEM

PART 1 – GENERAL

1.1 SUMMARY

- A. All work of this Division shall be coordinated and provided by the single Building Automation System (BAS) Contractor.
- B. The work of this Division shall be scheduled, coordinated, and interfaced with the associated work of other trades. Reference the Division 15 Sections for details.
- C. The work of this Division shall be required by the Specifications, Point Schedules, and Drawings.
- D. If the BAS Contractor believes there are conflicts or missing information in the project documents, the Contractor shall promptly request clarification and instruction from the design team.
- E. Refer to attached requirements from the Orange County Information Systems and Services (ISS) division for all Orange County hardware, software, and network requirements

1.2 BAS DESCRIPTION

- A. The Building Automation System (BAS) shall be a complete system designed for use with the enterprise IT systems. This functionality shall extend into the equipment rooms. Devices residing on the automation network located in equipment rooms and similar shall be fully IT compatible devices that mount and communicate directly on the IT infrastructure in the facility. Contractor shall be responsible for coordination with the owner's IT staff to ensure that the BAS will perform in the owner's environment without disruption to any of the other activities taking place on that LAN.
- B. All points of user interface shall be on standard PCs that do not require the purchase of any special software from the BAS manufacturer for use as a building operations terminal. The primary point of interface on these PCs will be a standard Web Browser.
- C. The work of the single BAS Contractor shall be as defined individually and collectively in all Sections of this Division's specifications together with the associated Point Sheets and Drawings and the associated interfacing work as referenced in the related documents.
- D. The BAS work shall consist of the provision of all labor, materials, tools, equipment, software, software licenses, software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, samples, submittals, testing, commissioning, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, temporary protection, cleaning, cutting and patching, warranties, services, and items, even though these may not be specifically mentioned in these Division documents which are required for the complete, fully functional and commissioned BAS.

- E. Provide a complete, neat and workmanlike installation. Use only manufacturer employees who are skilled, experienced, trained, and familiar with the specific equipment, software, standards and configurations to be provided for this Project.
- F. Manage and coordinate the BAS work in a timely manner in consideration of the Project Schedules. Coordinate with the associated work of other trades so as to not impeded or delay the work of associated trades.
- G. The BAS as provided shall incorporate, at minimum, the following integrated features, functions, and services:
 - 1. Operator information, alarm management and control functions
 - 2. Enterprise-level information and control access.
 - 3. Information management including monitoring, transmission, archiving, retrieval, and reporting functions.
 - 4. Diagnostic monitoring and reporting of BAS functions.
 - 5. Offsite monitoring and management access.
 - 6. Energy management
 - 7. Standard applications for terminal HVAC systems.
- H. Acceptable Manufacturers (NO SUBSTITUTIONS)
 - 1) Reliable Controls
 - 2) Honeywell
 - 3) Johnson Controls
 - 4) Automated Logic Controls
 - 5) The Trane Company

1.3 QUALITY ASSURANCE

- A. General
 - The Building Automation System Contractor shall be the primary manufacturer – owned branch office or primary installer of said manufacturer that is regularly engaged in the engineering, programming, installation and service of total integrated Building Automation Systems.
 - 2. The BAS Contractor shall be a recognized national installer and service provider of BAS.
 - 3. The BAS Contractor shall have a branch facility within a 50 mile radius of the job site supplying complete maintenance and support services on a 24 hour, 7-day-a-week basis. Minimum response time shall be 3 hours.
 - 4. As evidence and assurance of the contractor must have been in the BAS business for at least the last six (6) years and have successfully completed total projects of at least 10 times the value of this contract in each of the preceding five years.
 - 5. The Building Automation System architecture shall consist of the products of a manufacturer regularly engaged in the production of Building Automation Systems and shall be the manufacturer's latest standard of design at the time of bid.

- 6. Single source responsibility of supplier shall be the complete installation and proper operation of the BAS and control system and shall include debugging and proper calibration of each component in the entire system both existing and new.
- 7. The Building Automation System contractor shall provide the Owner with 24 months of future software system upgrades as part of their package. The upgrade period shall begin once the final completion has been signed off by the engineer of record for each project.
- B. Workplace Safety And Hazardous Materials
 - 1. Provide a safety program in compliance with the Contract Documents.
 - 2. The BAS Contractor shall have a corporately certified comprehensive Certification Manual and a designated Safety Supervisor for the Project.
 - 3. The Contractor and its employees and subtrades shall comply with federal and local safety regulations.
 - 4. The Contractor shall ensure that all subcontractors and employees have safety programs in place that covers their scope of work, and that their receive training required by the OSHA have jurisdiction for at least topic listed in the Safety Certification Manual.
 - 5. Hazards created by the Contractor or its subcontractors shall be eliminated any further work proceeds.
 - 6. Hazards observed but not created by the Contractor or its subcontractors reported to either the General Contractor or the Owner within the same Contractor shall be required to avoid the hazard area until the hazards has eliminated.
 - 7. The Contractor shall sign and date a safety certification form prior to any being performed, stating that the Contractors' company is in full Project safety requirements.
 - 8. The Contractor's safety program shall include written policy and for the handling, storage and management of all hazardous materials to be the work in compliance with the requirements of the AHJ at the Project site.
 - 9. The Contractor's employees and subcontractor's staff shall have received training as applicable in the use of hazardous materials and shall govern actions accordingly.
- C. Quality Management Program
 - 1. Designate a competent and experienced employee to provide BAS Project Management. The designated Project Manager shall be empowered to make technical scheduling and related decisions on behalf of the BAS Contractor. At a minimum, the Project Manager shall:

- Manage the scheduling of the work to ensure that adequate materials labor and other resources are available as needed.
- 2) Manage the financial aspects of the BAS Contract. Coordinate as necessary with other trades.
- 3) Be responsible for the work and actions of the BAS workforce on site.

1.4 WORK BY OTHERS

1.

The demarcation of work and responsibilities between the BAS Contractor and other related trades shall be outlined in the BAS Responsibility Matrix.

BAS RESPONSIBILITY MATRIX				
WORK	FURNISH	INSTAL	Low Volt.	LINE
		L	WIRING/TUB	POWER
			E	
BAS low voltage and communication	BAS	BAS	BAS	N/A
wiring				
BAS conduits and raceway	BAS	BAS	BAS	BAS
Automatic dampers	BAS	15	N/A	N/A
BAS Current Switches.	BAS	BAS	BAS	N/A
BAS Control Relays	BAS	BAS	BAS	N/A
All BAS Nodes, equipment, housings,	BAS	BAS	BAS	BAS
enclosures and panels.				
Smoke Detectors	16	16	16	16
Fire/Smoke Dampers	15	15	16	16
Fire Dampers	15	15	N/A	N/A
Fire Alarm shutdown relay interlock	16	16	16	16
wiring				
Fire Alarm smoke control relay interlock	16	16	BAS	16
wiring				
Fan Coil Unit controls	BAS	BAS	BAS	16
Unit Heater controls	BAS	BAS	BAS	16
Packaged RTU space mounted controls	15*	BAS	BAS	16
Packaged RTU factory-mounted controls	15*	15	BAS	16
Packaged RTU field-mounted controls	BAS	BAS	BAS	16
Starters, HOA switches	16	16	N/A	16
Control damper actuators	BAS	BAS	BAS	16

1.5 SUBMITTALS

- A. Shop Drawings, Product Data, and Samples
 - 1. The BAS Contractor shall submit its qualifications to the Orange County Representative after bidding has been completed but prior to the submittal of shop drawings. These qualifications shall be submitted within 15 days of contract award.

- 2. Once the BAS Contractor receives approval from the Owner for their qualifications, the BAS contractor shall submit a list of all shop drawings with submittals dates within 45 days of contract award.
- 3. Submittals shall be in defined packages. Each package shall be complete and shall only reference itself and previously submitted packages. The packages shall be as approved by the Architect and Engineer for Contract compliance.
- 4. Allow 15 working days for the review of each package by the Architect and Engineer in the scheduling of the total BAS work.
- 5. Equipment and systems requiring approval of local authorities must comply with such regulations and be approved. Filing shall be at the expense of the BAS Contractor where filing is necessary. Provide a copy of all related correspondence and permits to the Owner.
- 6. Prepare an index of all submittals and shop drawings for the installation. Index shall include a shop drawing identification number, Contract Documents reference and item description.
- 7. The BAS Contractor shall correct any errors or omissions noted in the first review.
- 8. At a minimum, submit the following:
 - a. BAS network architecture diagrams including all nodes and interconnections.
 - b. Systems schematics, sequences and flow diagrams.
 - Points schedule for each point in the BAS, including: Point Type, Object Name, Expanded ID, Display Units, Controller Type, and Address
 - d. Samples of Graphic Display screen types and associated menus.
 - e. Detailed Bill of Material list for each system or application, identifying quantities, part numbers, descriptions, and optional features.
 - f. Control Damper Schedule including a separate line for each damper provided under this section and a column for each of the damper attributes, including: Code Number, Fail Position, Damper Type, Damper Operator, Duct Size, Damper Size, Mounting, and Actuator Type
 - g. Control Valve Schedules including a separate line for each valve provided under this section and a column for each of the valve attributes: Code Number, Configuration, Fail Position, Pipe Size, Valve Size, Body Configuration, Close Off Pressure, Capacity, Valve CV, Design Pressure, and Actuator Type.
 - h. Room Schedule including a separate line for each VAV box and/or terminal unit indicating location and address
 - i. Details of all BAS interfaces and connections to the work of other trades.

j. Product data sheets or marked catalog pages including part number, photo and description for all products including software.

1.6 RECORD DOCUMENTATION

- A. Operation and Maintenance Manuals
 - 1. Three (3) copies of the Operation and Maintenance Manuals shall be provided to the Owner's Representative upon completion of the project. The entire Operation and Maintenance Manual shall be furnished on Compact Disc media, and include the following for the BAS provided:
 - a. Table of contents
 - b. As-built system record drawings, Computer Aided Drawings (CAD) record drawings on the latest version of AUTOCADD shall represent the as-built condition of the system and incorporate all information supplied with the approved submittal.
 - c. Manufacturers product data sheets or catalog pages for all products including software.
 - d. System Operator's manuals.
 - e. Archive copy of all site-specific databases and sequences.
 - f. BAS network diagrams.
 - g. Interfaces to all third-party products and work by other trades.
 - 2. The Operation and Maintenance Manual CD shall be self-contained, and include all necessary software required to access the product data sheets. A logically organized table of contents shall provide dynamic links to view and print all product data sheets. Viewer software shall provide to view and print all product data sheets. Viewer software shall provide the ability to display, zoom, and search all documents.

1.7 WARRANTY

- A. Standard Material and Labor Warranty:
 - 1. Provide a two-year labor and material warranty on the BAS.
 - 2. If within twenty-four(24) months from the date of acceptance of product, upon written notice from the owner, it is found to be defective in operation, workmanship or materials, it shall be replaced, repaired, or adjusted at the option of the BAS Contractor at the cost of the BAS Contractor.
 - 3. Maintain an adequate supply of materials within 50 miles of the Project site such that replacement of key parts and labor support, including programming. Warranty work shall be done during BAS Contractor's normal business hours.

PART 2- PRODUCTS

2.1 NETWORK AREA CONTROLLERS (NAC)

- A. The Network Area Controller (NAC) shall provide a thin-client, Graphical User Interface (GUI) to the Building Automation System (BAS)
 - 1. Local Access: The NAC shall be installed upon the owner's Local Area Network (LAN) and shall support local operator access using standard web

15701 - 6 BUILDING AUTOMATION SYSTEM October 17, 2016 browsers including at minimum Microsoft Internet Explorer 8, Mozilla Firefox 3, Google Chrome 7, and Apple Safari 6

- 2. Remote Access: A high speed connection from the NAC to the Wide Area Network (WAN) shall be provided and maintained by the owner to facility remote operator access to the BAS using the standard web browsers including at a minimum Microsoft Internet Explorer 8, Mozilla Firefox 3, Google Chrome 7, and Apple Safari 6
- B. The NAC(s) shall meet or exceed the requirements of a BACnet® Operator Workstation (B-OWS) and a BACnet® Building Controller (B-BC)
- C. The NAC(s) shall not require any hardware, software or firmware licensing agreements.
- D. The NAC(s) shall support the following hardware characteristics as a minimum:
 - 1. One (1) ISO-8802.3 Ethernet Port 10/100 Mbps
 - 2. One EIA-232 Port 115.2 Kbps maximum
 - 3. Two EIA-485 Ports 76.8 Kbps maximum
 - 4. Local onboard and/or expandable hardware inputs/outputs (I/O)
 a. Expandable to a minimum of 96 Inputs and 64 Outputs
 - 5. 8 MB operating RAM
 - 6. 1MB non-volatile RAM
 - 7. 128 MB Flash EEPROM
- E. The NAC(s) shall support the following communication protocols at a minimum:
 - 1. ASHRAE 135-2008 BACnet®
 - a. Point-to-Point (PTP)
 - b. Master Slave Token Passing (MS/TP)
 - c. Ethernet
 - d. BACnet® IP (B/IP)
 - 2. Modbus
 - a. RTU (master or slave)
 - b. TCP (master or slave)
 - 3. Simple Mail Transfer Protocol (SMTP)
 - 4. Simple Network Management Protocol (SNMP)
 - 5. Hyper Text Transfer Protocol (HTTP)
 - 6. Short Message Service (SMS) GSM/GPRS modems
- F. The NAC database and all necessary Graphical User Interface (GUI) resources including animations are to be stored on the NAC. Web-enabled applications that require system graphics to be stored on the client machines will not be acceptable.
- G. The NAC shall support unlimited access by five (5) simultaneous clients.
- H. Multiple NAC devices shall be capable of being installed on the same BACnet® internetwork without any separate server applications, separate network management or additional licensing.
 - 1. Browser clients shall have the ability to access any NAC on the internetwork directly

- I. The NAC shall provide native BACnet® communications directly with all BACnet® devices on the BACnet® internetwork. Applications that require translation of data, gateways, or mapping of any kind shall not be acceptable.
 - 1. The NAC shall provide BACnet® client and server functionality on all data links without any additional modules or licensing
- J. Real-time values displayed on the web browser shall update automatically without requiring a manual "refresh" of the web page.
- K. HTML programming shall not be required to create or display system graphics or data on a web page.
- L. A new point displayed on a B-OWS graphic screen shall appear automatically on the identical graphic screen served by the NAC with no further programming or file transfer required.
- M. The NAC shall be capable of automatically uploading any changes to existing GUI images or animations.
- N. The NAC shall support operator interface via the web browser the following at a minimum:
 - 1. Password Protection
 - a. Multiple-level password access protection shall be provided
 - b. Passwords may be exactly the same for all software applications provided to communicate with the internetwork including the webbased browser interface. Passwords and access credentials shall be able to be imported from the B-OWS to the NAC.
 - c. A minimum of three (3) levels of access shall be supported with a configurable matrix of operator actions allowed for each access level, broken down into at least 20 possible operator action.
 - d. A minimum of 128 passwords shall be supported at each NAC
 - e. Operators will be able to perform only those commands available for their respective passwords.
 - f. User-definable, automatic log-off timers of from 1 to 60 minutes shall be provided to prevent operators from inadvertently leaving an NAC browser interface in an unsupervised logged-in state.
 - g. The NAC shall be configurable to provide read-only access without requiring log-on
 - h. Unencrypted passwords shall not be transmitted between the NAC and the client browser
 - 2. Alarming and Event Notification
 - a. NAC shall be capable of generating configurable automatic and dynamic alarm notification that is presented on-top of any current browsing screens in the form of a pop-up message
 - b. The NAC shall be capable of e-mail and telephonic text message notification of system alarms configurable to include notification class, recipient, inclusive and exclusive times and days as well as transition states (to alarm, to fault, return to normal). Systems that use e-mail

and/or text messages as the exclusive means of annunciating alarms are not acceptable.

- c. System shall provide log off notification messages.
- d. Alarm messages shall be in user-definable text and shall be entered either at the B-OWS terminal or via remote communication
- e. An alarm summary shall be available to show all alarms including but not limited to whether or not they have been acknowledged.
- f. System shall provide ability to prioritize and differentiate communications for at least 255 different levels of alarms.
- g. Alarm messages shall be fully customizable in size, content, behavior, and sound.
- 3. Weekly, Annual and Special Event Exception Scheduling
 - a. Provide ability to view and modify the schedule for the calendar week and up to 255 special events in a graphical format. Each calendar day and special event shall provide at least six time/value entries per day.
 - b. Provide the ability for the operator to select scheduling for binary, analog, or multi-state object values.
 - c. Provide the ability for the operator to designate days, date ranges, or repeating date patterns as exception scheules.
 - d. Provide the capability for the operator to define special or holiday schedules and to link the BACnet schedule to a BACnet calendar, therby over-riding weekly schedule programming on holidays defined in the BACnet calendar.
 - e. There shall be a provision with proper password access to manually override each schedule.
 - f. Provide the capability to designate any exception schedule to be "Executed Once" then automatically cleared.
 - g. Provide the ability to name each exception schedule with a user defined term to describe each special event.
- 4. Trend Log Graphing
 - All data points (both hardware and software) system-wide shall be assignable to a historical trending program by gathering configurable historical samples of object data stored in the local controller (b-BC, B-AAC, B-ASC)
 - b. All trend log information shall be displayable in text or graphic format. All information shall be able to be printed in black&white or color and exported directly to a Microsoft Excel spreadsheet.
- 5. Runtime Log Information
 - a. B-OWS Software shall be capable of displaying Runtime and On/Off Cycle data of all Binary data points (both hardware and software system-wide. Runtime logs shall provide the following at a minimum:
 - a. Total Accumulated Runtime
 - b. Accumulated Starts Today
 - c. Total Accumulated Starts

- d. Timestamp each Start/Stop and duration of each on/off cycle
- e. Monitor equipment status and generate maintenance messages based upon user designated run time
- 6. Ability to Manually Over-ride any Database Point
 - a. All hardware and software points may be temporarily overridden for a user adjustable configured time period
- 7. Custom Navigation File Tree
- 8. Color Graphical User Interface (GUI)
 - a. All color graphic displays shall be dynamic with current point data automatically updated from the BACnet internetwork to the browser without operator intervention. Manual operator intervention shall use the same methodology as on the B-OWS application
 - Depending upon configured access level; the operator shall be able to manually adjust digital, analog or calculated values in the system, adjust values of control loops, override points of release points to automatic mode.
- O. The NAC shall provide the capability to create individual user (as determined by the log-on user identification) home pages. Provide the ability to limit a specific user to a defined home page. From the home page, links to otherviews or pages in the system shall be possible, if allowed by the system administrator.
- P. The NAC shall include an Audit Train feature that automatically records the time date, and user, and action associated with all user changes made via Web Browser clients.
- Q. The NAC shall store complete help files describing system configuration, and use of the browser interface, the help files shall be served on-line as part of the browser interface.
 - 1. The web browser interface shall include tool tips to describe the functionality of the interface.

2.2 ADVANCED APPLICATIONS CONTROLLERS (AAC)

- A. General
 - 1. Provide a micro-processor based, networkable, custom programmed, BACnet® Advanced Application Controller for each packaged rooftop unit, etc, wall-mounted where shown on floor-plans. Each AAC shall include an LCD user interface and all input/output points required to monitor and control each unit as a stand-alone system, according to the specified sequence of operation. In addition AAC's shall allow monitoring and remote control via a supervisory network (BACnet) with a WEB-Based Browseraccessible front end.
 - 2. Provide a 5 year standard manufacturer's warranty for the AAC
- B. Network Protocol and Operator Connections
 - 1. The AAC's shall allow direct connection to a host networking using BACnet® MS/TP (EIA-485) protocol. The network communication speed shall be operator selectable up to 76.8 kbpc.

- Each AAC shall be BTL tested, and listed to meet the B-AAC Standard Device Profile including BIBBs for this level of device. A Protocol Implementation Conformance statement for the AAC proposed shall be submitted along with shop drawings. Network points to be viewable on each AAC are listed in the sequence of operation, however provide a minimum of 32 Read/Write objects per AAC.
- 3. Each AAC shall include an externally mounted port allowing operators to connect a laptop computer directly to the AAC for network configuration, custom programming, and trouble-shooting.
- C. Hardware Components
 - 1. Provide the following hardware input points at minimum in each AAC:
 - a. Room temperature sensor, local or remote 10K thermistor with an accuracy of +/- 0.1 Deg C.
 - b. User set-point adjustment control with programmable set-point limits
 - c. On-boardroom humidity sensor with replaceable CMOSense element, overall accuracy of +/- 1.8% over 10-90% range
 - d. On-boardroom passive infra-red occupancy sensor, with a maximum detection distance of 5m (16.4ft) and 64 detection zones
 - e. In addition to the above, provide 4 user-definable universal inputs capable of accepting 0-5 VDC, 4-20mA, 10K thermistor, or dry contacts. Refer to the sequence of operation for specific input point requirements.
 - 2. Provide hardware analog and digital output points as required by the sequence of operation, however include the following point types at minimum to allow for future expansion:
 - a. Six universal outputs, user-definable as analog or digital
 - b. Two additional digital output points
 - c. Digital output points shall be dry contacts capable of switching 0.5 Amps at 24 VAC.
 - 3. Provide a large LCD screen for display and adjustment of AAC points and mapped network points.
 - 4. Security codes MUST be provided to prevent unauthorized access from the local LCD screen. Minimum LCD size shall be 128x64 pixels. The screen shall be back-lit, however the light may be configured to shut off after a programmable inactive time.
 - 5. Provide put-buttons on the panel face to facilitate navigation, point adjustment, data entry, and switching of operational modes (password protected).
 - 6. AAC memory shall include a minimum 64 Kb RAM for logs and temporary data and 512 Kb flash EEPROM for non-volatile storage of firmware configuration and custom database. Provide a 24 hour clock and 265 day calendar on-board. Clock accuracy shall be +/- 1 second over 24 hours, and system time shall be retained during power outages exceeding 7 years.

- 7. AAC's shall be capable of monitoring and controlling at least 4 networked, remote temperature sensors, each with adjustable set-point and outputs for zone controls. These networked sensors shall not consume input/outputs in the AAC.
- D. Custom Configuration
 - Each AAC shall allow custom setup of the primary user interface screen; definition of all points to be monitored, controlled and displayed; alarms; schedules; trends; password access; and programmed sequence of operation as required to optimize the AAC for the specific requirements of this project, and also to allow future modification by the owner. AAC's using canned programs for pre-determined HVAC applications are not acceptable.
 - 2. Each AAC shall allow the following custom set-up at minimum:
 - a. Primary User Interface screen set-up, including display of time, system mode, fan mode, primary temperature display, and display of up to 3 additional operator-defined AAC or network points.
 - b. ALL physical Inputs AND Outputs of the controller MUST be able to be overridden at the LCD screen for technician checkout of the system locally.
 - c. Seven additional user defined point groups, each including up to six AAC or network points per group, to be displayed and adjusted by system users with sufficient password authority. Each group, and each individual point shall be defined to allow/disallow editing and manual override by users, and the password level required. Point definition shall also determine if units are to be displayed, and whether point names are displayed as text, or alternatively using an icon chosen from an on-board list of industry standard symbols.
 - d. Custom programs of 2000 bytes each, using a BASIC control language with source code stored on board.
 - e. The AAC may be defined with full access by all users without password protection, or with three levels of password protected access. Each level of access shall be enabled by entering a 4 digit password via the front panel keys. AAC's that require removal of the faceplate to unlock the keyboard are not acceptable.
 - f. Alarm states shall be defined using AAC custom programming, with the definition including the password level required to acknowledge, reset, and clear alarms. When an AAC alarm condition exists, an alarm icon shall be displayed on all screens.
 - g. 48 user-definable program-driven variables, with selectable ranges and standard or custom units.
 - h. user-definable PID controls loops
 - i. user-definable trend logs, each with 150 samples of 6 points each, and programmable sampling times

- j. 8 user-definable runtime logs to accumulate the run-times of selected digital points, and record the time and date of the last 100 changes of state
- k. 2 user-definable system groups, 50 points per group, allowing related points to be grouped together on one display for use in network graphics
- I. 1 user-definable weekly schedule, including 4 on/off pairs for each weekday, and two additional daily schedules triggered by the annual schedule or by custom programming
- m. Override of the unoccupied schedule for a programmed period of time shall be triggered via a front panel button
- n. 1 annual schedule, allowing pre-programming of holidays 365 days in advance

2.3 INPUT DEVICES

- A. General Requirements
 - 1. Installation, testing, and calibration of all sensors, transmitters, and other input devices shall be provided to meet the system requirements.
 - 2. Outside Air Sensors
 - a. Outside air sensors shall be designed to withstand the environmental conditions to which they will be exposed. They shall also be provided with a solar shield.
 - b. Sensors exposed to wind velocity pressures shall be shielded by a perforated plate that surrounds the sensor element.
 - c. Temperature transmitters shall be of NEMA 3R construction and rated for ambient temperatures.
 - 3. Duct Mount Sensors
 - a. Duct mount sensors shall mount in an electrical box through a hole in the duct, and be positioned so as to be easily accessible for repair or replacement.
 - b. Duct sensors shall be insertion type and constructed as a complete assembly, including lock nut and mounting plate.
 - c. For outdoor air duct applications, a weatherproof mounting box with weatherproof cover and gasket shall be used.
 - 4. Averaging Sensors
 - a. For ductwork greater in any dimension that 48 inches and/or where air temperature stratification exists, an averaging sensor with multiple sensing points shall be used.
 - b. For plenum applications, such as mixed air temperature measurements, a string of sensors mounted across the plenum shall be used to account for stratification and/or air turbulence. The averaging string shall have a minimum of 4 sensing points per 12-foot long segment.
 - c. Capillary supports at the sides of the duct shall be provided to support the sensing string.

- 5. Acceptable Manufacturers: Setre or approved equal
- B. Humidity Sensors
 - 1. The sensor shall be a solid-state type, relative humidity sensor of the Bulk Polymer Design. The sensor element shall resist service contamination.
 - 2. The humidity transmitter shall be equipped with non-interactive span and zero adjustments, a 2-wire isolated loop powered, 4-20 mA, 0-100% linear proportional output
 - 3. (0.00-1.00" to 5.00") w.c. input differential pressure ranges. Lead loss and Analog to Digital conversion. 3% between 20% and 80% RH @ 77 Deg F unless specified elsewhere.
 - 4. Outside air relative humidity sensors shall be installed with a rain proof perforated cover. The transmitter shall be installed in a NEMA 3R enclosure with sealtite fittings and stainless steel bushings.
 - 5. A single point humidity calibrator shall be provided I required, for field calibration. Transmitters shall be shipped factory pre-calibrated.
 - 6. Duct type sensing probes shall be constructed of 304 stainless steel, and shall be equipped with a neoprene grommet, bushings, and a mounting bracket.
 - 7. Acceptable Manufacturers: Veris Industries and Mamac
- C. Differential Pressure Transmitters
 - 1. Building Differential Air Pressure Applications (-1" to +1" w.c.)
 - a. The differential pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20 mA output in response to variation of differential pressure or air pressure sensing points.
 - b. The differential pressure transmitter shall have non-interactive zero and span adjustments that are adjustable from the outside cover and meet the following performance specifications:
 - a. -1.00 to +1.00 w.c. input differential pressure ranges. (Select range appropriate for system application)
 - b. 4-20 mA output
 - c. Maintain accuracy up to 20 to 1 ratio turndown
 - d. Reference Accuracy: +0.2% of full span.
 - c. Acceptable Manufacturers: Setra or approved equal
- D. Flow Monitoring
 - 1. Air Flow Monitoring
 - a. Duct Air Flow Measuring Stations
 - a. Each device shall be designed and built to comply with, and provide results in accordance with, accepted practice as defined for system testing in the ASHRAE Handbook of fundamentals, as well as in the Industrial Ventilation Handbook.
 - Airflow measuring stations shall be abricated of 14-gauge galvanized steel welded vasing with 90 degree connections flanges in configuration and size equal to that of the duct into

15701 - 14 BUILDING AUTOMATION SYSTEM October 17, 2016 which it is mounted. Each station shall be complete with an air directionalizer and parallel cell profile suppressor (3/4" maximum cell) across the entering air stream and mechanical fastened to the casing in such a way to withstand velocities up to 6000 feet per minute. This air directionalizer and parallel cell honeycomb suppressor shall provide 98% free area, equalize the velocity profile, and eliminate turbulent and rotational flow from the air stream prior to the measuring point.

- c. The total pressure measurement side (high side) will be designed and spaced to the Industrial Ventilation Manual 16th Edition, Page 9-5. The self-averaging manifolding will be manufactured of brass and copper components
- d. The static pressure sensing probes (low side) shall be bulletnosed shaped, per detailed radius, as illustrated in Industrial Ventilation Manual 16th Edition, Page 9-5.
- e. The main take-off point from both the total pressure and the static pressure manifolds must be symmetrical.
- f. Total and static pressure manifolds shall terminate with external ports for connection to control tubing. An identification label shall be placed on each unit casing, listing model number, size, area, and specified airflow capacity.
- g. Installation Considerations:
 - The maximum allowable pressure loss through the Flow and Static Pressure elements shall not exceed .065" w.c. at 1000 feet per minute, or .23" w.c. at 2000 feet per minute. Each unit shall measure the airflow rate within an accuracy of plus 2% as determined by U.S. – GSA certification tests, and shall contain a minimum of one total pressure sensor per 36 square inches of unit measuring area.
 - ii. The units shall have a self-generated sound rating of less than NC40, and the sound level within the duct shall not be amplified nor shall additional sound be generated.
 - iii. Where the stations are installed in insulated ducts, the airflow passage of the station shall be the same size as the inside airflow dimension of the duct. Station flanges shall be two inch to three inch to facilitate matching connecting ductwork.
 - iv. Where control dampers are shown as part of the airflow measuring station, opposed blade precision controlled volume dampers integral to the station and complete with actuator, pilot positioner, and linkage shall be provided.

- v. Stations shall be installed in strict accordance with the manufacturer's published requirements, and in accordance with ASME Guidelines affecting non-standard approach conditions.
- h. Acceptable manufacturers: Air MonitorCorp, Tek-Airm Ebtron, and Dietrich Standard.
- b. Static Pressure TraverseProbe
 - a. Duct static traverse probes shall be provided where required to monitor duct static pressure. The probe shall contain multiple static pressure sensors located along exterior surface of the cylindrical probe.
 - b. Acceptable manufacturers: Cleveland Controls
- c. Shielded Static Air Probe
 - a. A shielded static pressure probe shall be provided at each end of the building. The probe shall have multiple sensing ports, an impulse suppression chamber, and airflow shielding. A suitable probe for indoor and outdoor locations shall be provided
- E. Power Monitoring Devices
 - 1. Current Measurement (Amps)
 - a. Current measurement shall be by a combination current transformer and a current transducer. The current transformer shall be sized to reduce the full amperage of the monitored circuit to a maximum 5 Amp signal, which will be converted to a 4-20 mA DDC compatible signal for use by the Facility Management System.
 - b. Current Transformer A split core current transformer shall be provided to monitor motor amps.
 - a. Operating frequency 50 400 Hz
 - b. Insulation 0.6 Kv class 10Kv BIL
 - c. UL recognized
 - d. Five amp secondary
 - e. Select current ration as appropriate for application
 - f. Acceptable manufacturers: Veris Industries
 - c. Current Transducer A current to voltage or current to mA transducer shall be provided. The current transducer shall include:
 - a. 6X input over amp rating for AC inrushes of up to 120 amps
 - b. Manufactured to UL 1244
 - c. Accuracy: +.5%, Ripple +1%
 - d. Minimum load resistance 30kOhm
 - e. Input 0-20 Amps
 - f. Output 4-20 mA
 - g. Transducer shall be powered by a 24VDC regulated power supply (24 VDC +5%)
 - h. Acceptable manufacturers: Veris Industries or approved equal
- F. Status and Safety Switches

- 1. General Requirements
 - a. Switches shall be provided to monitor equipment status, safety conditions, and generate alarms at the BAS when a failure or abnormal condition occurs. Safety switches shall be provided with two sets of contacts and shall be interlock wired to shut down respective equipment.
- 2. Current Sensing Switches
 - a. The current sensing switch shall be self-powered with solid-state circuitry and a dry contact output. It shall consist of a current transformer, a solid state current sensing circuit, adjustable trip point, solid state switch, SPDT relay, and an LED indicating the on or off status. A conductor of the load shall be passed through the window of the device. It shall accept over-current up to twice its trip point range.
 - b. Current sensing switches shall be used for run status for fans, pumps, and other miscellaneous motor loads.
 - c. Current sensing switches shall be calibrated to show a positive run status only when the motor is operating under load. A motor running with a broken belt or coupling shall indicate a negative run status.
 - d. Acceptable manufacturers: Veris Industries or approved equal
- 3. Air Filter Switches
 - a. Differential pressure switches used to monitor air filter status shall be of the automatic reset type with SPDT contacts rated for 2 amps at 120 VAC.
 - b. A complete installation kit shall be provided, including: static pressure tops, tubing, fittings, and air filters.
 - c. Provide appropriate scale range and differential adjustment for intended service.
 - d. Acceptable manufacturers: Cleveland Controls or approved equal.
- 4. Air Flor Switches
 - a. Differential pressure flow switches shall be snap acting microswitches with appropriate scale range and differential adjustment for intended service.
 - b. Acceptable manufacturers: Cleveland Controls or approved equal.
- 5. Air Pressure Safety Switches
 - a. Air pressure safety switches shall be of the manual reset type with SPDT contacts rated for 2 amps at 120 VAC.
 - b. Pressure range shall be adjustable with appropriate scale range and differential adjustment for intended service.
 - c. Acceptable manufacturers: Cleveland Controls or approved equal.
- 6. Low Temperature Limit Switches
 - The low temperature limit switch shall be of the manual reset type with Double Pole/Single Throw snap acting contacts rated for 16 amps at 120 VAC.

- b. The sensing element shall be a minimum of 15 feet in length and shall react to the coldest 18-inch section. Element shall be mounted horizontally across duct in accordance with manufacturers recommended installation procedures.
- c. For large duct areas where the sensing element does not provide full coverage of the air stream, additional switches shall be provided as required to provide full protection of the air stream.

2.4 OUTPUT DEVICES

- A. Actuators
 - 1. General Requirements
 - a. Damper and valve actuators shall be electronic as specified in the System Description section.
 - 2. Electronic Damper Actuators
 - a. Electronic damper actuators shall be direct shaft mount
 - b. Modulating and two-position actuators shall be provided as required by the sequence of operations. Damper sections shall be sized Based on actuator manufacturer's recommendations for face velocity, differential pressure and damper type. The actuator mounting arrangement and spring return feature shall permit normally open or normally closed positions of the dampers, as required. All actuators (except terminal units) shall be furnished with mechanical spring return unless otherwise specified in the sequences of operations. All actuators shall have external adjustable stops to limit the travel in either direction, or a gear release to allow manual positioning.
 - c. Modulating actuators shall accept 24 VAC or VDC power supply, consume no more than 15 VA, and be UL listed. The control signal shall be 2-10 VDC or 4-20 mA, and the actuator shall provide a clamp position feedback signal of 2-10 VDC. The feedback signal shall be independent of the input signal and may be used to parallel other actuators and provide true position indication. The feedback signal of one damper actuator for each separately controlled damper shall be wired back to a terminal strip in the control panel for trouble-shooting purposes.
 - d. Two-position or open/closed actuators shall accept 24 or 120 VAC power supply and be UL listed. Isolation, smoke, exhaust fan, and other dampers, as specified in the sequence of operations, shall be furnished with adjustable end switches to indicate open/closed position or be hard wired to start/stop associated fan. Two-position actuators, as specified in sequences of operations as "quick acting," shall move full stroke within 20 seconds. All smoke damper actuators shall be quick acting.
 - e. Acceptable manufacturers: Belimo or approved equal
- B. Control Dampers

- 1. The BAS Contractor shall furnish all automatic dampers. All automatic dampers shall be sized for the application by the BAS Contractor or as specifically indicated on the Drawings.
- 2. All dampers used for throttling airflow shall be of the opposed blade type arranged for normally open or normal closed operation, as required. The damper is to be sized so that, when wide open, the pressure drop is a sufficient amount of its close-off pressure drop to shift the characteristic curve to near linear.
- 3. All dampers used for two-position, open/close control shall be parallel blade type arranged for normal open of closed operation, as required.
- 4. Damper frames and blades shall be constructed of either galvanized steel or aluminum. Maximum blade length in any section shall be 60". Damper blades shall be 16-gauge minimum and shall not exceed eight (8) inches in width. Damper frames shall be 16-gauge minimum hat channel type with corner bracing. All damper bearings shall be made of reinforced nylon, stainless steel or oil-impregnated bronze. Dampers shall be tight closing, low leakage type, with synthetic elastomer seals on the blade edges and flexible stainless steel side seals. Dampers of 48"x48" size shall not leak in excess of 8.0 cfm per square foot when closed again 4" w.g. static pressure when tested in accordance with AMCA Std. 500.
- Airfoil blade dampers of double skin construction with linkage out of the air stream shall be used whenever the damper face velocity exceeds 1500 FPM or system pressure exceeds 2.5" w.g., but no more than 4000 FPM or 6" w.g. Acceptable manufacturers are Ruskin CD50 and Vent Products 5650.
- One piece rolled blade dampers with exposed or concealed linkage may be used with face velocities of 1500 FPM or below. Acceptable manufacturers are: Ruskin CD36 and Vent Products 5800, or approved equal.
- 7. Multiple section dampers may be jack-shafted to allow mounting of direct connect electronic actuators. Each end of the jackshaft shall receive at least one actuator to reduce jackshaft twist.
- C. Control Relays
 - 1. Control Pilot Relays
 - a. Control pilot relays shall be of a modular plug-in design with retaining springs or clips
 - b. Mounting Bases shall be snap-mount
 - c. DPDT, 3PDT, or 4PDT relays shall be provided, as appropriate for application
 - d. Contacts shall be rated for 10 amps at 120VAC
 - e. Relays shall have an integral indicator light and check button
 - f. Acceptable manufacturers: Lectro or approved equal
 - 2. Lighting Control Relays
 - a. Lighting control relays shall be latching with integral status contacts

15701 - 19 BUILDING AUTOMATION SYSTEM October 17, 2016

- b. Contacts shall be rated for 20 amps at 277 VAC
- c. The coil shall be a split low-voltage coil that moves the line voltage contact armature to the ON or OFF latched position
- d. Lighting control relays shall be controlled by:
 - a. Pulse Tri-state Output Preferred method
 - b. Pulsed Paired Binary Outputs
 - A Binary Input to the Facility Management System shall monitor integral status contact on the lighting control relay. Relay status contacts shall be of the "dry-contact" type.
- e. The relay shall be designed so that power outages do not result in a change-of-state, and so that multiple same state commands will simply maintain the commanded state. Example: Multiple OFF command pulses shall simply keep the contacts in the OFF position.
- D. Electronic Signal Isolation Transducers
 - 1. A signal isolation transducer shall be provided whenever an analog output signal from the BAS is to be connected to an external control system as an input (such as a chiller control panel), or is to receive as an input signal from a remote system.
 - 2. The signal isolation transducer shall provide ground plane isolation between systems.
 - 3. Signals shall provide optical isolation between systems.
 - 4. Acceptable manufacturers: Advanced Control Technologies or approved equal
- E. External Manual Override Stations
 - 1. External manual override stations shall provide the following:
 - a. An integral HAND/OFF/AUTO switch shall override the controlled device pilot relay
 - b. A status input to the Facility Management System shall indicate whenever the switch is not in the automatic position
 - c. A Status LED shall illuminate whenever the output is ON
 - d. An Override LED shall illuminate whenever the HOA switch is in either the HAND or OFF position
 - e. Contacts shall be rated for a minimum of 1 amp at 24 VAC

2.5 MISCELLANEOUS DEVICES

- A. Power Supplies
 - 1. DC power supplies shall be sized for the connected device load. Total rated load shall not exceed 75% of the rated capacity of the power supply.
 - 2. Input: 120 VAC +10%, 60Hz
 - 3. Output: 24 VDC
 - 4. Line Regulation: +0.05% for 10% line change
 - 5. Load Regulation: +0.05% for 50% load change
 - 6. Ripple and Noise: 1 mV rms, 5 mV peak to peak
 - 7. An appropriately sized fuse and fuse block shall be provided and located next to the power supply

15701 - 20 BUILDING AUTOMATION SYSTEM October 17, 2016 8. A power disconnect switch shall be provided next to the power supply

PART 3 – PERFORMANCE/EXECUTION

3.1 BAS SPECIFIC REQUIREMENTS

- A. Graphic Displays
 - 1. Provide a color graphic system flow diagram display for each system with all points as indicated on the point list. All terminal unit graphic displays shall be from a standard design library.
 - 2. User shall access the various system schematics via a graphical penetration scheme and/or menu selection.
- B. Custom Reports:
 - 1. Provide custom reports as required for this project.
- C. Actuation/Control Type
 - 1. Primary Equipment
 - a. Controls shall be provided by equipment manufacturer as specified herein
 - b. All damper and valve actuation shall be electric
 - 2. Air Handling Equipment
 - a. All air handlers shall be controlled with a HVAC-DDC Controller
 - b. All damper and valve actuation shall be electric
 - 3. Terminal Equipment
 - a. Terminal Units (VAV, UV, etc.) shall have electric damper and valve actuation
 - b. All Terminal Units shall be controlled with HVAC-DDC Controller)

3.2 INSTALLATION PRACTICES

A. BAS Wiring

- 1. All conduit, wiring, accessories and wiring connections required for the installation of the Building Automation System, as herein specified, shall be provided by the BAS Contractor unless specifically shown on the Electrical Drawings under Division 16 Electrical. All wiring shall comply with the requirements of applicable portions of Division 16 and all local and national electric codes, unless specified otherwise in this section.
- 2. All BAS wiring materials and installation methods shall comply with BAS manufacturer recommendations.
- 3. The sizing, type and provision of cable, conduit, cable trays, and raceways shall be the design responsibility of the BAS Contractor. If complications arise, however, due to the incorrect selection of cable, cable trays, raceways and/or conduit by the BAS Contractor, the Contractor shall be responsible for all costs incurred in replacing the selected components.
- 4. Class 2 Wiring
 - a. All Class 2 (24VAC or less) wiring shall be installed in conduit unless otherwise specified.
 - b. Conduit is not required for Class 2 wiring in concealed accessible locations. Class 2 wiring not installed in conduit shall be supported

every 5' from the building structure utilizing metal hangers designed for this application. Wiring shall be installed parallel to the building structural lines. All wiring shall be installed in accordance with local code requirements.

- 5. Class 2 signal wiring and 24VAC power can be run in the same conduit. Power wiring 120VAC and greater cannot share the same conduit with Class 2 signal wiring.
- 6. Provide for complete grounding of all applicable signal and communications cables, panels and equipment so as to ensure system integrity of operation. Ground cabling and conduit at the panel terminations. Avoid grounding loops.
- B. BAS Line Voltage Power Source
 - 1. 120-volt AC circuits used for the Building Automation System shall be taken from panel boards and circuit breakers provided by Division 16.
 - 2. Circuits used for the BAS shall be dedicated to the BAS and shall not be used for any other purposes.
 - 3. DDC terminal unit controllers may use AC power from motor power circuits.
- C. BAS Raceway
 - 1. All wiring shall be installed in conduit or raceway except as noted elsewhere in this specification. Minimum control wiring conduit size $\frac{1}{2}$ "
 - 2. Where it is not possible to conceal raceways in finished locations, surface raceway (Wiremold) may be used as approved by the Architect.
 - 3. All conduits and raceways shall be installed level, plumb, at right angles to the building lines and shall follow the contours of the surface to which they are attached.
 - 4. Flexible Metal Conduit shall be used for vibration isolation and shall be limited to 3 feet in length when terminating to vibrating equipment. Flexible Metal Conduit may be used within partition walls. Flexible Metal Conduit shall be UL listed.
- D. Penetrations
 - 1. Provide fire stopping for all penetrations used by dedicated BAS conduits and raceways.
 - 2. All openings in fire proofed or fire stopped components shall be closed by using approved fire resistive sealant.
 - 3. All wiring passing through penetrations, including walls shall be in conduit or enclosed raceway.
 - 4. Penetrations of floor slabs shall be by core drilling. All penetrations shall be plumb, true, and square.
- E. BAS Identification Standards
 - 1. Node Identification
 - a. All nodes shall be identified by a permanent label fastened to the enclosure. Labels shall be suitable for the node location.

- b. Cable types specified in Item A shall be color coded for easy identification and troubleshooting.
- F. BAS Panel Installation
 - 1. The BAS panels and cabinets shall be located as indicated at an elevation of not less than 2 feet from the bottom edge of the panel to the finished floor. Each cabinet shall be anchored per the manufacturer's recommendations.
 - 2. The BAS contractor shall be responsible for coordinating panel locations with other trades and electrical and mechanical contractors.
- G. Input Devices
 - 1. All Input devices shall be installed per the manufacturer recommendation.
 - 2. Locate components of the BAS in accessible local control panels wherever possible.
- H. HVAC Input Devices General
 - 1. All Input devices shall be installed per the manufacturer recommendation.
 - 2. Locate components of the BAS in accessible local control panels wherever possible.
 - 3. The mechanical contractor shall install all in-line devices such as temperature wells, pressure taps, airflow stations, etc.
 - 4. Input Flow Measuring Devices shall be installed in strict compliance with ASME guidelines affecting non-standard approach conditions.
 - 5. Outside Air Sensors
 - a. Sensors shall be mounted on the North wall to minimize solar radiant heat impact or located in a continuous intake flow adequate to monitor outside air conditions accurately
 - b. Sensors shall be installed with a rain proof, perforated cover.
 - 6. Medium to High Differential Water Pressure Applications (Over 21" w.c.):
 - a. Air bleed units, bypass valves and compression fittings shall be provided.
 - 7. Building Differential Air Pressure Applications (-1" to +1" w.c.):
 - a. Transmitters exterior sensing tip shall be installed with a shielded static air probe to reduce pressure fluctuations caused by wind.
 - b. The interior tip shall be inconspicuous and located as shown on the drawings.
 - 8. Air Flow Measuring Stations:
 - a. Where the stations are installed in insulated ducts, the airflow passage of the station shall be the same size as the inside airflow dimension of the duct.
 - b. Station flanges shall be two inch to three inch to facilitate matching connecting ductwork.
 - 9. Duct Temperature Sensors:
 - a. Duct mount sensors shall mount in an electrical box through a hole in the duct and be positioned so as to be easily accessible for repair or replacement.

- b. The sensors shall be insertion type and constructed as a complete assembly including lock nut and mounting plate.
- c. For ductwork greater in any dimension than 48 inches or where air temperature stratification exists such as a mixed air plenum, utilize an averaging sensor.
- d. The sensor shall be mounted to suitable supports using factory approved element holders.
- 10. Space Sensors:
 - a. Shall be mounted per ADA requirements
 - b. Provide lockable tamper-proof covers in public areas and/or where indicated on the plans.
- 11. Lower Temperature Limit Switches:
 - a. Install on the discharge side of the first water or steam coil in the air stream.
 - b. Mount element horizontally across duct in a serpentine pattern insuring each square foot of coil is protected by 1 foot of sensor.
 - c. For large duct areas where the sensing element does not provide full coverage of the air stream, provide additional switches as required to provide full protection of the air stream.
- 12. Air Differential Pressure Status Switches:
 - a. Install static pressure tips, tubing, fittings, and air
- I. HVAC Output Devices
 - 1. All output devices shall be installed per the manufacturers recommendation. The mechanical contractor shall install all in-line devices such as control valves, dampers, airflow stations, pressure wells, etc.
 - 2. Actuators: All control actuators shall be sized capable of closing against the maximum system shut off pressure. The actuator shall modulate in a smooth fashion through the entire stroke.
 - 3. Control Dampers: Shall be opposed blade for modulating control of airflow. Parallel blade dampers shall be installed for two position applications.
 - 4. Electronic Signal Isolation Transducers: Whenever an analog output signal from the Building Automation System is to be connected to an external control system as an input (such as a chiller control panel), or is to receive as an input a signal from a remote system, provide a signal isolation transducer. Signal isolation transducer shall provide ground plane isolation between systems. Signals shall provide optical isolation between systems.

3.3 TRAINING

The BAS contractor shall provide the following training services:

1. A minimum of one and a half days (12 hours total) of on-site orientation by a system technician who is fully knowledgeable of the specific installation details of the project. This orientation shall, at a minimum, consist of a review of the project as-built drawings, the BAS software layout and naming conventions, and a walk through of the facility to identify panel and device locations. 2. Operational training of the BAS shall include at a minimum: changing set points, overrides, starting and stopping equipment, log in to field controllers when the server or PC is down. The BAS contractor shall be required to develop a training outline for this procedure. The training outline, including the lesson plans and course materials, shall be reviewed and approved by the engineer of record through the submittal process.

3.4 SEQUENCE OF OPERATIONS

END OF SECTION 15701

ATTACHMENTI

DMZ SECURITY STANDARD

1.0 Purpose

The purpose of this document is to establish requirements that will better manage and secure all platforms within the Orange County Government Board of County Commissioners (OCGBCC). The DMZ is a secure environment with limited access to the OCGBCC internal network.

2.0 Scope

The scope of this document applies to all platforms located within the OCGBCC DMZ.

3.0 Policies

3.1 Activity

Any and all activity within and through the OCGBCC DMZ shall require direct involvement and documented approval by the Information Systems and Service Enterprise Security unit (ISS-ESU).

3.2 Web Servers

All internal ISS-ESU policies apply to the OCGBCC DMZ and are augmented by the DMZ Security Standard. The following differences are noted:

- I. Microsoft Internet Information Server (IIS) version 5.0 or higher shall be the only platform within the OCGBCC DMZ to run as a Web or FTP server.
- II. All platforms within the OCGBCC DMZ shall be patched immediately upon the release and testing by the ISS-ESU.

3.3 Administrative Rights

ISS-ESU shall be the only group with administrative rights to servers in the DMZ.

3.4 Production Servers

The OCGBCC DMZ shall host production servers only.

3.5 Remote Access

Remote Access to the OCGBCC DMZ shall be allowed only using Microsoft Terminal Services or Microsoft Remote Desktop protocols.

3.6 Traffic

I. Internet Activity

HTTP/HTTPS/FTP/SMTP/IMAPS are the only protocols allowed from the Internet into the DMZ.

II. Internal Activity

Traffic using the following protocols from the DMZ to the internal network shall not be allowed: Kerberos, NetBIOS, Microsoft-DS, Microsoft's Well KnownPorts (88, 135, 137, 138, 139, 389, 445,

464, 530, 543, 544, 636, 749, 3389), LDAP, RPC, SMB, RDP, HTTP, HTTPS, DNS, JOLT.

III. Routing

- a. All approved access from the DMZ to the internal network shall be routed through a proxy server residing in the DMZ.
- b. The Enterprise DMZ proxy server shall only use firewall conduits to access approved resources within the OCGBCC network.

3.7 Data

- I. Any data accessible within the OCGBCC DMZ or directly accessible from it should be encrypted.
- II. Any data accessible within the OCGBCC DMZ or directly accessible from it meeting the following criteria shall be encrypted: Name, addresses, phone numbers, email addresses, birthdates, federal/state/local document numbers, account numbers, race or religious information, employee identification numbers and all HIPAA information.
- III. The OCGBCC DMZ shall not have access to data containing bank information.
- IV. The OCGBCC DMZ shall not have access to social security information.
- V. The OCGBCC DMZ shall have read only access to live data, if such data is also used by applications residing in the internal OCGBCC network.

4.0 Guidelines

- **4.1** Should databases in policy 3.7.4 need to receive updates by the OCGBCC DMZ, the write operations should be made to a physically separate "staging" data repository. This separate data repository should contain only updates for the specific records being changed. An application server within the internal network should be used to apply the changes in the staging data repository to the live database.
- **4.2** The DMZ should access data repositories in the internal OCGBCC network using SQL database calls.

5.0 Enforcement

Any server found within the OCGBCC DMZ that does not met the above criteria shall be immediately disconnected from the OCGBCC DMZ. Any employee found to have violated this policy may be subject to disciplinary action, up to and including termination of employment.
6.0 Definitions

Term Definition Bank Checking account numbers, credit card numbers, or any unique number from Information a bank institution. HyperText Transfer Protocol – The underlying protocol used by the World HTTP Wide Web. HTTP defines how messages are formatted and transmitted, and what actions web servers and browsers should take in response to various commands. HTTPS HyperText Transfer Protocol over Secure Socket Layer (SSL) – By convention, URLs that require an SSL connection start with https: instead of just http:. **FTP** File Transfer Protocol – The protocol for exchanging files over the Internet. FTP works in the same way as HTTP for transferring web pages from a server to a user's browser and SMTP for transferring electronic mail across the Internet in that, like these technologies, FTP uses the Internet's TCP/IP protocols to enable data transfer. FTP is most commonly used to download a file from a server using the Internet or to upload a file to a server. SMTP Simple Mail Transfer Protocol – A protocol for sending e-mail messages between servers. In addition, SMTP is generally used to send messages from a mail client to a mail server. IMAPS Internet Message Access Protocol – A protocol for retrieving e-mail messages. With IMAP4, you can search through your e-mail messages for keywords while the messages are still on mail server and, then, choose which messages to download to your machine. LDAP Lightweight Directory Access Protocol – A set of protocols for accessing information directories. DNS Domain Name System (or Service or Server) – An Internet service that translates domain names into IP addresses. Because domain names are alphabetic, they're easier to remember. The Internet however, is really based on numeric IP addresses. Every time you use a domain name, therefore, a DNS service must translate the name into the corresponding IP address. SQL Structured query language – SQL is a standardized query language for requesting information from a database. DMZ Demilitarized Zone – A computer term used for a protected network that sits between the Internet and the corporate network. SSL Secure Sockets Layer – A protocol for transmitting private documents via the Internet. SSL uses a cryptographic system that uses two keys to encrypt data - a public key known to everyone and a private or secret key known only to the recipient of the message.

ATTACHMENT II

ENCRYPTION AND CERTIFICATION AUTHORITIES

1.0 Purpose

The purpose of this document is to ensure that all Orange County Government Board of County Commissioner's (OCGBCC) sensitive data is secured by using strong encryption algorithms that have received substantial public review and have been proven to work effectively. Orange County Information Systems and Services Enterprise Security unit (ISS-ESU) provides access to a variety

of Encryption Services and Enterprise Certification Authorities (CA).

2.0 Scope

This document applies to all data transmitted and stored within the OCGBCC information systems. It applies to all OCGBCC employees, consultants, and all other affiliated third parties operating within the OCGBCC information systems and networks.

3.0 Policies

3.1 Activity

- I. Any and all activity within and through the OCGBCC information systems involving encryption shall require direct involvement and documented approval by the Information Systems and Service Enterprise Security unit (ISS-ESU).
- II. The ISS-ESU shall approve the storage and transfer of any data containing personal information and/or residing in the DMZ.

3.2 Encryption Algorithms

I. One of the following standard encryption ciphers shall be used to encrypt data.

The key length for these algorithms shall be no less than 128bits:

- Triple-DES (3DES)
- Rijndael (AES)
- RŚA
- Blowfish
- Twofish
- CAST
- II. PGP is an approved encryption standard provided that the PGP private key used to encrypt and /or sign data has been generated using a cipher meeting the requirements in section 3.2.1.

3.3 Data Hashing

The following standard data hashing algorithms shall be used to hash data. The key length for the algorithms shall be no less than 128bits.

- MD5
- SHA-1
- SHA-2

3.4 SSL Certificates

Web Server, SSH, IMAPS, SMTPS SSL certificates should have key lengths of no less than 128bits.

3.5 Sensitive Data

Any data containing sensitive information, including, but not limited to: name, addresses, phone numbers, email addresses, birthdates, federal/state/local document numbers, account numbers, race or religious information, employee identification numbers and all HIPAA information, should be encrypted when stored and during network transfers.

3.6 DMZ

- I. Any and all activity within and through the OCGBCC DMZ shall require direct involvement and documented approval by the Information Systems and Service Enterprise Security unit (ISS-ESU).
- II. Any data accessible within the OCGBCC DMZ or directly accessible from it should be encrypted.
- III. Any data accessible within the OCGBCC DMZ or directly accessible from it meeting the following criteria shall be encrypted: name, addresses, phone numbers, email addresses, birthdates, federal/state/local document numbers, account numbers, race or religious information, employee identification numbers and all HIPAA information.

3.7 Data Backups

I. Any backup of OCGBCC should be encrypted. Sensitive data as listed in 3.5 of this document shall be backed up using encryption algorithm standards found in 3.2.

3.8 Laptops and Removal Devices

- I. All laptop hard drives should be encrypted.
- II. Any sensitive data (see section 3.5 of this document) stored on laptops and removable devices shall be encrypted.
- III. All individuals who work with sensitive data (see section 3.5 of this document) shall have their laptop hard drives encrypted.

4.0 Guidelines

- **4.1** SSL certificates issued to servers and applications used by internet users should be provided by commercial CA authorities (i.e. Verisign, Thawte) to avoid security warnings from being presented to the end users.
- **4.2** SSL certificates issued to servers and applications used by internal OCGBCC resources should be issued by the OCGBCC's Certification Authority.

5.0 Enforcement

Any employee found to have violated these policies may be subject to disciplinary action, up to and including termination of employment.

6.0 Definitions

Term	Definition
Encryption	Transforming understandable data into a form that is incomprehensible and that looks like random noise.
Hashing	An algorithm that takes an entire message and, through process of shuffling, manipulating, and processing the bytes using logical operations, generates a small message digest of the data.
DMZ	De-Militarized Zone – A computer term used for a protected network that sits between the Internet and the corporate network.
Certification Authority (CA)	In cryptography, a certificate authority or certification authority (CA) is an entity which issues digital certificates for use by other parties.

ATTACHMENT III

ANTIVIRUS STANDARDS

1.0 Purpose

The purpose of this document is to establish requirements which must be met by all computers connected to the Orange County Government Board of County Commissioners (OCGBCC) network to ensure effective virus detection and prevention.

2.0 Scope

This document applies to all OCGBCC computers running any version of the Microsoft Windows Operating Systems. This includes, but is not limited to, all servers, desktop computers, laptop computers, PC-based printers and appliances.

3.0 Policy

3.1 Virus Software – Servers

Trend Micro Server Protect or Trend Micro OfficeScan shall be installed and enabled on all OCGBCC computers running any server version of the Microsoft Windows Operating Systems.

3.2 Virus Software – Workstations

Trend Micro OfficeScan shall be installed and enabled on all OCGBCC computers running any non-server version of the Microsoft Windows Operating Systems.

3.3 Virus Software – Exchange Servers

Trend Micro ScanMail shall be installed and enabled on all OCGBCC computers running Microsoft Exchange Server.

3.4 Virus Software – Internet Mail

All incoming and outgoing internet email shall be scanned by Trend Micro Interscan Messaging Security Suite before being delivered.

3.5 Virus scanning

Antivirus software shall be running at all times on the computers on which it is installed. Real-time scanning of incoming and outgoing files shall be enabled at all times. Antivirus scans of servers shall be executed on a weekly basis in accordance with the schedules set in Trend Micro Server Protect. Antivirus scans of workstations shall be executed on a weekly basis in accordance with the schedules set in Trend Micro Server Protect. Antivirus scans of workstations shall be executed on a weekly basis in accordance with the schedules set in Trend Micro Server Protect.

4.0 Guidelines

- When employees receive unwanted and unsolicited emails, they should be deleted and should avoid replying to the sender. These messages should not be forwarded.
- Employees should never open any files or macros attached to an email from an unknown, suspicious or untrustworthy source. These attachments should be deleted immediately. These messages should not be forwarded.

• Employees should never download files from unknown or suspicious sources.

5.0 Enforcement

Trend Micro's antivirus products are installed on all servers and workstations during the initial installation of the operating systems, and are continuously monitored to ensure they are running. Any employee or temporary found to have willfully stopped and/or paused these programs will be considered to be violating these policies and may be subject to disciplinary action, up to and including termination of employment.

6.0 Definitions

Term Definition

Virus A program or piece of code that is loaded onto your computer without your knowledge and runs against your wishes. Viruses can also replicate themselves. All computer viruses are manmade. A simple virus that can make a copy of its self over and over again is relatively easy to produce. Even such a simple virus is dangerous because it will quickly use all available memory and bring the system to a halt. An even more dangerous type of virus is one capable of transmitting itself across networks and bypassing security systems.

ATTACHMENT IV

WEB SECURITY STANDARD

1.0 Purpose

The purpose of this document is to establish requirements that will better manage and secure all web server platforms within the Orange County Government Board of County Commissioners (OCGBCC).

2.0 Scope

The scope of this document applies to all web server platforms located within the OCGBCC.

3.0 Policies

3.1 Activity

Any and all web server installations, removals or modifications shall require the direct involvement and documented approval by the Information Systems and Service Enterprise Security unit (ISS-ESU).

3.2 Hardware

- I. All hardware platforms operating as a web server shall abide by all standards, policies and guidelines of the OCGBCC Enterprise Systems unit.
- II. All hardware platforms operating as a web server shall reside on server hardware. Any exception shall require a documented wavier by the Information Systems and Services Enterprise Security unit (ISS-ESU).

3.3 Software

I. Web Server Platforms

i. Microsoft

Microsoft's Internet Information Server (IIS) is the approved, supported web server platform for OCGBCC.

ii. Apache Software Foundation

Apache Software Foundation's HTTP Server (Apache) is approved but is unsupported. Any production use of (Apache) shall include an appropriate support model that is approved by the ISS-ESU.

iii. Other

Other web server platforms may qualify for use, but shall require an evaluation, approval and a documented wavier by the ISS-ESU.

II. Databases

i. Location

A database server shall not reside on the same hardware platform as a web server.

3.4 Security

I. General

All web servers shall comply with all other documented ISS-ESU standards to include, but not limited to: virus, patch and account management.

II. Account Management

i. Local Account Access

Only accounts with local administrator privileges shall be allowed to log on locally to a web server.

ii. **Process/Application Accounts** All web server processes and applications shall run only under a low privilege local account. Web server processes shall not run

under an account with domain, power user or a local administrator privileges.

iii. Web Server Anonymous Accounts

Web server anonymous accounts shall only have read and execute permissions to folders/files within the web server directories. Change and delete permissions to folders/files that are directly accessible via a web browser shall not be granted to web server anonymous accounts.

III. Permissions

i. Operating System Permissions

ISS-ESU shall secure the operating system's file/folder permissions and security policies of all web servers. These permissions are to be modified solely by ISS-ESU.

ii. Vendor/Third Party Access

Local administrator privileges on web servers are for authorized personnel only. Access to vendors and any other third party shall be provided solely on a temporarily, case-bycase basis through ISS-ESU.

iii. Developer Access

Developer access to web server content directories shall be available by WebDav or FrontPage server extensions only. Developers shall be granted "Author Pages" rights with the FrontPage Server Extensions

IV. Java Server Engines

Java server engines are approved but are not supported. Any production use of a Java server engine shall include an appropriate support model that is approved by (ISS-ESU).

i. **FTP**

Web servers that also run an FTP server shall not map FTP directories to directories accessible via a web browser.

ii. **IIS Virtual Directories, Application Pools, Settings** Any and all creations, removals or modifications to IIS

Settings, Virtual Directories, Application Directories, and Application Pools shall require the direct involvement and documented approval by the Information Systems and Service Enterprise Security unit (ISS-ESU).

V. Other

-Shares are not allowed on any directory accessible via web browser.

- Microsoft Windows web servers and any web application shall not be installed on the same drive as the host operating system.

- Executable files (.exe, .com, .bat, .dll, etc) shall not be placed into directories accessible via a web browser without the direct involvement and documented approval by the Information Systems and Service

Enterprise Security unit (ISSESU).

4.0 Guidelines

 It is recommended that all web applications use the enterprise FTP and SMTP servers for all FTP/SMTP traffic.

5.0 Enforcement

Any web server not meeting the above criteria may be immediately disconnected from the OCGBCC network. Any employee found to have violated these policies may be subject to disciplinary action, up to and including termination of employment.

6.0 Definitions

Term Definition

- FTP File Transfer Protocol The protocol for exchanging files over the Internet. FTP works in the same way as HTTP for transferring Web pages from a server to a user's browser and SMTP for transferring electronic mail across the Internet in that, like these technologies, FTP uses the Internet's TCP/IP protocols to enable data transfer. FTP is most commonly used to download a file from a server using the Internet or to upload a file to a server.
- **WebDay** An algorithm that takes an entire message and, through process of shuffling, manipulating, and processing the bytes using logical operations, generates a small message digest of the data.

Front PageA series of scripts that can be employed using Microsoft FrontPage, a visual
HTML editor.

SMTP Simple Mail Transfer Protocol – A protocol for sending e-mail messages between servers. In addition, SMTP is generally used to send messages from a mail client to a mail server.

ATTACHMENT V

STANDARDS

SUMMARY

The following is a summary of key points in the Orange County Government Board of County Commissioners (OCGBCC) security standards. It is necessary for vendors to completely understand and follow these requirements in order for products or services to be considered for placement within the OCGBCC environment. Complete details about these standards can be found in the Orange County Government Standards and Guidelines packet.

WEB SERVERS

Web and Database Placement

A database server shall not reside on the same hardware platform as a web server.

Anonymous Accounts

Web server anonymous accounts shall only have read and execute permissions to folders/files within the web server directories. Change and delete permissions to folders/files that are directly accessible via a web browser shall not be granted to web server anonymous accounts.

DMZ

Web Server Platforms

Microsoft Internet Information Server (IIS) version 5.0 or higher shall be the only platform within the

OCGBCC DMZ to run as a Web or FTP server.

Services and Protocols

Traffic using the following protocols from the OCGBCC DMZ to the internal network shall not be allowed: Kerberos, NetBIOS, Microsoft-DS, Microsoft's Well Known Ports, LDAP, RPC, SMB, RDP, HTTP, HTTPS, DNS, JOLT.

Encrypted Data

Any data accessible within the OCGBCC DMZ or directly accessible from it meeting the following criteria shall be encrypted: Name, addresses, phone numbers, email addresses, birthdates, federal/state/local document numbers, account numbers, race or religious information, employee identification numbers and all HIPAA information. The OCGBCC DMZ shall not have access to data containing bank information. The OCGBCC DMZ shall not have access to social security information.

Data Access

The OCGBCC DMZ shall have read only access to live data, if such data is also used by applications residing in the internal OCGBCC network.

ANTIVIRUS

Virus scanning

Antivirus software shall be running at all times on the computers on which it is installed.

MICROSOFT SECURITY PATCHES

Patch Installation

MS Security patches may be applied immediately upon release by Microsoft. All vendors must support their applications in this environment

SECTION 15732 – PACKAGED AIR COOLED REFRIGERATION

1) GENERAL

1.1 SECTION INCLUDES

A. Packaged Air Conditioners

1.2 REFERENCES

- A. AFBMA 9 Load Ratings and Fatigue Life for Ball Bearings.
- B. AMCA 99—Standards Handbook
- C. AMCA 210—Laboratory Methods of Testing Fans for Rating Purposes
- D. AMCA 500—Test Methods for Louver, Dampers, and Shutters.
- E. AHRI 340/360 Unitary Large Equipment
- F. NEMA MG1—Motors and Generators
- G. National Electrical Code.
- H. NFPA 70—National Fire Protection Agency.
- I. SMACNA—HVAC Duct Construction Standards—Metal and Flexible.
- J. UL 900—Test Performance of Air Filter Units.

1.3 SUBMITTALS

- A. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, electrical characteristics and connection requirements.
- B. Product Data:
 - 1.1 Provide literature that indicates dimensions, weights, capacities, ratings, fan performance, and electrical characteristics and connection requirements.
 - 2.1 Provide computer generated fan curves with specified operating point clearly plotted.
 - 3.1 Manufacturer's Installation Instructions.

1.4 OPERATION AND MAINTANENCE DATA

A. Maintenance Data: Provide instructions for installation, maintenance and service

1.5 QUALIFICAITONS

- A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum five years documented experience, who issues complete catalog data on total product.
- B. Start-up must be done by trained personnel experienced with Packaged equipment.
- C. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters and remote controls are in place, bearings lubricated, and manufacturers' installation instructions have been followed.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Deliver, store, protect and handle products to site.
 - B. Accept products on site and inspect for damage.
 - C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

2) PRODUCTS

2.1 MANUFACTURERS

- A. Daikin Applied
- B. Valent
- C. Trane

2.2 GENERAL DESCRIPTION

A. Furnish as shown on plans, Daikin McQuay Rebel Single zone Heating and Cooling Unit(s) model DPS. Unit performance and electrical characteristics shall be per the job schedule.

- B. Configuration: Fabricate as detailed on prints and drawings:
 - 1.2 Return plenum / economizer section
 - 2.2 Filter section
 - 3.2 Cooling coil section
 - 4.2 Supply fan section
 - 5.2 Condensing unit section
- C. The complete unit shall be cETLus listed.
- D. Each unit shall be specifically designed for outdoor Packaged application and include a weatherproof cabinet. Each unit shall be completely factory assembled and shipped in one piece. Packaged units shall be shipped fully charged with R-410 Refrigerant and oil.
- E. The unit shall undergo a complete factory run test prior to shipment. The factory test shall include a refrigeration circuit run test, a unit control system operations checkout, a unit refrigerant leak test and a final unit inspection.
- F. All units shall have decals and tags to indicate caution areas and aid unit service. Unit nameplates shall be fixed to the main control panel door. Electrical wiring diagrams shall be attached to the control panels. Installation, operating and maintenance bulletins and start-up forms shall be supplied with each unit.
- G. Performance: All scheduled EER, IEER, capacities and face areas are minimum accepted values. All scheduled amps, kW, and HP are maximum accepted values that allow scheduled capacity to be met.
- H. Warranty: The manufacturer shall provide 12-month parts only warranty. Defective parts shall be repaired or replaced during the warranty period at no charge. The warranty period shall commence at staPackagedp or six months after shipment, whichever occurs first.

2.3 CABINET, CASING, AND FRAME

- A. Panel construction shall be double-wall construction for all panels. All floor panels shall have a solid galvanized steel inner liner on the air stream side of the unit to protect insulation during service and maintenance. Insulation shall be a minimum of 1" thick with an R-value of 7.0, and shall be 2 part injected foam. Panel design shall include no exposed insulation edges. Unit cabinet shall be designed to operate at total static pressures up to 5.0 inches w.g.
- B. Exterior surfaces shall be constructed of pre-painted galvanized steel for aesthetics and long term durability. Paint finish to include a base primer with a high quality, polyester resin topcoat of a neutral beige color. Finished panel surfaces to withstand a minimum 750-hour salt spray test in accordance with ASTM B117 standard for salt spray resistance.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- C. Service doors shall be provided on the fan section, filter section, control panel section, and heating vestibule in order to provide user access to unit components. All service access doors shall be mounted on multiple, stainless steel hinges and shall be secured by a latch system. Removable service panels secured by multiple mechanical fasteners are not acceptable.
- D. The unit base shall overhang the roof curb for positive water runoff and shall seat on the roof curb gasket to provide a positive, weathertight seal. Lifting brackets shall be provided on the unit base to accept cable or chain hooks for rigging the equipment.

2.6 FILTERS

A. Unit shall be provided with a draw-through filter section. The filter rack shall be designed to accept a 2" prefilter and a 4" final filter. The unit design shall have a hinged access door for the filter section. The manufacturer shall ship the Packaged unit with 2" construction filters. The contractor shall furnish and install, at building occupancy, the final set of filters per the contract documents.

2.7 COOLING COIL

- A. The indoor coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be complete with a factory piped cooling coil and an ASHRAE 62.1 compliant double sloped drain pan.
- B. The direct expansion (DX) cooling coils shall be fabricated of seamless high efficiency copper tubing that is mechanically expanded into high efficiency aluminum plate fins. Coils shall be a multi-row, staggered tube design with a minimum of 3 rows. All cooling coils shall have an interlaced coil circuiting that keeps the full coil face active at all load conditions. All coils shall be factory leak tested with high pressure air under water.
- C. The cooling coil shall have an electronic controlled expansion valve. The unit controller shall control the expansion valve to maintain liquid subcooling and the superheat of the refrigerant system.
- D. The refrigerant suction lines shall be fully insulated from the expansion valve to the compressors.
- E. The drain pan shall be stainless steel and positively sloped. The slope of the drain pan shall be in two directions and comply with ASHRAE Standard 62.1. The drain pan shall have a minimum slope of 1/8" per foot to provide positive draining. The drain pan shall extend beyond the leaving side of the coil. The drain pan shall have a threaded drain connection extending through the unit base.

2.8 HOT GAS REHEAT

A. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser

- B. Hot gas reheat coil shall be a Micro Channel design. The aluminum tube shall be a micro channel design with high efficiency aluminum fins. Fins shall be brazed to the tubing for a direct bond. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.
- C. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- 2°F.
- D. Each coil shall be factory leak tested with high-pressure air under water.

2.9 SUPPLY FAN

- A. Supply fan shall be a single width, single inlet (SWSI) airfoil centrifugal fan. The fan wheel shall be Class II construction with aluminum fan blades that are continuously welded to the hub plate and end rim. The supply fan shall be a direct drive fan mounted to the motor shaft.
- B. Fan assembly shall be a slide out assembly for servicing and maintenance
- C. All fan assemblies shall be statically and dynamically balanced at the factory, including a final trim balance, prior to shipment.
- D. The fan motor shall be a totally enclosed EC motor that is speed controlled by the Packaged unit controller. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase. Motors shall be premium efficiency.
- E. The supply fan shall be capable of airflow modulation from 30% to 100% of the scheduled designed airflow. The fan shall not operate in a state of surge at any point within the modulation range.

2.10 HEATING SECTION

A. The Packaged unit shall include an electrical resistance heating coil section. Staged electric heating coil modules shall be factory installed downstream of the supply air fan in the heating section of the Packaged unit. Heating coils shall be constructed of a low watt density, nickel - chromium alloy resistance wire with intermediate supports that include ceramic bushings. The electrical contactors shall be of the full line-breaking type with all the electrical power legs being disconnected when the contactors are not energized. All electrical circuit wiring shall be designed with copper conductors, aluminum wires are not acceptable. Heating element branch circuits shall be individually fused to a maximum of 48 Amps per NEC requirements. The power supply for the electric heater shall be factory wired into the units main power block or disconnect switch.

15732 - 5 PACKAGED AIR COOLED REFRIGERATION October 17, 2016

- B. The heating modules shall have an automatic reset, high temperature limit safety protection. A secondary high limit protection shall also be provided that requires a manual reset. An airflow switch shall be provided with the heating module to prevent the electric heater from operating in the event of no airflow.
- C. The electric heat elements shall be controlled by the factory installed DDC unit control system. The heater shall have proportional SCR control. The unit controller shall modulate the electric heater to maintain the discharge air temperature setpoint.
- D. Field installed heating modules shall require a field ETL certification. Duct heaters mounted within the Packaged unit in the field shall not be acceptable. The manufacturer's Packaged unit ETL certification shall cover the complete unit including the electric heating modules

2.11 CONDENSING SECTION

- A. Outdoor coils shall have seamless copper tubes, mechanically bonded into aluminum plate-type fins. The fins shall have full drawn collars to completely cover the tubes. A sub-cooling coil shall be an integral part of the main outdoor air coil. Each outdoor air coil shall be factory leak tested with high-pressure air under water.
- B. Outdoor air coils shall be protected from incidental contact to coil fins by a coil guard. Coil guard shall be constructed of cross wire welded steel with PVC coating.
- C. Fan motors shall be an ECM type motor for proportional control. The unit controller shall proportionally control the speed of the condenser fan motors to maintain the head pressure of the refrigerant circuit from ambient condition of 0~125°F. Mechanical cooling shall be provided to 25° F. The motor shall include thermal overload protection and protect the motor in the case of excessive motor temperatures. The motor shall have phase failure protection and prevent the motor from operation in the event of a loss of phase.
- D. The condenser fan shall be low noise blade design. Fan blade design shall be a dynamic profile for low tip speed. Fan blade shall be of a composite material.
- E. The unit shall have scroll compressors. One of the compressors shall be an inverter compressor providing proportional control. The unit controller shall control the speed of the compressor to maintain the discharge air temperature.
- F. Pressure transducers shall be provided for the suction pressure and head pressure. Temperature sensor shall be provided for the suction temperature and the refrigerant discharge temperature of the compressors. All of the above devices shall be an input to the unit controller and the values be displayed at the unit controller.
- G. Refrigerant circuit shall have a bypass valve between the suction and discharge refrigerant lines for low head pressure compressor starting and increased compressor reliability. When there is a call for mechanical cooling the bypass valve shall open to equalizing the suction and discharge pressures. When pressures are equalized the bypass valve shall close and the compressor shall be allowed to start.
- H. Each circuit shall be dehydrated and factory charged with R-410A Refrigerant and oil.

2.12 ELECTRICAL

- A. Unit wiring shall comply with NEC requirements and with all applicable UL standards. All electrical components shall be UL recognized where applicable. All wiring and electrical components provided with the unit shall be number and color-coded and labeled according to the electrical diagram provided for easy identification. The unit shall be provided with a factory wired weatherproof control panel. Unit shall have a single point power terminal block for main power connection. A terminal board shall be provided for low voltage control wiring. Branch short circuit protection, 115-volt control circuit transformer and fuse, system switches, and a high temperature sensor shall also be provided with the unit. Each compressor and condenser fan motor shall be furnished with contactors and inherent thermal overload protection. Supply fan motors shall have contactors and external overload protection. Knockouts shall be provided in the bottom of the main control panels for field wiring entrance.
- B. A single non-fused disconnect switch shall be provided for disconnecting electrical power at the unit. Disconnect switches shall be mounted internally to the control panel and operated by an externally mounted handle.

2.13 CONTROLS

- A. Provide a complete integrated microprocessor based Direct Digital Control (DDC) system to control all unit functions including temperature control, scheduling, monitoring, unit safety protection, including compressor minimum run and minimum off times, and diagnostics. This system shall consist of all required temperature sensors, pressure sensors, controller and keypad/display operator interface. All MCBs and sensors shall be factory mounted, wired and tested.
- B. The stand-alone DDC controllers shall not be dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor shall maintain existing set points and operate stand alone if the unit loses either direct connect or network communications. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. All factory and user set schedules and control points shall be maintained in nonvolatile memory. No settings shall be lost, even during extended power shutdowns.
- C. The DDC control system shall permit starting and stopping of the unit locally or remotely. The control system shall be capable of providing a remote alarm indication. The unit control system shall provide for outside air damper actuation, emergency shutdown, remote heat enable/disable, remote cool enable/disable, heat indication, cool indication, and fan operation.
- D. All digital inputs and outputs shall be protected against damage from transients or incorrect voltages. All field wiring shall be terminated at a separate, clearly marked terminal strip

- E. The DDC controller shall have a built-in time schedule. The schedule shall be programmable from the unit keypad interface. The schedule shall be maintained in nonvolatile memory to insure that it is not lost during a power failure. There shall be one start/stop per day and a separate holiday schedule. The controller shall accept up to sixteen holidays each with up to a 5-day duration. Each unit shall also have the ability to accept a time schedule via BAS network communications.
- F. The keypad interface shall allow convenient navigation and access to all control functions. The unit keypad/display character format shall be 4 lines x 20 characters. All control settings shall be password protected against unauthorized changes. For ease of service, the display format shall be English language readout. Coded formats with look-up tables will not be accepted. The user interaction with the display shall provide the following information as a minimum:
 - 1.2 Return air temperature.
 - 2.2 Discharge air temperature.
 - 3.2 Outdoor air temperature.
 - 4.2 Space air temperature.
 - 5.2 Outdoor enthalpy, high/low.
 - 6.2 Compressor suction temperature and pressure
 - 7.2 Compressor head pressure and temperature
 - 8.2 Expansion valve position
 - 9.2 Condenser fan speed
 - 10.2 Inverter compressor speed
 - 11.2 Dirty filter indication.
 - 12.2 Airflow verification.
 - 13.2 Cooling status.
 - 14.2 Control temperature (Changeover).
 - 15.2 VAV box output status.
 - 16.2 Cooling status/capacity.
 - 17.2 Unit status.
 - 18.2 All time schedules.
 - 19.2 Active alarms with time and date.
 - 20.2 Previous alarms with time and date.
 - 21.2 Optimal start

- 22.2 Supply fan and exhaust fan speed.
- 23.2 System operating hours.
 - a. Fan
 - b. Exhaust fan
 - c. Cooling
 - d. Individual compressor
 - e. Heating
 - f. Economizer
 - g. Tenant override
- G. The user interaction with the keypad shall provide the following:
 - 1.2 Controls mode
 - a. Off manual
 - b. Auto
 - c. Heat/Cool
 - d. Cool only
 - e. Heat only
 - f. Fan only
 - 2.2 Occupancy mode
 - a. Auto
 - b. Occupied
 - c. Unoccupied
 - d. Tenant override
 - 3.2 Unit operation changeover control
 - a. Return air temperature
 - b. Space temperature
 - c. Network signal
 - 4.2 Cooling and heating change-over temperature with deadband
 - 5.2 Cooling discharge air temperature (DAT)
 - 6.2 Supply reset options
 - a. Return air temperature
 - b. Outdoor air temperature
 - c. Space temperature
 - d. Airflow (VAV)
 - e. Network signal
 - f. External (0-10 vdc)
 - g. External (0-20 mA)
 - 7.2 Temperature alarm limits
 - a. High supply air temperature

- b. Low supply air temperature
- c. High return air temperature
- 8.2 Lockout control for compressors.
- 9.2 Compressor interstage timers
- 10.2 Night setback and setup space temperature.
- 11.2 Building static pressure.
- 12.2 Economizer changeover
 - a. Enthalpy
 - b. Drybulb temperature
- 13.2 Currently time and date
- 14.2 Tenant override time
- 15.2 Occupied/unoccupied time schedule
- 16.2 One event schedule
- 17.2 Holiday dates and duration
- 18.2 Adjustable set points
- 19.2 Service mode
 - a. Timers normal (all time delays normal)
 - b. Timers fast (all time delays 20 sec)
- H. If the unit is to be programmed with a night setback or setup function, an optional space sensor shall be provided. Space sensors shall be available to support field selectable features. Sensor options shall include:
 - 1.2 Zone sensor with tenant override switch plus heating and cooling set point adjustment. (Space Comfort Control systems only)
- I. To increase the efficiency of the cooling system the DDC controller shall include a discharge air temperature reset program for part load operating conditions. The discharge air temperature shall be controlled between a minimum and a maximum discharge air temperature (DAT) based on one of the following inputs:
 - 1.2 Airflow
 - 2.2 Outside air temperature
 - 3.2 Space temperature
 - 4.2 Return air temperature
 - 5.2 External signal of 1-5 vdc

- 6.2 External signal of 0-20 mA
- 7.2 Network signal
- J. The DDC controller is Daikin DIII net compatible for control interface with the Daikin I-Touch control system.
- 2.14 BASE CURB
 - A. A prefabricated 14-gauge galvanized steel, mounting curb shall be provided for field assembly on the concrete pad prior to unit shipment. The curb shall be a full perimeter type with complete perimeter support of the air handling section and condensing section. The curb shall be a minimum of 12" high and include a nominal 2" x 4" wood nailing strip. Gasket shall be provided for field mounting between the unit base and curb. Provide engineered curb to meet Florida Building Code 2014 with wind load calculations.

PART 3 – EXAMINATION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before packaged air-cooled equipment installation. Reject insulation materials and filter media that do not comply, or are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for electrical services to verify actual locations of connections before installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Unit Support:
 - 1. Install floor-mounted or side discharge units on 4-inch-high housekeeping pad concrete base or minimum height required for proper unit trapping.
- B. Install units with clearances for service and maintenance.
- C. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- D. Comply with ANSI Z223.1 and CGA B149.1 or CGA B149.2 for field gas piping and venting.
- E. Pipe condensate drains from drain pans to nearest floor drain.

- 3.3 CONNECTIONS
- A. Comply with requirements for ductwork specified in Section 233113 "Metal Ducts."
- B. Install electrical devices furnished with units but not factory mounted.
- 3.4 FIELD QUALITY CONTROL
 - A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
 - B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including all connections.
 - C. Tests and Inspections:
 - 1. Operational Test: After electrical circuitry has been energized and crankcase heaters have had sufficient on-time, start units to confirm proper motor rotation and unit operation.
 - 2. Enter or adjust all controller set-points as required to meet specific project requirements.
 - 3. Set initial temperature and humidity set points.
 - 4. Set field-adjustable switches as indicated.
 - D. Packaged air-cooled equipment will be considered defective if it does not pass tests and inspections.
 - E. Prepare test and inspection reports.
- 3.5 SEQUENCE OF OPERATION
- A. As indicated elsewhere in the project documents.
- 3.6 DEMONSTRATION
 - A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged air-cooled units.

END OF SECTION 15732

SECTION 16050 - BASIC ELECTRICAL MATERIALS & METHODS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways and cables.
 - 3. Sleeve seals.
 - 4. Common electrical installation requirements.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- 1.3 QUALITY ASSURANCE
 - A. Test Equipment Suitability and Calibration: Comply with NETA ATS, "Suitability of Test Equipment" and "Test Instrument Calibration."
- 1.4 COORDINATION
 - A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
 - 5. So that underground raceways that extend under the building grade slab are routed clear of footings, grade beams and similar including drainage provisions and the work of other trades. Where the number of sweeps or bends exceeds practical limits, furnish and install hand holes, manholes and similar appurtenances to facilitate the pulling in of cables.
 - 6. So that raceways run "overhead" are located at elevations and in such a manner that does not interfere with the work of other trades or restrict proper use and access of the area or space in which the raceway is located. In particular locate circuitry to Connector Strips at a suitable elevation above the catwalks.
 - B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."
- D. Coordinate electrical testing of electrical, mechanical, and architectural items, so equipment and systems that are functionally interdependent are tested to demonstrate successful interoperability.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Coordinate sleeve selection and application with selection and application of firestopping.

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Plastic. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Coordinate sleeve selection and application with selection and application of firestopping.
- C. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials.
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.

3.3 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

END OF SECTION 16050

SECTION 16060 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes methods and materials for grounding systems and equipment.
- 1.2 SUBMITTALS
 - A. Product Data: For each type of product indicated.
 - B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 3/0 stranded.
 - 5. Bonding Conductor: No. 4, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

16060 - 1 GROUNDING & BONDING October 17, 2016

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressuretype, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- 2.3 GROUNDING ELECTRODES

Not used.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for #10 AWG and smaller, and stranded conductors for #8 AWG and larger, unless otherwise indicated.
- B. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.

16060 - 2 GROUNDING & BONDING October 17, 2016

- 8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.
- 9. Computer and Rack-Mounted Electronic Equipment Circuits: Install insulated equipment grounding conductor in branch-circuit runs from equipment-area power panels and power-distribution units.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater: Install a separate insulated equipment grounding conductor to each electric water heater. Bond conductor to heater units, piping, connected equipment, and components.
- D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- E. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch (6-by-50-by-300-mm) grounding bus.
 - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.
- F. Metal or Wood Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods:

16060 - 3 GROUNDING & BONDING October 17, 2016 Not used.

- C. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.
- 3.4 FIELD QUALITY CONTROL
 - A. Perform the following tests and inspections and prepare test reports:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - B. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 - C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify engineer promptly and include recommendations to reduce ground resistance.

END OF SECTION 16060

16060 - 4 GROUNDING & BONDING October 17, 2016 SECTION 16072 - ELECTRICAL SUPPORTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.2 SUBMITTALS

A. Product Data: Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of component used.

1.3 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed under this Project, with a minimum structural safety factor of 5 times the applied force.
- B. Steel Slotted Support Systems: Comply with MFMA-3, factory-fabricated components for field assembly, and provide finish suitable for the environment in which installed.

16072 - 1 ELECTRICAL SUPPORTS October 17, 2016

- 1. Manufacturers:
 - a. Cooper B-Line; a division of Cooper Industries.
 - b. ERICO International Corporation.
 - c. Allied Support Systems; Power-Strut Unit.
 - d. GS Metals Corp.
 - e. Michigan Hanger Co., Inc.; O-Strut Div.
 - f. National Pipe Hanger Corp.
 - g. Thomas & Betts Corporation.
 - h. Unistrut; Tyco International, Ltd.
 - i. Wesanco, Inc.
- 2. Channel Dimensions: Selected for structural loading
- C. Raceway and Cable Supports: As described in NECA 1.
- D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Manufacturers:
 - 1) Cooper B-Line; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti, Inc.
 - 4) ITW Construction Products.
 - 5) MKT Fastening, LLC.
 - 6) Powers Fasteners.
 - 2. Concrete Inserts: Steel or malleable-iron slotted-support-system units similar to MSS Type 18; complying with MFMA-3 or MSS SP-58.
 - 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

16072 - 2 ELECTRICAL SUPPORTS October 17, 2016

- 4. Through Bolts: Structural type, hex head, high strength. Comply with ASTM A 325.
- 5. Toggle Bolts: All-steel springhead type.
- 6. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 5 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 for application of hangers and supports for electrical equipment and systems, unless requirements in this Section or applicable Code are stricter.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 for installation requirements, except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods, unless otherwise indicated by Code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. To Steel: [Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts] [Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69] [Spring-tension clamps].
 - 6. To Light Steel: Sheet metal screws.

16072 - 3 ELECTRICAL SUPPORTS October 17, 2016

- 7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 5 Section "Metal Fabrications" for sitefabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions.
- B. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so expansion anchors will be a minimum of 10 bolt diameters from edge of the base.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of the base.
 - 2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 3. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 6. Use 3000-psi (20.7-MPa)], 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 3 Section "Cast-in-Place Concrete (Limited Applications)."

END OF SECTION 1607

16072 - 4 ELECTRICAL SUPPORTS October 17, 2016 SECTION 16075 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Identification for conductors and communication and control cable.
 - 2. Warning labels and signs.
 - 3. Equipment identification labels.

1.2 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- 1.3 QUALITY ASSURANCE
 - A. Comply with ANSI A13.1.
- 1.4 COORDINATION
 - A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

PART 2 - PRODUCTS

- 2.1 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS
 - A. Marker Tape: Vinyl or vinyl -cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- 2.2 WARNING LABELS AND SIGNS
 - A. Comply with NFPA 70, NFPA 70 E and 29 CFR 1910.145.

16075 - 1 ELECTRICAL IDENTIFICATION October 17, 2016
- B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
- C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm).
- D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm).
- E. Fasteners for Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
- F. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 mm)."
 - 3. PPE Personnel protection equipment labels identifying level of hazard and the required protective items as prescribed by NEC 70 E.

2.3 EQUIPMENT IDENTIFICATION LABELS

- A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and ultraviolet-resistant seal for label.
- B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

PART 3 - EXECUTION

3.1 APPLICATION

A. Auxiliary Electrical Systems Conductor and Cable Identification: Use marker tape to identify field-installed alarm, control, signal, sound, intercommunications, voice, and data wiring connections.

16075 - 2 ELECTRICAL IDENTIFICATION October 17, 2016

- 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and cable pull points. Identify by system and circuit designation.
- 2. Use system of designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
- B. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply [self-adhesive warning labels]. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
 - 2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- C. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: [Self-adhesive, engraved, laminated acrylic or melamine label]. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label, drilled for screw attachment.
 - c. Elevated Components: Increase sizes of labels and legend to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled:
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Electrical switchgear and switchboards.
 - c. Transformers.
 - d. Motor-control centers.
 - e. Disconnect switches.
 - f. Enclosed circuit breakers.
 - g. Motor starters.
 - h. Push-button stations.

16075 - 3 ELECTRICAL IDENTIFICATION October 17, 2016

- i. Power transfer equipment.
- j. Contactors.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.

END OF SECTION 16075

16075 - 4 ELECTRICAL IDENTIFICATION October 17, 2016 SECTION 16120 - CONDUCTORS & CABLES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
 - 3. Sleeves and sleeve seals for cables.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.
- 1.3 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with NFPA 70.

PART 2 - PRODUCTS

- 2.1 CONDUCTORS AND CABLES
 - A. Aluminum and Copper Conductors: Comply with NEMA WC 70.
 - B. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN, THHW and other insulation types as required based on the environment to which the conductor will be subjected.

2.2 CONNECTORS AND SPLICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

16120 - 1 CONDUCTORS & CABLES October 17, 2016

- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. 3M; Electrical Products Division.
 - 5. Tyco Electronics Corp.
 - 6. Ilsco
 - 7. NSI Industries "Polaris Taps"
- C. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
- D. Where required due to limitations on the "approved termination devices" provided with equipment (approved for use by the AHJ, the contractor shall provided "transition boxes" and connectors to allow for the reduction of conductor size (oversized to account for voltage drop) to occur without voiding warranties or violating code limitations on wire bending space, clearance or cross sectional area limits.

2.3 SLEEVES FOR CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Coordinate sleeve selection and application with selection and application of firestopping.

2.4 SLEEVE SEALS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Calpico, Inc.

16120 - 2 CONDUCTORS & CABLES October 17, 2016

- 3. Metraflex Co.
- 4. Pipeline Seal and Insulator, Inc.
- D. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - 1. Sealing Elements: EPDM or NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 2. Pressure Plates: Plastic, include two for each sealing element.
 - 3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type THHW or THHN-THWN, single conductors in raceway.
 - B. Exposed Feeders: Type THHW or THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC.
 - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHW or THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC.
 - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHW or THHN-THWN, single conductors in raceway.
 - E. Exposed Branch Circuits, Including in Crawlspaces: Type THHW or THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC.
 - F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHW or THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC.

16120 - 3 CONDUCTORS & CABLES October 17, 2016

- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHW or THHN-THWN, single conductors in raceway.
- H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- I. Class 1 Control Circuits: Type THHW or THHN-THWN, in raceway.
- J. Class 2 Control Circuits: Type THHW or THHN-THWN, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 16 Section "Electrical Supports".
- F. Identify and color-code conductors and cables according to Division 16 Section "Electrical Identification."
- G. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- H. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- I. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Coordinate sleeve selection and application with selection and application of firestopping.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- D. Cut sleeves to length for mounting flush with both wall surfaces.
- E. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- F. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and cable unless sleeve seal is to be installed.
- G. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- H. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint.
- I. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials.
- J. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.
- K. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- L. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

- A. Install to seal underground exterior-wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve

16120 - 5 CONDUCTORS & CABLES October 17, 2016 seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

- A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.
- 3.7 FIELD QUALITY CONTROL
 - A. Perform tests and inspections and prepare test reports.
 - B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test[service entrance and feeder conductors, and conductors feeding the following critical equipment and services] for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
 - D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 16120

16120 - 6 CONDUCTORS & CABLES October 17, 2016

SECTION 16130 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 – GENERAL

- 1.1 SYSTEM DESCRIPTION
 - A. Materials shall bear Underwriters Laboratories (UL) labels.
- 1.2 SUBMITTALS
 - A. Product Data: Manufacturer's literature including printed installation instructions and recommendations before starting work. Submit samples if requested.
- 1.3 QUALITY ASSURANCE
 - A. Electrical Component Standard: Components and installation shall comply with NFPA 70 National Electrical Code (NEC).
- PART 2 PRODUCTS
- 2.1 EQUIPMENT
 - A. Conduit shall be sized according to NEC, unless otherwise noted. Feeders and home runs shall not be less than 3/4" diameter.
 - B. Rigid Conduit:
 - 1. Galvanized Rigid Steel Conduit (GRS): Hot dip galvanized or electro-galvanized, with corrosion resistant coating on the inside, threaded, standard weight steel conduit complying with ANSI C80.1-1990, and Article 346 of the National Electrical Code (NEC).
 - 2. Intermediate Metal Conduit (IMC): Hot dip galvanized or electro-galvanized, threaded, steel conduit complying with ANSI C80.6-1986 and Article 345 of the NEC.
 - 3. Rigid Non-Metallic: Schedule 40 or 80, PVC plastic 90 degrees C. complying with ANSI/UL 651-1989, and Article 347 of the NEC.
 - C. Electrical Metallic Tubing (EMT):
 - 1. Galvanized steel tubing with smooth interior coat of lacquer enamel or zinc coat.
 - 2. Comply with ANSI C80.3-1983, and UL 797, and Article 348 of the NEC.
 - D. Flexible Metal Conduit:
 - 1. Steel: Flexible galvanized steel conduit (Greenfield) complying with UL 1 and Article 350 of the NEC.
 - 2. Liquid Tight: Flexible galvanized steel conduit with oil and water-resistant overall plastic sheath, complying with UL 1, and Article 351 of the NEC.

- 3. Minimum size for flexible metal conduit 13/4" except 3/8" where allowed by Section 349 of the NEC for connections to lighting fixtures.
- E. Conduit Fittings:
 - 1. Rigid Steel Conduit and Intermediate Metal Conduit: Zinc or cadmium plated steel or galvanized malleable iron complying with ANSI C80.1 and C80.3. Fittings shall be threaded type. Die cast zinc alloy fittings are not allowed.
 - 2. Rigid PVC conduit: 90 degrees C., PVC fittings UL listed. Fittings shall match conduit and complying with ANSI/UL 651-1989.
 - 3. EMT fittings: Zinc or cadmium plated steel or malleable iron of the compression type or stainless steel multiple point locking (set screw) type. Connectors shall have insulated throats. Fittings shall comply with ANSI C80.3-1983. Die cast zinc alloy fittings are not allowed.
 - 4. Flexible metal conduit fittings: Steel or malleable iron only with insulated throat, complying with Fed. Spec.W-F-406B. Die cast zinc alloy fittings are not allowed.
 - 5. Bushings and connectors shall incorporate an insulating insert of at least 150 degrees C. rated plastic or 105 degrees C. rated nylon. Conduit bushings made entirely of nonmetallic material are not allowed. Grounding and bonding bushings shall have clamp type terminal for copper conductor.
 - 6. Expansion Fittings and Sealing Fittings: UL listed with ground continuity means.
- F. Conduit Supports:
 - 1. Straps: Formed zinc coated steel or malleable iron one-hole pipe straps or conduit clamps sized for conduits or tubing.
 - 2. Fastenings: Zinc coated or cadmium plated steel screws, bolts, toggles, and expansion anchors as required.
 - 3. Electrical steel channels shall be equivalent to Unistrut P-3000 Series. Provide trapeze, clamps, supports, concrete inserts, galvanized steel or plated steel with galvanized conduit clamps, and threaded 1/4" diameter minimum suspension rods.
 - 4. For individual branch circuit EMT or flexible metal conduit concealed above accessible hung ceilings only, "caddy clips" spring steel conduit clamps.
- G. Conduit Coatings: Steel conduit buried directly in the earth shall receive a factory applied PVC coating or 2 coats of fibrated emulsion conduit coating. Comply with manufacturer's application recommendations.
- H. Wireways and Auxiliary Gutters:
 - 1. Hot dip galvanized code gage sheet steel, complete with knockouts, enclosures, and removable covers unless indicated as hinged.
 - 2. Manufacturers:

- a. Hoffman.
- b. Lee Products.
- c. Keystone.
- d. Square D.
- 3. Exterior locations shall have weathertight gasketed covers, joints, and drip-proof rain shields. Paint after installation with exterior enamel paint.
- 4. Wireways and gutters shall comply with Articles 362 and 374 of the National Electrical Code.
- I. Outlet Boxes:
 - 1. Provide outlet boxes at required locations, where shown on the drawings, and as specified.
 - a. Fixture studs shall be securely fastened in an acceptable manner.
 - b. Plaster covers shall have depths suitable to the finish being applied to the walls.
 - c. Sheet steel boxes shall be properly drilled and tapped.
 - d. There shall not be more holes in any of the outlet boxes than are required for the entering conduits.
 - e. Depth of boxes shall allow for easy wire pulling and proper installation of wiring devices.
 - f. Outlet boxes shall be galvanized steel or rust resistant malleable iron alloy and comply with Fed. Spec. WC-583 and ANSI-C33.65.
 - 2. Wet/Damp Locations:
 - a. Provide gasketed, weathertight, screw covers, code gage galvanized steel pull boxes with weatherproof conduit hubs equivalent to Myers Scru-Hub for pull boxes with multiple conduit entries.
 - b. Provide cast metal hub type, dipped in rust inhibitor and with gaskets for individual conduit runs.
 - 3. Extension Rings: Do not use to increase the volume of boxes, except where necessary due to multiple conduit run conflicts.
 - a. Where such conflicts occur, an extension ring may be allowed for changes in direction of conduit to make necessary clearances.
 - 1). Not more than one extension ring may be used for each box where necessary.
- J. Pull and Junction Boxes:
 - 1. Where indicated in the plans and specifications or where necessary for compliance with code requirements for cable installation, install junction and pull boxes of the proper size for conduits over 1 inch trade size. Pull and junction boxes shall be of adequate size to accommodate installation of conductors without excessive bending of conductors that could damage insulation.
 - 2. Pull and junction boxes shall comply with Fed.Spec.WJ-800 and be of all steel construction, spot or seam welded at joints, and hot dip galvanized after fabrication.

- 3. Boxes shall be drip proof with screw-attached covers. Each box shall have a turned-in lip welded at joint to develop full strength. Lip shall be drilled and tapped for 1/8" or 3/16" round head screws, symmetrically placed. To provide adequate length of thread, nuts shall be tack welded on inside of lip, or lip shall be made double thickness.
- 4. Pull and junction boxes shall be sufficiently rigid to withstand moderate twisting strains. Steel boxes shall comply with the following:
 - a. 100 cubic inches or less shall be of No.14 gage steel.
 - b. Between 101 and 8500 cubic inches shall be No.12 gage steel.
 - c. Larger boxes shall be No.10 gage steel.
- K. Barriers and reinforcing angles shall be supplied as required.

2.2 SLEEVES

- A. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- B. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness shall be 0.138 inch.

2.3 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.6 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 - 2. Sealant shall have VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 – EXECUTION

3.1 EXAMINATION

A. Do not proceed with the work of this Section until conditions detrimental to the proper and timely completion of the work have been corrected in an acceptable manner.

3.2 INSTALLATION

- A. Provide where indicated and where required, ducts, conduits, tubing, wireways, and gutters to form a complete and integrally grounded raceway system. The system shall be installed according to NEC and local code requirements. Components of the system shall be of sufficient size, strength, and capacity to allow for placements, pulling-in, or other installation of conductors, wires, cables, splices, taps, and terminations whether included in this Contract or for future use without strain or injury to those items being installed.
- B. Provide pull wires in empty raceways where no conductors are installed in this Contract. Allow 10 inches minimum slack at each end of pull wire and securely caulk in place.
- C. The minimum size of rigid conduit, EMT, and flexible metallic conduit shall be according to NEC except as follows:
 - 1. Unless otherwise specified under "Products" or shown on the Drawings.
 - 2. Unless otherwise shown on the Drawings, telephone conduits shall be not less than 1-inch trade size.
 - 3. Feeders and homeruns shall not be less than 3/4" diameter.
- D. Check sizes of raceways to determine the green equipment ground conductor specified, shown, or required can be installed in the same raceway with phase and neutral conductors according to the percentage of fill requirements of NEC. If necessary, increase the duct, conduit, tubing, or raceway sizes shown or specified to accommodate conductors without additional cost to the Owner.

- E. Raceway and Conduit Use Locations:
 - Unless indicated otherwise, conduit types specified shall be used in the following locations. Any deviation from this schedule shall be submitted for approval with corresponding price adjustments before installation. Any conduit installed and not of the specified type shall be removed and replaced with the specified type at no additional cost to the Owner.
 - 2. Exterior Raceways:
 - a. Below Grade Direct Buried:
 - 1). Galvanized rigid steel (GRS), painted or PVC jacketed.
 - 2). Schedule 40 or 80 PVC, as noted on plans.
 - b. Below Grade Concrete Encased: GRS or Schedule 40 PVC.
 - c. Flexible Conduit: PVC jacketed with liquid tight fittings.
 - d. Conduit exposed to the weather: GRS or painted or Schedule 80 PVC.
 - e. Gutters, wireways, and troughs shall be of the gasketed, raintight type.
 - f. Bury underground conduits as specified.
 - 3. Interior Raceways:
 - a. Under Slabs on Grade: GRS (painted or PVC coated), PVC.
 - b. Embedded in Concrete Walls or Floor On or Below Grade: PVC or GRS with threaded or concrete tight steel fittings.
 - c. Embedded in Concrete Walls or Floors Above Grade: PVC GRS or IMC with threaded or concrete tight steel fittings. EMT with concrete tight steel fittings.
 - d. Concealed in Masonry Walls: GRS or IMC with steel fittings. EMT with concrete tight fittings.
 - e. Concealed in dry wall construction, or in suspended ceilings: EMT or flexible metal conduit with steel fittings.
 - f. For Exposed Work:
 - 1). GRS or IMC below 8 feet from floor.
 - 2). EMT with steel fittings above 8 feet from the floor.
 - 3). Option: EMT installed below 8 feet from floor in electrical, mechanical, and telephone rooms.
 - 4. Sealing fittings shall be installed at the following points and as otherwise indicated:
 - a. Where conduits pass from warm locations to cold locations, such as refrigerated spaces and air-conditioned spaces, use to prevent passage of water vapor.
 - b. Where required by the NEC.
 - 5. PVC conduit shall not be used indoors either exposed or concealed, except embedded in concrete or under slabs on grade.
 - a. The depth of conduits under interior slabs shall be based on the minimum allowable bending radii of stub-ups.
 - b. Stub-ups on exterior and exterior walls shall be GRS, with transitions from PVC to GRS occurring below grade. Curves to stub-ups shall be GRS.
- F. Raceway and Conduit Installation:
 - 1. Conduit Routing:

- a. Route feeders, homeruns, and conduits as indicated, except for minor deviations as accepted.
- b. Maintain a minimum separation of 12 inches between conduits containing emergency feeders and conduits containing normal feeders.
- c. The routing of conduit, as shown on the plans, is general.
- d. Before installing any work, examine the working layouts of all other trades to determine exact locations and clearances.
- e. Where equipment is installed by other trades requiring connection as specified in this section, determine exact conduit entry locations from the approved shop drawings.
- f. Modifications to conduit runs shown on the electrical drawings, based on this section, shall be made without additional cost to the Owner, and shall be subject to A/E approval.
- g. In determining clearances, conduit shall not be run within 6 inches of any heated pipe or duct, or if unavoidable, the conduit must be kept at least 1 inch from the outer covering.
- 2. Conduits In Finished Spaces:
 - a. Conduits, fittings, outlet boxes, and pull boxes shall be concealed in ceilings, floor slabs, walls, or partitions of the buildings.
 - b. Provide sufficient space at concealed conduits over conduit and coupling for the applications of finished floor, walls, and ceilings.
 - c. Examine the Drawings, and if necessary, confer with the A/E to determine the type of construction containing the concealed conduits and the space available for such conduits.
 - d. Unless otherwise shown on the Drawings, conduit may be run exposed on unfinished walls, on unfurred basement ceilings, in mechanical rooms and in penthouses, attics, and roof spaces.
- 3. Roof Conduit:
 - a. Avoid running conduit on the roof wherever possible.
 - b. If absolutely necessary, roof mounted conduit shall be GRS or IMC, a minimum of 16 inches above roof on galvanized steel struts, securely supported, horizontally and vertically with pitch pans as required, on supports and conduit penetrations.
- 4. Conduits Penetrating Waterproof Membranes Under Floor Slabs on Grade:
 - a. Coordinate installation of conduits before installation of waterproof membrane.
 - b. Membrane to be sealed waterproof to conduits as specified.
 - c. Provide Schedule 40 galvanized steel pipe sleeves for conduits penetrating floor slabs as specified.
- 5. Conduits Penetrating Waterproof Membranes on Walls: Provide properly coordinated Schedule 40 galvanized steel pipe sleeves for conduits in concrete forms as specified. Membrane to be sealed waterproof to conduits as specified.
- 6. Conduit Bending, Cutting, and Placement:
 - a. Conduit bends and offsets shall be avoided where possible.
 - b. Required bends shall be made with standard benders designed for the purpose and with a minimum radius of 6 times the internal conduit diameter.

- c. Make conduit bends according to the NEC unless otherwise shown on the contract Drawings. Use of a pipe tee or vise for bending conduit is not allowed.
- d. Conduit crushed or deformed shall not be installed.
- e. Bends shall be free from dents or flattening. Bends more than 360 degrees are not allowed in conduit between any 2 terminations of pull boxes.
- f. Make no bend in surface raceways. Use factory formed fittings for surface raceways.
- g. Raceways shall not contain more than two 90 degree bends or equivalent. Provide additional junction or pull boxes to meet this requirement.
- h. The ends of conduit shall be carefully reamed out free from burrs before installation and after threading.
 - 1). Cuts shall be made square.
 - 2). Coupling of conduit by means of running threads is not allowed.
 - 3). Where it is impossible to run the conduit and coupling sections together, an Erickson coupling or other accepted combination coupling shall be used.
 - 4). Joints shall be made up tight.
 - 5). Joints in conduits concealed in slab, floor fill, earth, etc., shall be made using approved silicone paint on threads.
- i. Prevent lodgement of plaster, dirt, or trash in raceways, boxes, fittings, and equipment during course of construction. Clogged raceways shall be entirely freed of obstructions or replaced.
- j. During installation of conduit, unfinished runs and terminations in pull boxes, cabinets, etc., shall be capped until conductors are installed.
- k. Plastic caps designed for this specific purpose shall be used to cover and align conduits before concrete pours and shall remain on conduit stub-ups until conduit is extended. Caps shall have self-aligning, interlocking male or female wings molded on each side. Duct or electrical tape and wire are unacceptable.
- 7. Conduit Connections:
 - a. Conduit and EMT runs shall be mechanically and electrically continuous from service entrance to outlets. Unless otherwise specified, each conduit shall enter and be securely connected to a cabinet, junction box, pull box or outlet box by means of a locknut on the outside and a bushing on the inside or by means of a liquid-tight, threaded, self-locking, cold-weld type wedge adapter. Where nominal circuit voltage exceeds 250 volts:
 - 1). In rigid conduit, an additional locknut shall be provided, 1 inside locknut and 1 outside locknut.
 - 2). In EMT or flexible metal conduit, the 1 locknut shall be made wrenchtight.
 - 3). Locknuts shall be the bonding type with sharp edges for digging into the metal wall of an enclosure and shall be installed to provide a locking installation.
 - 4). Locknuts and bushings or self-locking adapters will not be required where conduits are screwed into tapped connections.
 - 5). Protect vertical runs of conduit or EMT terminating in the bottoms of wall boxes or cabinets, etc., from the entrance of foreign material before the installation of conductors.

- b. Plastic conduit joints shall be made by brushing a plastic solvent cement on the inside of the plastic coupling fitting and on the outside of the conduit ends. Slip together the conduit and fitting, until seated, with a slight twist to set the joint tightly, and the conduit then rotated one-half turn to distribute the cement evenly. Remove excess cement built-up on the surface of the conduit.
- c. The end of each conduit one inch and smaller shall be provided where it enters a junction box, outlet box, cabinet, etc., with the locknut and bushing. For conduits 1-1/4" and larger, use insulated bushings with ground stud. If insulated bushings are of the fully insulated type, use additional locknuts inside the junction box or cabinet before installing the bushing. Provide conduit entering main distribution switchboard feeder pull boxes with insulated bushing with ground stud regardless of size.
- d. Install the conduit system complete before any conductors are drawn in. Each run of conduit shall be blown through and swabbed after plaster is finished and dry, and before conductors are installed.
- e. Install conduit to drain any moisture, collecting in the conduit, to the nearest outlet or pull box, where possible.
- f. Where metallic conduit is exposed to different temperatures, seal the conduit to prevent condensation and passage of air from one area to the other.
- g. Light and power conduit shall run from a permanent and continuous ground return back to the service ground connection point. Conduits used on systems entirely isolated from the light and power distribution system shall be electrically continuous and grounded in an approved manner.
- 8. Conduit Penetrations and Supports:
 - a. Sleeves, conduits, or other pipes passing through floor slabs, beams, or walls shall be located to not impair the strength of the structure.
 - b. Conduits penetrating the walls or smoke partitions shall be fire stopped (sealed). Filling materials for openings in floors shall be fire-resistive, and finished to prevent passage of water, smoke and fumes. Filling material for openings in walls shall be fire-resistive where it occurs in fire walls, and shall be installed to prevent the passage of air, smoke or fumes. Where conduit and wiring pass through fire walls or floor slabs, the Contractor shall fill the opening with fireproof sealant.
 - c. Roof penetrations shall be made using approved flashings and counterflashings. Do not penetrate cant strips or expansion joint covers with conduits. Do not run conduits up through roof nearer than 12 inches from toe of cant strip. Where conduits penetrate exterior walls near flashings, penetration shall be at least 3 inches above the flashing reglet.
 - d. Where conduits passing through the openings are exposed in finished rooms, the finishes of the filling materials shall match and be flush with the adjoining floor, ceiling, or wall finishes.
 - e. Where unused sleeves or slots are provided for future installation of conduit, etc., they shall be suitably identified if not readily recognizable.
 - f. EMT and conduits not embedded in concrete or masonry shall be securely and independently supported so that no strain will be transmitted to outlet box and pull box supports, etc. Supports shall be rigid enough to prevent distortion of conduits during wire pulling.

- g. Run conduits exposed in unfinished spaces, mechanical equipment spaces, where specifically indicated on the Drawings, or with the expressed permission of the A/E.
 - 1). Feeder conduits shall be run exposed or in hung ceilings, except as noted.
 - 2). Where exposed conduits are installed, they shall be run parallel to the building walls or partitions, using approved conduit fittings.
 - Exposed conduits shall be securely supported with malleable iron pipe straps, angle iron pipe straps, angle iron or steel channel racks or other approved means as required for clearance of other piping or ductwork.
 - 4). Wood hangers and perforated sheet metal hanger straps are not allowed.
 - 5). Spacing of conduit supports shall not exceed 7 feet.
 - 6). Horizontal feeder conduit banks shall have their hangers fastened to the building structure by approved means.
 - 7). Hangers for banks consisting of 1 or 2 conduits may be fastened from inserts in the slab.
 - 8). Auxiliary steel for fastening shall be furnished and installed under this section.
- h. Support individual conduits not larger than 1-1/2" diameter by means of onehole pipe straps or individual pipe hangers. Support individual horizontal conduits larger than 1-1/2" diameter by individual pipe hangers.
- i. Conduit located in hung ceilings shall be supported in approved manner similar to exposed conduits.
- j. Branch circuit conduits above suspended ceilings may be supported from the floor construction above or from the main ceiling support members, however, the finished installation shall not interfere with the removability of ceiling panels. Individual branch conduits above suspended ceilings with removable panels may be supported from the ceiling suspension wires provided the load imposed on any individual wire is not greater than 64 pounds, including the ceiling weight.
- k. Unsupported vertical drops over 10 feet from bus ducts or at motors shall be in rigid steel conduit. For vertical drops of less than 10 feet, EMT may be used. Brace conduit to prevent swaying.
- I. Space conduits installed against concrete or masonry surfaces away from the surface by clamp backs or other approved means.
- m. In dry locations, spring steel fasteners, clips, or clamps specifically designed for supporting exposed single conduits may be used instead of pipe straps or pipe hangers.
 - Hanger rods used with spring steel fasteners shall be not less than 1/4" diameter steel with corrosion resistant finish.
 - 2). Spring steel fasteners shall be specifically designed for supporting single conduits or EMT
 - 3). Type, size and spacing of spring steel fasteners with accessories shall by approved by the A/E and the Contractor.
 - 4). Submit applicable load and rating data for approval.
 - 5). Wire shall not be used for support.
 - 6). Nails are not allowed for the support of conduit.

- n. Where 2 or more horizontal conduits or EMT run parallel and at the same elevation, they shall be supported on multiple trapeze pipe hangers. Each conduit or EMT shall be secured to the horizontal hanger member by a U-bolt, one-hole strap, or other suitably designed and approved fastener.
- o. U-bolts, clamps, attachments, and other hardware necessary for hanger assembly, and for securing hanger rods and conduits shall be provided. Each multiple hanger shall be designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger, plus 200 pounds. Hardware shall be hot-dip galvanized after fabrication.
- 9. Fittings:
 - a. Expansion Fittings: Each buried conduit in or rigidly secured to the building construction on opposite sides of a building expansion joint and each long run of exposed conduit that may be subject to excessive stresses shall be provided with an expansion fitting. Expansion fittings shall be made of hot dip galvanized malleable iron and shall have a factory-installed packing that will prevent the entrance of water, a pressure ring and a grounding ring.
 - b. In addition to the grounding ring, a separate external copper bonding jumper secured by grounding straps on each end of the fitting shall be provided.
 - c. Sealing Fittings: Sealing fittings for use with rigid steel conduits shall be of the threaded, zinc or cadmium coated, cast or malleable iron type. Fittings used to prevent passage of water vapor shall be of the continuous drain type.
 - d. Sealing fittings shall be installed and sealed according to the manufacturer's recommendations at suitable, approved, accessible locations. In concealed work, each fitting shall have an access door or panel to allow access to the fitting.
 - e. Compression fittings shall be made up tight according to manufacturer's recommendations. No screw type fittings are allowed.
- 10. Conduit Fastening: Fasten raceways as follows:
 - a. To Wood: Wood screws, sheet metal screws, or screw type nails.
 - b. To Hollow Masonry: Toggle bolts or expansion bolts as required. Holes not used to be filled.
 - c. To Concrete or Solid Brick Masonry: By expansion bolts. Holes drilled to a depth of more than 1-1/2".
 - d. To Steel Work: Machine screws, welded threaded studs, or spring-tension clamps. Raceways or pipe straps shall not be welded to steel structures.
 - e. To Light Steel Construction Partitions: Sheet metal screws. Bar hangers may be attached with saddle ties of 16 gage double strand zinc-coated steel wire.
 - f. Nail-type nylon anchors with lock washers and nuts may be used instead of expansion bolts or machine screws.
 - g. Explosive charge setting devices are not allowed for any type of fastening on the project.
 - h. Conduits, tubing, or raceways shall be continuous from outlet to outlet, cabinet, junction box, or pull box.
 - i. Surface Wireways and Auxiliary Gutters: Fasten according to manufacturer's directions with fastenings appropriate for surface as specified.
 - . Cable Supports in Vertical Raceways: According to NEC Article 300-19.
- 11. Flexible Conduit:

- a. Flexible conduits shall be used for connections to motors and other electrical equipment when it is subject to movement, vibration, misalignment, cramped quarters, or where noise transmission is to be eliminated or reduced. Flexible conduit used to meet the above requirements shall be of the liquid-tight type when installed under any of the following conditions:
 - 1). Exterior locations.
 - 2). Moisture or humidity laden atmosphere where it is possible for condensation to accumulate.
 - 3). Corrosive atmospheres.
 - 4). Where water or spray due to wash-down operations is frequent or possible.
 - 5). Wherever there is a possibility of seepage, dripping, etc., of oil, grease, or water.
- b. Flexible conduit shall be used for short connections to control devices, recessed fixtures, and similar items with enough slack to avoid tension. Connection between structure and first point of attachment to vibrating equipment shall be flexible.
- 12. Empty Conduits: Where empty conduit or tubing is indicated for wiring to be installed in future by utility company or by separate contract, install conduit or tubing according to previous requirements for conduit and tubing with following additional requirements:
 - a. No length of run shall exceed 75 feet for 3/4" size and 150 feet for 1 inch or larger sizes.
 - b. Raceways shall not contain more than two 90 degree bends or equivalent.
 - c. Install additional pull or junction boxes to comply with above limitations, whether or not indicated.
 - d. Inside radii of bends in conduits of 1 inch or larger shall be not less than 10 times nominal diameter.
 - a. Provide pull wire in empty raceways.
- 13. Painting: Paint exposed conduit to match the surrounding wall or ceiling it is mounted against.
- 14. Provide pull strings for all underground service conduits as well as for indoor conduits with lengths more than 70 feet.

3.3 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- C. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

- D. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- E. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.4 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.5 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.
- 3.6 FIELD QUALITY CONTROL
 - A. Grounding: Test to ensure electrical continuity of bonding and grounding connections.

END OF SECTION 16130

SECTION 16140 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Communications outlets.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.
- D. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
 - 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 3. Leviton Mfg. Company Inc. (Leviton).
 - 4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; 5351 (single), 5352 (duplex).
 - b. Hubbell; HBL5351 (single), CR5352 (duplex).
 - c. Leviton; 5891 (single), 5352 (duplex).
 - d. Pass & Seymour; 5381 (single), 5352 (duplex).

2.3 GFCI RECEPTACLES

- A. General Description: Straight blade, feed through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; GF20 or approved equal.

2.4 SNAP SWITCHES

- A. Comply with NEMA WD 1 and UL 20.
- B. Switches, 120/277 V, 20 A:
 - 1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
 - b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).
 - c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).
 - d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

2.5 COMMUNICATIONS SYSTEM

Not used.

2.6 WALL PLATES

- A. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic [0.035-inch- (1- mm-)
 - 3. Material for Unfinished Spaces: Smooth, high-impact thermoplastic.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in "wet locations."
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant die-cast aluminum with lockable cover.

2.7 FLOOR SERVICE FITTINGS

- A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
- B. Compartments: Barrier separates power from voice and data communication cabling.
- C. Service Plate: Rectangular, die-cast aluminum with satin finish.
- D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.
- E. Voice and Data Communication Outlet: Blank cover with bushed cable opening.

2.8 FINISHES

- A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: White, unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

- B. Coordination with Other Trades:
 - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.

- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.2 IDENTIFICATION

- A. Comply with Division 16 Section "Electrical Identification."
 - 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with white-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.
- B. Tests for Convenience Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective

devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.

END OF SECTION 16140

16140 - 6 WIRING DEVICES October 17, 2016

SECTION 16289 - TRANSIENT VOLTAGE SUPPRESSION

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes TVSSs for low-voltage power equipment.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating weights, operating characteristics, furnished specialties, and accessories.
- B. Field quality-control test reports.
- C. Operation and Maintenance Data.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Obtain suppression devices and accessories through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with IEEE C62.41, "IEEE Guide for Surge Voltages in Low Voltage AC Power Circuits," and test devices according to IEEE C62.45, "IEEE Guide on Surge Testing for Equipment Connected to Low-Voltage AC Power Circuits."
- D. Comply with NEMA LS 1, "Low Voltage Surge Protection Devices."
- E. Comply with UL 1283, "Electromagnetic Interference Filters," and UL 1449, "Transient Voltage Surge Suppressors."

1.4 PROJECT CONDITIONS

- A. Service Conditions: Rate surge protection devices for continuous operation under the following conditions, unless otherwise indicated:
 - 1. Maximum Continuous Operating Voltage: Not less than 115 percent of nominal system operating voltage.
 - 2. Operating Temperature: 30 to 120 deg F (0 to 50 deg C).
 - 3. Humidity: 0 to 85 percent, noncondensing.
 - 4. Altitude: Less than 20,000 feet (6090 m) above sea level.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Protection Technologies, Inc.
 - 2. Atlantic Scientific.
 - 3. Current Technology, Inc.
 - 4. Cutler-Hammer, Inc.; Eaton Corporation.
 - 5. Entrelec International.
 - 6. General Electric Company.
 - 7. Innovative Technology, Inc.
 - 8. Intermatic, Inc.
 - 9. LEA International.
 - 10. Leviton Mfg. Company Inc.
 - 11. Liebert Corporation; a division of Emerson.
 - 12. Northern Technologies, Inc.
 - 13. Siemens Energy & Automation, Inc.
 - 14. Square D; Schneider Electric.
 - 15. Surge Suppression Incorporated.
 - 16. Sutton Designs Inc.
 - 17. Transtector Systems, Inc.
 - 18. Tycor; Cutler-Hammer, Inc.
 - 19. United Power Corporation.
 - 20. Zero Surge Inc.

2.2 PANELBOARD SUPPRESSORS

- A. Surge Protection Device Description: Non-modular, sine-wave-tracking type with the following features and accessories:
 - 1. LED indicator lights for power and protection status.
 - 2. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 3. Fuses, rated at 200-kA interrupting capacity.
 - 4. Integral disconnect switch.
 - 5. Redundant suppression circuits.
 - 6. Surge-event operations counter.
- B. Peak Single-Impulse Surge Current Rating: 160 kA per phase.
- C. Protection modes and UL 1449 suppressed voltage rating for grounded wye circuits with voltages of 480Y/277, 208Y/120, 3-phase, 4-wire circuits shall be as follows:

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- 1. Line to Neutral: 800 V for 480Y/277, 400 V for 208Y/120.
- 2. Line to Ground: 800 V for 480Y/277, 400 V for 208Y/120
- 3. Neutral to Ground: 800 V for 480Y/277, 400 V for 208Y/120
- D. Protection modes and UL 1449 suppressed voltage rating for 240/120-V, single-phase, 3-wire circuits shall be as follows:
 - 1. Line to Neutral: 400 V.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.
- E. Protection modes and UL 1449 suppressed voltage rating for 240/120-V, 3-phase, 4wire circuits with high leg shall be as follows:
 - 1. Line to Neutral: 400 V, 800 V from high leg.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.
- F. Protection modes and UL 1449 suppressed voltage rating for voltages of 240 or 480, 3phase, 3-wire, delta circuits shall be as follows:
 - 1. Line to Line: 2000 V for 480 V, 1000 V for 240 V.
 - 2. Line to Ground: 1500 V for 480 V, 800 V for 240 V.

2.3 SUPPRESSORS FOR ELECTRONIC-GRADE PANELBOARDS

- A. Surge Protection Device Description: Sine-wave-tracking type, panel-mounted design with the following features and accessories:
 - 1. LED indicator lights for power and protection status.
 - 2. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 3. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
- B. Peak Single-Impulse Surge Current Rating: 160kA per phase.
- C. Protection modes and UL 1449 suppressed voltage rating for grounded wye circuits with voltages of 480Y/277, 208Y/120, 3-phase, 4-wire circuits shall be as follows:
 - 1. Line to Neutral: 800 V for 480Y/277, 400 V for 208Y/120
 - 2. Line to Ground: 800 V for 480Y/277, 400 V for 208Y/120
 - 3. Neutral to Ground: 800 V for 480Y/277, 400 V for 208Y/120
- D. Protection modes and UL 1449 suppressed voltage rating for 240/120-V, single-phase, 3-wire circuits shall be as follows:
 - 1. Line to Neutral: 400 V.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.

- E. Protection modes and UL 1449 suppressed voltage rating for 240/120-V, 3-phase, 4wire circuits with high leg shall be as follows:
 - 1. Line to Neutral: 400 V, 800 V from high leg.
 - 2. Line to Ground: 400 V.
 - 3. Neutral to Ground: 400 V.
- F. Protection modes and UL 1449 suppressed voltage rating for voltages of 240, 480, or 600, 3-phase, 3-wire, delta circuits shall be as follows:
 - 1. Line to Line: 2000 V for 480 V, 1000 V for 240 V.
 - 2. Line to Ground: 1500 V for 480 V, 800 V for 240 V.

2.4 ENCLOSURES

A. NEMA 250, with type matching the enclosure of panel or device being protected.

PART 3 - EXECUTION

3.1 INSTALLATION OF SURGE PROTECTION DEVICES

- A. Install devices at service entrance on load side, with ground lead bonded to service entrance ground.
- B. Install devices for panelboard and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - 1. Provide multipole, 30, 60 or 100]-A circuit breaker as a dedicated disconnect for suppressor, unless otherwise indicated.

3.2 PLACING SYSTEM INTO SERVICE

A. Do not energize or connect panelboards to their sources until surge protection devices are installed and connected.

3.3 FIELD QUALITY CONTROL

- A. Testing: Perform the following field tests and inspections and prepare test reports:
 - 1. Complete startup checks according to manufacturer's written instructions.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.

END OF SECTION 16289

SECTION 16410 - ENCLOSED SWITCHES & CIRCUIT BREAKERS

PART 1 - GENERAL

- 1.1 SUMMARY
 - A. This Section includes the following individually mounted, enclosed switches and circuit breakers:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers.
 - 4. Enclosures.

1.2 SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

16410 - 1 ENCLOSED SWITCHES & CIRCUIT BREAKERS October 17, 2016

2.2 FUSIBLE AND NONFUSIBLE SWITCHES

- A. Manufacturers:
 - 1. Eaton Corporation; Cutler-Hammer Products.
 - 2. General Electric Co.; Electrical Distribution & Control Division.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D/Group Schneider.
- B. Fusible Switch, 600 A and Smaller: NEMA KS 1, Type HD, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- C. Nonfusible Switch, 600A and Smaller: NEMA KS 1, Type HD, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.
- D. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded, and bonded; and labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Auxiliary set of contacts arranged to open before switch blades open.

2.3 MOLDED-CASE CIRCUIT BREAKERS AND SWITCHES

- A. Manufacturers:
 - 1. Eaton Corporation; Cutler-Hammer Products.
 - 2. General Electric Co.; Electrical Distribution & Control Division.
 - 3. Moeller Electric Corporation.
 - 4. Siemens Energy & Automation, Inc.
 - 5. Square D/Group Schneider.
- B. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller and letthrough ratings less than NEMA FU 1, RK-5.
 - 4. GFCI Circuit Breakers: Single- and two-pole configurations with [5]-mA trip sensitivity.
- C. Molded-Case Circuit-Breaker Features and Accessories:

- 1. Standard frame sizes, trip ratings, and number of poles.
- 2. Lugs: Mechanical style with compression lug kits suitable for number, size, trip ratings, and conductor material.
- 3. Application Listing: Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
- 4. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
- 5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.

2.4 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Outdoor Locations: NEMA 250, Type 3R.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.
 - B. Concrete base is specified in Division 16 Section "Basic Electrical Materials and Methods Electrical Supports and Seismic Restraints," and concrete materials and installation requirements are specified in Division 3.
 - C. Comply with applicable portions of NECA 1, NEMA PB 1.1, and NEMA PB 2.1 for installation of enclosed switches and circuit breakers.
 - D. Mount individual wall-mounting switches and circuit breakers with tops at uniform height, unless otherwise indicated. Anchor floor-mounting switches to concrete base.
 - E. Comply with mounting and anchoring requirements specified in Division 16 Section "Seismic Controls for Electrical WorkElectrical Supports and Seismic Restraints."
 - F. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
 - G. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Electrical Identification."

3.2 FIELD QUALITY CONTROL

- A. Prepare for acceptance testing as follows:
 - 1. Inspect mechanical and electrical connections.
 - 2. Verify switch and relay type and labeling verification.
 - 3. Verify rating of installed fuses.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

END OF SECTION 16410

SECTION 16442 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 SUBMITTALS

- A. Product Data: For each type of panelboard, overcurrent protective device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Short-circuit current rating of panelboards and overcurrent protective devices.
 - d. UL listing for series rating of installed devices.
 - e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
 - 3. Field quality-control test reports.
 - 4. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 - a. Eaton Corporation; Cutler-Hammer Products.
 - b. General Electric Co.; Electrical Distribution & Protection Div.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D.

2.2 MANUFACTURED UNITS

- A. Enclosures: Flush- and surface mounted cabinets. NEMA PB 1, Type 1.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Locations: NEMA 250, Type 1.
 - b. Other Wet or Damp Indoor Locations: NEMA 250, Type 3R
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
- B. Phase and Ground Buses: Hard-drawn copper, 98 percent conductivity.
- C. Conductor Connectors: Suitable for use with conductor material.
 - 1. Ground Lugs and Bus Configured Terminators: Compression type.
- D. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches.
- E. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.
- F. Panelboard Short-Circuit Rating:
 - 1. UL label indicating series-connected rating with integral or remote upstream overcurrent protective devices. Include size and type of upstream device

16442 - 2 PANELBOARDS October 17, 2016 allowable, branch devices allowable, and UL series-connected short-circuit rating.

2.3 DISTRIBUTION PANELBOARDS

- A. Doors: Secured with vault-type latch with tumbler lock; keyed alike. Omit for fusedswitch panelboards.
- B. Main Overcurrent Protective Devices: Circuit breaker or Fused switch.
- C. Branch Overcurrent Protective Devices:
 - 1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Plug-in circuit breakers.
 - 2. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
 - 3. Fused switches.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
- B. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- C. Non-Dimmed Panels "ND" as defined in the DSL documents are to be equipped with micro-processor based programmable logic controllers as manufactured by Eaton and of the "Power Command" style or "Lyn Tec" style.

2.5 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: UL 489, with series-connected rating to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
 - 3. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - a. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 - b. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.

- c. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
- B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
- C. Fuses are specified in Division 16 Section "Fuses."

2.6 ACCESSORY COMPONENTS AND FEATURES

- A. Furnish accessory set including tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.
- B. Furnish portable test set to test functions of solid-state trip devices without removal from panelboard.
- C. Fungus Proofing: Permanent fungicidal treatment for panelboard interior, including overcurrent protective devices and other components.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Install panelboards and accessories according to NEMA PB 1.1.
 - B. Comply with mounting and anchoring requirements specified in Division 16 Section " Electrical Work Electrical Supports."
 - C. Mount top of trim 74 inches (1880 mm) above finished floor, unless otherwise indicated.
 - D. Mount plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.
 - E. Install overcurrent protective devices and controllers.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
 - F. Install filler plates in unused spaces.
 - G. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.
 - H. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Electrical Identification."

- I. Panelboard Nameplates: Label each panelboard with engraved metal or laminatedplastic nameplate mounted with corrosion-resistant screws.
- J. Ground equipment according to Division 16 Section "Grounding and Bonding."
- K. Connect wiring according to Division 16 Section "Conductors and Cables."
- 3.2 FIELD QUALITY CONTROL
 - A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - B. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

END OF SECTION 16442

16442 - 5 PANELBOARDS October 17, 2016 SECTION 16511 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.

1.2 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes.
- 1.3 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with NFPA 70.

PART 2 - PRODUCTS

A. Identified on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
- B. Comply with NFPA 70 for minimum fixture supports.
- C. Suspended Lighting Fixture Support:
 - 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.

Orange County FMD Special Services Building 1944 HVAC/Electrical/Interior Upgrades

- 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
- 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- D. Air-Handling Lighting Fixtures: Install with dampers closed and ready for adjustment.
- E. Adjust aimable lighting fixtures to provide required light intensities.
- F. Connect wiring according to Division 16 Section "Conductors and Cables."
- 3.2 FIELD QUALITY CONTROL
 - A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
 - B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 16511

16511 - 2 INTERIOR LIGHTING October 17, 2016