Orange County Convention Center

West Building Restroom Renovations

Orange County Convention Center, 9800 Universal Boulevard, Orlando, Florida 32819

PERMIT & BID SET Documents Specifications

Contract No. Y16-804MM

HHCP Project #3767.00 AA C000332

06 | 20 | 2016

Board of County Commissioners

Orange County Mayor Teresa Jacobs District 1 Commissioner S. Scott Boyd

District 2 Commissioner Bryan Nelson District 3 Commissioner Pete Clarke

District 4 Commissioner Jennifer Thompson

District 5 Commissioner Ted Edwards
District 6 Commissioner Victoria P. Siplin

Interior Design

TJNG Partners, Inc.

205 E. Central Blvd., Suite 500 Orlando, Florida 32801 Tel: (407) 644-2445

www.tjngpartners.com

M.E.P. & Fire Protection

SGM Engineering Inc.

935 Lake Baldwin Lane Orlando, Florida 32814

Tel: (407) 767-5188

www.sgmengineering.com

Structural Engineering

TLC Engineering for Architecture

255 S. Orange Avenue, Suite 1600 Orlando, Florida 32801

Tel: (407) 841-9050

www.tlc-engineers.com

Door & Hardware

Robert A. Johnson, DAHC/CDC

7650 Knightwing Circle Ft. Myers, Florida 33912

Tel: (800) 251-6215

bjohnson.sns@gmail.com

Architectural Support

ArchiSpec, Inc.

653 Mallory Hill Drive

Lady Lake, FL 32162

Tel: (352) 430-0987

www.archispec.net

Cost Estimation

Blue Cord Design

& Construction

1837 Edgewater Drive Orlando, Florida 32804

Tel: (407) 425-1390

www.blue-cord.com

Signage

Bockstall Design Associates

680 Mourning Dove Circle

Lake Mary, FL 32746

(407) 810-3442

www.bockstalldesign.com

HELMAN HURLEY CHARVAT PEACOCK/ARCHITECTS, INC.

120 N Orange Ave. Orlando, Florida 32801

P:: 407.644.2656 F:: 407.628.3269

HHCP.com

Orange County Convention Center

West Building Restroom Renovations

Table of Contents

Volume 2 – Technical Specifications

Division 01 – General Requirements

011000	Summary
012500	Substitution Procedures
012600	Contract Modification Procedures
012900	Payment Procedures
013100	Project Management and Coordination
013200	Construction Progress Documentation
013233	Photographic Documentation
013300	Submittal Procedures
013516	Alteration Project Procedures
014000	Quality Requirements
014200	References
014300	Threshold Building Inspection Services Concrete
014329	Threshold Building Inspection Plan
015000	Temporary Facilities and Controls
016000	Product Requirements
017300	Execution
017700	Closeout Procedures
017823	Operations and Maintenance Data
017839	Project Record Documents
017900	Demonstration and Training
018113	Sustainable Design Requirements

Division 02 – Existing Conditions

024119	Selective Structure Demolition
024121	Selective Demolition

TABLE OF CONTENTS HHCP 3767.00

Division 03 – Concrete

033000 Cast-In-Place Concrete

Division 04 – Masonry

042200 Concrete Unit Masonry

Division 05 – Metals

051200	Structural Steel Framing
054000	Cold-Formed Metal Framing

055000 Metal Fabrications

Division 06 - Wood, Plastics, and Composites

061000 Rough Carpentry 064117 Vanity Cabinets

Division 07 - Thermal and Moisture Protection

072100 Building Insulation 079200 Joint Sealants

Division 08 – Openings

081113 Hollow Metal Doors and Frames

087100 Door Hardware

088300 Mirrors

Division 09 – Finishes

090190	Repainting
092216	Non-Structural Metal Framing
092900	Gypsum Board
093013	Tiling
095113	Ceiling Systems
099123	Interior Painting

Division 10 – Specialties

101415	Plaque Signs
102113.17	Toilet Partitions

102223 Barricades/Temporary Walls

102800 Toilet Accessories

Division 11 – Not Used

Division 12 – Furnishings

123623 Plastic Laminate Clad Countertops

123661 Countertops

Divisions 13-20 - Not Used

Division 21 – Fire Suppression

210500	Common Work Results for Fire Suppression
211313	Wet-Pipe Sprinkler Systems

Division 22 – Plumbing

D1 1131011 22	Tumbing
220500	Common Work Results for Plumbing
220519	Meters and Gages for Plumbing Piping
220523	General-Duty Valves for Plumbing Piping
220529	Hangers and Supports for Plumbing Piping and Equipment
220553	Identification for Plumbing Piping and Equipment
220700	Plumbing Insulation
221116	Domestic Water Piping
221119	Domestic Water Piping Specialties
221123	Domestic Water Pumps
221316	Sanitary Waste and Vent Piping
221319	Sanitary Waste Piping Specialties
223300	Electric Domestic Water Heaters
224000	Plumbing Fixtures
224700	Drinking Fountains and Water Coolers

Division 23 – Mechanical

230001	Cleaning of HVAC Systems
230500	Common Work Results for Mechanical
230513	Common Motor Requirements for HVAC Equipment
230519	Meters and Gages
230523	Valves
230529	Hangers and Supports for HVAC Piping and Equipment
230548	Vibration and Seismic Controls for HVAC Piping and Equipment
230553	Identification for HVAC Piping and Equipment
230593	Testing, Adjusting, and Balancing
230713	Duct Insulation
230719	HVAC Piping Insulation
230900	Instrumentation and Control for HVAC
232113	Hydronic Piping
232116	Hydronic Piping Specialties
233113	Metal Ducts
233114	Electric Resistance Duct Heaters
233300	Duct Accessories
233423	Power Ventilators
233713	Diffusers, Registers, and Grilles
237313	Indoor Air-Handling Units

Divisions 24 and 25 – Not Used

Division 26 – Electrical

260500	Common Work Results for Electrical
260501	Investigation of Existing Electrical Systems
260519	Low-Voltage Electrical Power Conductors and Cables
260526	Grounding and Bonding for Electrical Systems
260529	Hangers and Supports for Electrical Systems
260533	Raceways and Boxes for Electrical Systems
260553	Identification for Electrical Systems
260923	Stand Alone Lighting Control Devices
262726	Wiring Devices
262923	Variable-Frequency Motor Controllers
265100	Interior Lighting

Division 27 – 49 Not Used.

END OF VOLUME 2 - TECHNICAL PROVISIONS (SPECIFICATIONS)

SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Project information.
- 2. Work covered by Contract Documents.
- 3. Owner-furnished-contractor-installed products.
- 4. Access to site.
- 5. Coordination with occupants.
- 6. Work restrictions.
- 7. Specification and drawing conventions.

1.2 PROJECT INFORMATION

- A. Project Identification: Orange County Convention Center, West Building Restroom Renovations.
- B. Architect: Helman Hurley Charvat Peacock / Architects, Inc.; 120 N. Orange Avenue, Orlando, FL 32801

1.3 WORK COVERED BY CONTRACT DOCUMENTS

- A. Orange County Convention Center West Building Restroom Renovations, scheduled for construction starting September 4, 2016. Construction will be done by sequential groups of restrooms over a three-year period.
 - 1. This renovation is defined as a Level 2 Alteration by the 2014 Florida Building Code Existing Buildings.
 - 2. The narratives that follow are included to summarize the scope of work of various disciplines intended for this Project. The narratives do not define the entire work scope, but provide a general sense of the design.
- B. Architectural: The restroom Renovation Project is to renovate 82 restrooms throughout Phases 1, 3, and 4 of the West Building. The restrooms are numbered 1 through 82 on the drawings. Four categories of restrooms are described as follows:

Back of House (BOH) Restrooms 29 and 30, 53 and 54, and 67 and 68

Restrooms 29 and 30 will only have plumbing fixtures and floor mounted toilet partitions and accessories replaced. Ceilings, walls, and floor finishes to remain with tile cleaning or repainting to be done. Restrooms 53, 54, 67 and 68 are individual restrooms and will receive new wall tiles, new fixtures, and accessories; also, a new lay-in in the ceilings.

Modified Back of House (BOH) Restrooms 73-78

New floor and wall finishes, new counters, plumbing fixtures, accessories, and floor mounted toilet partitions. The existing ceilings, lighting, fire protection and speakers to be replaced. The HVAC ductwork will be reused.

Public Restrooms: 64 Restrooms

The public restrooms similar to premium restrooms will have complete demolition of interior floors, walls, and ceilings; all new tile floors, wall tiles, ceilings including lighting, sprinklers, speakers, HVAC distribution, and new ceiling-hung toilet partitions.

Premium Restrooms 51 and 52 and 61 through 64

Complete demolition of interior floors, walls, and ceilings. All new tile floors, wall tile, ceilings (including lighting, sprinklers, speakers, HVAC distribution, and new ceiling-hung toilet partitions); new counters and plumbing fixtures and new accessories. These restrooms are to have upgraded lighting, lavatories, counters, mirrors, and accessories.

These restrooms are located throughout the Convention Center West Building as follows:

Level 1

8 public restrooms: 1-4 and 25-28 2 BOH restrooms: 29 and 30

Level 2

2 BOH restrooms: 53 and 54

44 public restrooms

Level 3

6 modified BOH restrooms: 73-78

8 public restrooms: 23 and 24, 55-58, 79 and 80

2 premium restrooms: 51 and 52

Level 4

2 BOH restrooms: 67 and 68

4 public restrooms: 59 and 60, 65 and 66

4 premium restrooms: 61 -64

- C. Interior Finishes: The interiors of the 82 Restrooms at the Orange County Convention Center are proposed to be upgraded and updated to reflect current and future trends in the convention center operations. New interiors are similar to those previously used in the Phase II, restroom design. The finishes reflect 4 levels of restroom upgrades with the first being, 1) Back of House Restrooms, 2) Modified Back of House Restrooms, 3) Public Restrooms and 4) Premium Restrooms:
 - 1. Back of House Restrooms, 53-54 and 67-68, shall receive new 6 x 6 glazed porcelain wall tile, floor to ceiling and new floor tile to match the new standard tile. Staff Locker Rooms, 29 and 30, are to remain and shall only receive tile cleaning and sealing on both the floor and walls.

- 2. Modified Back of House Restrooms, 73-78, shall receive new floor and wall tile and upgraded solid surface vanities with thermoformed sink and demountable recessed ADA panel. No accent glass behind vanity mirrors. New drywall ceilings shall receive paint.
- 3. Public Restrooms, quantity of 64, shall receive new floor and wall tile, upgraded solid surface vanities with thermoformed sink and demountable recessed ADA panel and glass mosaics behind the new mirrors. New drywall ceilings shall receive paint.
- 4. Premium restrooms, 51-52 and 61-64, shall receive new floor and wall tile, upgraded quartz countertop with a semi recessed sink bowl and wood look demountable recessed ADA panel. Glass mosaic behind mirrors shall be upgraded from the standard Public Restrooms. Electric mirrors will be used in lieu of the standard mirrors used in the Public Restrooms. New drywall ceilings receive semi-recessed cans with glass canopies, ceilings shall be painted.
- D. Structural: The structural Scope of Work is to support the architectural and MEP renovations of seventy-two (72) restrooms at the OC Convention Center as listed herein:
 - 1. Overhead supports for seventy-two (72) restrooms to receive ceiling-mounted restroom partitions, applicable to all different site conditions.
 - 2. Two (2) new steel utility platforms required for the new air handling unit's equipment layout to be installed in substitution of the existing MEP equipment above restrooms 72 and 69, including floor framing, overhead hanging supports from structural level above and required connections.
 - 3. Structural frame support of all the wall-mounted lavatories counters and other water closet fixtures.
 - 4. New wall foundations for the support of two (2) 5" thickness by 9'- 0" tall precast panels to be placed front of restrooms numbered 69.1 and 71.1.

E. Fire Protection:

- 1. Remove existing sprinklers and branch piping back to nearby branch main. Install new upright sprinklers within space during the construction phase.
- 2. Provide new sprinklers and branch piping as required to provide the required sprinkler coverage in each restroom being renovated.
- 3. All new fire protection systems will comply with the appropriate Florida Building Code and NFPA standards.
- F. Plumbing: Plumbing: Remove all existing plumbing fixtures and equipment within each of the existing restrooms being renovated. Remove all branch domestic water, sanitary, and vent piping back to where each service enters in through the boundaries of the restroom. Cap the existing services at that point and prepare for connection with new services. All existing sanitary and vent piping shall be video-taped beyond 50 feet from the boundary of each restroom being renovated to determine the true condition of the existing piping and fittings. The report shall be submitted to the AE representative for further review.

- G. Provide new plumbing fixtures as listed. Provide new domestic water piping, type k copper with press pipe joining system. Provide commercial grade flexible elastomeric insulation for all hot water piping. Provide new sanitary and vent piping cast iron no hub heavy duty couplings and mechanical restraints. Provide new bronze full port ball valves and place above the main entrance of each restroom group. Each restroom group will be provided with a dedicated isolation valve. Provide new instantaneous electric water heater within a nearby janitor's room. In areas with no janitor's room, locate water heater above the ceiling in an accessible location. All new piping, fittings, and hangers will be installed in accordance with the Florida Building Code and the manufacturer's installation guidelines.
- H. HVAC: The mechanical scope shall include replacement of all ceiling diffusers with new. Minimal ductwork will need to be replaced in coordination with the relocation of ceiling diffusers; all other existing ductwork shall be reused. The two air handler units above restrooms 245 women's and 258 men's shall be replaced with new units of similar size. Six exhaust fans in various locations throughout the project are to be replaced with larger fans to handle the increased fixture counts. The two fan terminal boxes in restrooms 102 men's and 103 women's are to be replaced with variable air volume boxes with electric strip heaters.
- I. Electrical: The electrical scope shall include replacement of all lighting with energy efficient LED type. The individual restrooms shall a recessed 1x4 or 2x2 fixture, the group restrooms shall have a cove light above the lavatories, with recessed downlights throughout the rest of the space. Each space shall be equipped with an occupancy sensor and existing 277V circuiting shall be reused.
- J. Each restroom shall have a GFCI receptacle, electric hand dryers, and electrically powered flush sensors/valves for the sinks, urinals, and toilets. Existing 120V power shall be reused where available with new circuiting provided from nearest electrical room. New transformers and panelboards shall be provided where 120V circuits are not available. 277/480V circuits shall be provided for new water heaters.
- K. Technology: The existing audio system speakers shall be replaced, utilizing the existing wiring.
- L. Fire Alarm: The fire alarm notification devices shall be re-used/re-installed as they are being replaced with under another project, utilizing existing wiring and extending where required.
- M. Signage: The Restroom renovation includes five essential sign types. Types 1, 2, 4, and 5 are consistent in style, colors, materials, and messaging with the recent Phase II West Building signage program. Sign Type 3 is a wet warning sign typically used throughout the Convention Center. The new signs generally replace existing signs in similar locations. Consideration has been carefully given to sight lines and legibility, clarity of messages, stylistic integration with Architecture and Interiors, and code compliance.
 - 1. Sign Type 1 is the Restroom identification sign. This is a 9" x 9" sign.
 - 2. Sign Type 2 is the Utility or Storage Room identification sign. This is a 9" x 9" sign.
 - 3. Sign Type 3 is a 12" x 18" blue and white sign with a "Caution Wet Floor" message.
 - 4. Sign Type 4 is the toilet stall 9" x 9" Baby Change sign.
 - 5. Sign Type 5 is a 9" x 12" Baby Change location sign.

1.4 ACCESS TO SITE

- A. General: Contractor shall have limited use of Project site for construction operations. Since all restrooms are within back of house corridors, concourses, or exhibit hall restrooms, entries will blocked off using the temporary barriers, as specified, or retain restroom entry doors.
- B. Construction Access: Contractor access to the restrooms will be from the Convention Center's loading dock as shown on the drawings. Access to a freight elevator and stair tower will be by adjacent Ramp 5.
- C. Supplemental Conditions: Refer to Volume 1, Section G, "Supplemental Conditions" for Owner-specific requirements related to Project site access.
- D. Use of Site: Limit use of Project site to work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.
 - 1. Driveways, Walkways and Entrances: Keep driveways, loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 - a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.
 - 2. Contractor parking will be in the designated area outside the perimeter service/access road on the west side of the west building. Also, within the loading dock area semi-trailer truck parking space numbers (to be determined) are for Contractor use.
 - 3. Entry into the loading dock area by vehicles or on foot will be via the guard shack gate shown on the drawing. Proper badging is required for entry. For material delivery, 24 hour notice by the contractor identifying who will be making a delivery is required to be given to the Convention Center's Project Manager so that the security gate can be notified.
- E. Condition of Existing Building: Maintain portions of existing building affected by construction operations in operational condition throughout construction period. Repair damage caused by construction operations.
 - Contractor exterior laydown at the loading dock is limited to semi-tractor parking spaces
 to be determined and for dumpster use. Contractor to provide dumpsters, labeled and
 secured from outside use. The exterior laydown areas to be clearly identified with
 screened chain link fencing and construction signage. Fencing to be locked and secured
 with locks accessible by OCCC Project Management as required.
 - 2. Interior building area layout space is limited to the interior of the restrooms.
 - a. On the temporary barrier walls, the contractor is required to apply a graphic provided by the OCCC. Notes in this regard, are as follows:
 - 1) OCCC to provide graphic file

- 2) List of manufacturers to include FedEx Office, Triangle Reprographics, Freeman
- 3) OCCC to provide specs/cut sheets of materials to include 3M 180 with Laminate, 3M 4620, PVC and Foam Board
- 4) Contractor to print graphics
- 5) Contractor to install graphics
- 6) Graphics locations on wall to be as directed by OCCC
- 7) Each Graphic will be in color, 18 square feet in size, showing words and images. All graphics will have the same message. Initially 5 or 6 will be printed on 3/16" black gator backer board. These are intended to be used on public restrooms not back of the house restrooms. The graphics will be attached on the temporary Barrier Walls at a location directed by the OCCC Project Manager. Five or six restrooms are to be worked on during each 3 month period over the 3 year project schedule. The graphics are intended to be reused. When any of the graphics get damaged our become unusable then an addition new graphic is to be made. The contractor shall include within the bid 20 graphics to ultimately be made.

1.5 COORDINATION WITH OCCUPANTS

- A. Full Owner Occupancy: Owner, its' tenants, and the general public will occupy site and existing building and adjacent facilities during the entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate occupancy usage, and protect persons and property in the project area during the entire construction period. Perform the Work so as not to interfere with Owner's day-to-day operations.
- B. Supplemental Conditions: Refer to Volume 1, Section G, "Supplemental Conditions" for Owner-specific requirements related to coordination of the owner's use of the facility.

1.6 WORK RESTRICTIONS

- A. Work Restrictions, General: Comply with restrictions on construction operations.
 - 1. Comply with limitations on use of public streets and other requirements of authorities having jurisdiction.
- B. Supplemental Conditions: Refer to Volume 1, Section G, 'Supplemental Conditions' for Owner-specific requirements and restrictions related Project work hours.
- C. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 - 2. Obtain Owner's written permission before proceeding with utility interruptions.
- D. Nonsmoking Building: Smoking is not permitted within the building or within 25 feet (8 m) of entrances, operable windows, or outdoor air intakes.

E. Employee Identification: Provide identification tags for Contractor personnel working on the Project site. Require personnel to utilize identification tags at all times.

1.7 SECURITY AND IDENTIFICATION

- A. Contractor's personnel working on a project at the Convention Center will require a badge issued by OCCC.
- B. All costs for background investigations will be Contractor's responsibility. The County shall have the right to request any additional investigative background information including, but limited to, the employment record, Right-To-Know records, E-Verify system records (if the Contractor uses this service as a means to determine employment eligibility, available through www.uscis.gov), training records, payroll records, position for which hired including site location of any personnel assigned to perform the services. The Contractor shall furnish, in writing, such information to the extent allowed by law, prior to commencement of services. The County reserves the right to conduct its own investigation of any employee of the Contractor.
- C. A Level 1 (5 years) Background Check from the Florida Department of Law Enforcement (FDLE) is required for the Contractor's personnel and all sub-contractor's personnel. Background checks must be approved by Orange County's Security team prior to working in any County facility. The Contractor is responsible for obtaining the background check from FDLE for work at the Convention Center.
- D. To acquire a badge at OCCC, the following is required:
 - 1. Run FDLE background check on each individual via this website: http://www.fdle.state.fl.us/content/getdoc/2952da22-ba08-4dfc-9e45-2d7932a803ea/Obtaining-Criminal-History-Information.aspx
 - 2. Once on the link, click on Search Now. The Contractor is responsible for any fees associated with the background check
 - 3. Submit the background check results on each person in an individual email to the Orange County Project Manager. This can be as a .pdf file or within the body of the email.
 - 4. Write **EXEMPT** in the email subject line for each check.
 - 5. Repeat the process for each person working on the project.
 - 6. Orange County's Security team will determine whether the individual is invited to work on site.
- E. The Convention Center will inform the Contractor of Background Check results.
- F. Upon Background Check approval the Contractor's personnel shall arrange an appointment with the Convention Center staff to obtain an Orange County photo ID badge. An affidavit of Identity form (issued by the Contractor and a State of Florida ID or Driver's License will be required to obtain the photo ID badge.
- G. Contractor's personnel will not be allowed in Orange County facilities without completed and approved background investigations.

1.8 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.
- B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000

SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Administrative and procedural requirements for substitutions.

1.2 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

1.3 SUBMITTALS

- A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use CSI Form 13.1A or a facsimile of form provided in the Project Manual.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication or installation cannot be provided, if applicable.
 - b. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.
 - c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable specification section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
 - d. Product Data, including drawings, descriptions of products, fabrication and installation procedures.
 - e. Samples, where applicable or requested.
 - f. Certificates and qualification data, where applicable or requested.
 - g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 - h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 - i. Research reports evidencing compliance with building code in effect for Project.

- j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- k. Cost information, including a proposal of change, if any, in the Contract Sum.
- 1. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
- m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within ten (10) days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within five (5) days of receipt of request, or seven (7) days of receipt of additional information or documentation, whichever is later.
 - a. Forms of Acceptance: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage qualified testing agency to perform compatibility tests recommended by manufacturers.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

- A. Substitutions for Cause: Submit requests for substitution immediately upon discovery of need for change, but not later than ten (10) days prior to time required for preparation and review of related submittals.
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - b. Substitution request is fully documented and properly submitted.
 - c. Requested substitution has received necessary approvals of authorities having jurisdiction.

- d. Requested substitution is compatible with other portions of the Work.
- e. Requested substitution has been coordinated with other portions of the Work.
- f. Requested substitution provides specified warranty.
- g. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.
- B. Substitutions for Convenience: Architect will consider requests for substitution if received within thirty (30) days after the Notice to Proceed
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:
 - a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 - b. Requested substitution does not require extensive revisions to the Contract Documents.
 - c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - d. Requested substitution will not adversely affect Contractor's construction schedule.
 - e. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - f. Requested substitution is compatible with other portions of the Work.
 - g. Requested substitution has been coordinated with other portions of the Work.
 - h. Requested substitution provides specified warranty.

PART 3 - EXECUTION (Not Used)

SUBSTITUTION PROCEDURES SECTION 012500

SUBSTITUTION REQUEST

(After the Bidding Phase)

Project:	Substitution Request Number:		
	From:		
То:	Date:		
	A/E Project Number:		
Re:	Contract For:		
Specification Title:	Description:		
Section:Page:	Article/Paragraph:		
Proposed Substitution:			
Manufacturer: Address:	Phone:		
Trade Name:	Model No.:		
Installer:	Address: Phone:		
History: ☐ New product ☐ 2-5 years old ☐ 5-1	10 yrs old		
Differences between proposed substitution and spe-	ecified product:		
Point-by-point comparative data attached - REQ	NUIRED BY A/E		
Reason for not providing specified item:			
Similar Installation:			
Project:	Architect:		
Address:	Owner:		
	Date Installed:		
Proposed substitution affects other parts of Work:	☐ No ☐ Yes; explain		
Savings to Owner for accepting substitution:	(\$		
Proposed substitution changes Contract Time:	☐ No ☐ Yes [Add] [<u>Deduct</u>] <u>days.</u>		
Supporting Data Attached: Drawings Pro	oduct Data 🗌 Samples 🔲 Tests 🔲 Reports 🔲		

SUBSTITUTION REQUEST

(Continued)

The Undersigned certifies:

- Proposed substitution has been fully investigated and determined to be equal or superior in all respects to specified product.
- Same warranty will be furnished for proposed substitution as for specified product.
- Same maintenance service and source of replacement parts, as applicable, is available.
- Proposed substitution will have no adverse effect on other trades and will not affect or delay progress schedule.
- Cost data as stated above is complete. Claims for additional costs related to accepted substitution which may subsequently become apparent are to be waived.
- Proposed substitution does not affect dimensions and functional clearances.
- Payment will be made for changes to building design, including A/E design, detailing, and construction costs caused by the substitution.
- Coordination, installation, and changes in the Work as necessary for accepted substitution will be complete in all respects.

Submitted by:				
Signed by:				
Firm:				
Address:				
Telephone:				
Attachments:				
☐ Substitution approve☐ Substitution rejected	ed - Make submittals ed as noted - Make s I - Use specified ma	s in accordance with Specification submittals in accordance with Spe tterials. Use specified materials.		
Signed by:			Date:	
Additional Comments:	☐ Contractor	☐ Subcontractor ☐ Supplier	☐ Manufacturer ☐ A/E ☐	

END OF SECTION 012500

SECTION 012600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Administrative and procedural requirements for handling and processing Contract modifications.

1.2 MINOR CHANGES IN THE WORK

A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710, "Architect's Supplemental Instructions."

1.3 PROPOSAL REQUESTS

- A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - 1. Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change. Do not consider them as instructions either to stop work in progress or to execute the proposed change.
 - 2. Within time specified in Proposal Request or ten (10) days when not otherwise specified, after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 - a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - c. Include costs of labor and supervision directly attributable to the change.
 - d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

- B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.
 - 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 - 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - 4. Include costs of labor and supervision directly attributable to the change.
 - 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 - 6. Comply with requirements in Division 01 Section "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.
- C. Proposal Request Form: Use AIA Document G709 for Proposal Requests.

1.4 CHANGE ORDER PROCEDURES

A. On Owner's approval of a Proposal Request, Architect will issue a Change Order for signatures of Owner and Contractor on AIA Document G701.

1.5 CONSTRUCTION CHANGE DIRECTIVE

- A. Construction Change Directive: Architect may issue a Construction Change Directive on AIA Document G714. Construction Change Directive instructs Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.
 - 1. Construction Change Directive contains a complete description of change in the Work. It also designates method to be followed to determine change in the Contract Sum or the Contract Time.
- B. Documentation: Maintain detailed records on a time and material basis of work required by the Construction Change Directive.
 - 1. After completion of change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.

Orange County Convention Center West Building Restroom Renovations

CONTRACT MODIFICATION PROCEDURES SECTION 012600

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012600

SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

1.2 SCHEDULE OF VALUES

- A. Coordination: Coordinate preparation of the schedule of values with preparation of Contractor's construction schedule.
 - 1. Correlate line items in the schedule of values with other required administrative forms and schedules, including the following:
 - a. Application for Payment forms with continuation sheets.
 - b. Submittal schedule.
 - c. Items required to be indicated as separate activities in Contractor's construction schedule.
 - 2. Submit the schedule of values to Architect at earliest possible date but no later than seven (7) days before the date scheduled for submittal of initial Applications for Payment.
 - 3. Sub-schedules: Where the Work is separated into phases requiring separately phased payments, provide sub-schedules showing values correlated with each phase of payment.
- B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 - 1. Identification: Include the following Project identification on the schedule of values:
 - a. Project name and location.
 - b. Name of Architect.
 - c. Architect's project number.
 - d. Contractor's name and address.
 - e. Date of submittal.
 - 2. Arrange schedule of values consistent with format of AIA Document G703 Continuation Sheets.
 - 3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide multiple line items for principal subcontract amounts.
 - 4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.

- 5. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
- 6. Provide separate line items in the schedule of values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.
- 7. Each item in the schedule of values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
- 8. Schedule Updating: Update and resubmit the schedule of values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.3 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
 - 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.
- B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
- C. Payment Application Times: Progress payments shall be submitted to Architect by the fifteenth (15th) of the month. The period covered by each Application for Payment is one month, ending on the last day of the month.
- D. Application for Payment Forms: Use Orange County's standard Application for Payment form; refer to Volume 1, General Conditions and Supplemental Conditions.
- E. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 - 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.
 - 3. Each application for payment shall include an updated CPM report and contractors narrative report as required by the General Conditions.

- F. Transmittal: Submit three (3) signed and notarized original copies of each Application for Payment to Architect by a method ensuring receipt within 24 hours. One copy shall include waivers of lien and similar attachments if required.
 - 1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.
- G. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from entities lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.
 - 1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
 - 2. When an application shows completion of an item, submit conditional final or full waivers.
 - 3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
 - 4. Waiver Forms: Submit waivers of lien on forms, executed in a manner acceptable to Owner.
- H. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 - 1. List of subcontractors.
 - 2. Schedule of values.
 - 3. Contractor's construction schedule (preliminary if not final).
 - 4. Schedule of unit prices.
 - 5. Submittal schedule (preliminary if not final).
 - 6. List of Contractor's staff assignments.
 - 7. List of Contractor's principal consultants.
 - 8. Copies of building permits.
 - 9. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
 - 10. Initial progress report.
 - 11. Report of preconstruction conference.
 - 12. Certificates of insurance and insurance policies.
- I. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

- J. Final Payment Application: Submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 - 3. Updated final statement, accounting for final changes to the Contract Sum.
 - 4. AIA Document G706-1994, "Contractor's Affidavit of Payment of Debts and Claims."
 - 5. AIA Document G706A-1994, "Contractor's Affidavit of Release of Liens."
 - 6. AIA Document G707-1994, "Consent of Surety to Final Payment."
 - 7. Evidence that claims have been settled.
 - 8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.
 - 9. Final liquidated damages settlement statement.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012900

SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - a. Coordination drawings.
 - b. Project meetings.
 - c. Requests for Information (RFIs).

1.2 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information from each other during construction.

1.3 COORDINATION

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations (included in different Sections) that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
 - 4. Where availability of space is limited, coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair of all components including mechanical and electrical items.
- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities and activities of other contractors to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Pre-installation conferences.
 - 7. Project closeout activities.
 - 8. Startup and adjustment of systems.
 - 9. Project closeout activities.

1.4 COORDINATION DRAWINGS

- A. General: Prepare coordination drawings in accordance with requirements in individual Sections, where installation is not completely shown on Shop Drawings, where limited space availability necessitates coordination, or if coordination is required to facilitate integration of products and materials fabricated or installed by more than one entity.
 - 1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 - a. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 - b. Indicate dimensions shown on the Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternate sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
 - 2. Drawing Size: At least 8½ by 11-inches but no larger than 30 by 40-inches.
 - 3. Number of Copies: Submit five (5) copies of each submittal. Architect and consultants will each retain one copy.
 - 4. Review: Architect will review coordination drawings to confirm that the Work is being coordinated, but not for the details of the coordination, which are the Contractor's responsibility.

1.5 PROJECT MEETINGS

- A. General: Schedule and conduct meetings and conferences at Project site, unless otherwise indicated.
 - 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
 - 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
 - 3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three (3) days of the meeting.
- B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than fifteen (15) days after execution of the Agreement.
 - 1. Attendees: Authorized representatives of Owner, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. LEED requirements
 - b. Tentative construction schedule.
 - c. Critical work sequencing and long-lead items.
 - d. Designation of key personnel and their duties.
 - e. Procedures for processing field decisions and Change Orders.
 - f. Procedures for RFIs.
 - g. Procedures for testing and inspecting.
 - h. Procedures for processing Applications for Payment.
 - i. Submittal procedures.
 - j. Preparation of record documents.
 - k. Use of the premises.
 - 1. Work restrictions.
 - m. Working hours.
 - n. Owner's occupancy requirements.
 - o. Parking availability.
 - p. Equipment deliveries and priorities.
 - q. First aid.
 - r. Security.
 - 3. Minutes: Record and distribute meeting minutes.

- C. Pre-installation Conferences: Conduct a pre-installation conference at Project site before each construction activity that requires coordination with other construction.
 - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.
 - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Related RFIs.
 - c. Related Change Orders.
 - d. Deliveries.
 - e. Submittals.
 - f. Possible conflicts.
 - g. Compatibility problems.
 - h. Time schedules.
 - i. Manufacturer's written recommendations.
 - j. Warranty requirements.
 - k. Acceptability of substrates.
 - 1. Installation procedures.
 - m. Protection of adjacent work.
 - n. Protection of construction and personnel.
 - 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
 - 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
 - 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Progress Meetings: Conduct progress meetings at weekly intervals. Coordinate dates of meetings with preparation of payment requests.
 - 1. Attendees: In addition to representatives of Owner and Architect, contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

- 2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Status of submittals.
 - 4) Hazards and risks.
 - 5) Quality and work standards.
 - 6) Status of correction of deficient items.
 - 7) Field observations.
 - 8) Status of RFIs.
 - 9) Status of proposal requests.
 - 10) Pending changes.
 - 11) Status of Change Orders.
 - 12) Pending claims and disputes.
 - 13) Documentation of information for payment requests.
- 3. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

1.6 REQUESTS FOR INFORMATION (RFIs)

- A. Procedure: Immediately on discovery of the need for interpretation of the Contract Documents, and if not possible to request interpretation at Project meeting, prepare and submit an RFI in the form specified.
 - 1. RFI's shall originate with Contractor. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.
 - 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.

- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name and number.
 - 2. Date.
 - 3. Name of Contractor.
 - 4. Name of Architect.
 - 5. RFI number, numbered sequentially.
 - 6. Specification Section number and title and related paragraphs, as appropriate.
 - 7. Drawing number and detail references, as appropriate.
 - 8. Field dimensions and conditions, as appropriate.
 - 9. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
 - 10. Contractor's signature.
 - 11. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
- C. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven (7) working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.
 - 1. The following RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for coordination information already indicated in the Contract Documents.
 - d. Requests for adjustments in the Contract Time or the Contract Sum.
 - e. Requests for interpretation of Architect's actions on submittals.
 - f. Incomplete RFIs or inaccurately prepared RFIs.
 - 2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.
 - 3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures."
 - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within ten (10) days of receipt of the RFI response.
- D. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven (7) days if Contractor disagrees with response.
- E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly.
 - 1. Project name.

PROJECT MANAGEMENT AND COORDINATION SECTION 013100

- 2. Name and address of Contractor.
- 3. Name and address of Architect.
- 4. RFI number including RFIs that were dropped and not submitted.
- 5. RFI description.
- 6. Date the RFI was submitted.
- 7. Date Architect's response was received.
- 8. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100.0

SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. Start-up construction schedule.
 - 2. Contractor's construction schedule.
 - 3. Daily construction reports.
 - 4. Material location reports.
 - 5. Field condition reports.
 - 6. Special reports.

1.2 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
- B. CPM: Critical path method, which is a method of planning and scheduling a construction project where activities are arranged based on activity relationships. Network calculations determine when activities can be performed and the critical path of the Project.
- C. Critical Path: The longest connected chain of interdependent activities through the network schedule that establishes the minimum overall Project duration and contains no float.
- D. Event: The starting or ending point of an activity.
- E. Float: The measure of leeway in starting and completing an activity.
 - 1. Float time is not for the exclusive use or benefit of either Owner or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date.
 - 2. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
 - 3. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.
- F. Fragnet: A partial or fragmentary network that breaks down activities into smaller activities for greater detail.

1.3 SUBMITTALS

- A. Submittals Schedule: Submit three (3) copies of Submittals Schedule required in Division 1 section for Submittals Procedure. Arrange the following information in a tabular format:
 - 1. Scheduled date for first submittal.
 - 2. Specification Section number and title.
 - 3. Submittal category (action or informational).
 - 4. Name of subcontractor.
 - 5. Description of work covered.
 - 6. Scheduled date for Architect's final release or approval.
- B. Contractor's Construction Schedule: Submit two printed copies of initial schedule consisting of one reproducible print and one blue- or black-line print large enough to show entire schedule for entire construction period.
- C. CPM Reports: Concurrent with CPM schedule, submit three (3) printed copies of each of the following computer-generated reports. Format for each activity in reports shall contain activity number, activity description, original duration, remaining duration, early start date, early finish date, late start date, late finish date, and total float.
 - 1. Activity Report: List of all activities sorted by activity number and then early start date, or actual start date if known.
 - 2. Logic Report: List of preceding and succeeding activities for all activities, sorted in ascending order by activity number and then early start date, or actual start date if known.
 - 3. Total Float Report: List of all activities sorted in ascending order of total float.
 - 4. Earnings Report: Compilation of Contractor's total earnings from commencement of the Work until most recent Application for Payment.
- D. Field Condition Reports: Submit at time of discovery of differing conditions.
- E. Special Reports: Submit at time of unusual event.

1.4 QUALITY ASSURANCE

- A. Pre-scheduling Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to the preliminary construction schedule and Contractor's construction schedule, including, but not limited to, the following:
 - 1. Review software limitations and content and format for reports.
 - 2. Verify availability of qualified personnel needed to develop and update schedule.
 - 3. Discuss constraints, including work stages, area separations, interim milestones and partial Owner occupancy.
 - 4. Review delivery dates for Owner-furnished products.
 - 5. Review schedule for work of any of Owner's separate contracts.
 - 6. Review time required for review of submittals and re-submittals.
 - 7. Review requirements for tests and inspections by independent testing and inspecting agencies.
 - 8. Review time required for completion and startup procedures.

- 9. Review and finalize list of construction activities to be included in schedule.
- 10. Review submittal requirements and procedures.
- 11. Review procedures for updating schedule.

1.5 COORDINATION

- A. Coordinate preparation and processing of schedules and reports with performance of construction activities and with scheduling and reporting of separate contractors.
- B. Coordinate Contractor's construction schedule with the schedule of values, list of subcontracts, submittal schedule, progress reports, payment requests, and other required schedules and reports.
 - 1. Secure time commitments for performing critical elements of the Work from parties involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 SUBMITTALS SCHEDULE

- A. Preparation: After development and acceptance of the Construction Schedule, prepare a complete schedule of submittals utilizing Constructionware database. Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, re-submittal, ordering, manufacturing, fabrication, and delivery when establishing dates.
 - 1. Submittal Schedule: Coordinate submittals schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
 - 2. Format: Arrange the following information in a tabular format:
 - a. Scheduled date for first submittal.
 - b. Specification Section number and title.
 - c. Submittal category: Action, informational.
 - d. Name of subcontractor.
 - e. Description of the Work covered.
 - f. Scheduled date for re-submittal.
 - g. Scheduled date for Architect's final release or approval.
 - 3. Initial Submittal: Submit concurrently with preliminary bar-chart construction schedule. Include submittals required during the first sixty (60) days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
 - 4. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.

2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE (CPM SCHEDULE)

- A. General: Prepare network diagrams using AON (activity-on-node) format.
- B. Start-up Network Diagram: Submit diagram within fourteen (14) days of date established for commencement of the Work. Outline significant construction activities for the first ninety (90) days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.
- C. CPM Schedule: Prepare Contractor's construction schedule using a CPM network analysis diagram for the Work.
 - 1. Develop network diagram in sufficient time to submit CPM schedule so it can be accepted for use no later than thirty (30) days after date established for commencement of the Work.
 - 2. Conduct educational workshops to train and inform key Project personnel, including subcontractors' personnel, in proper methods of providing data and using CPM schedule information.
 - 3. Establish procedures for monitoring and updating CPM schedule and for reporting progress. Coordinate procedures with progress meeting and payment request dates.
 - 4. Use "one workday" as the unit of time.
- D. CPM Schedule Preparation: Prepare a list of all activities required to complete the Work. Using the start-up network diagram, prepare a skeleton network to identify probable critical paths.
 - 1. Activities: Indicate the estimated time duration, sequence requirements, and relationship of each activity in relation to other activities. Include estimated time frames for the following activities:
 - a. Preparation and processing of submittals.
 - b. Purchase of materials.
 - c. Delivery.
 - d. Fabrication.
 - e. Installation.
 - 2. Processing: Process data to produce output data on a computer-drawn, time-scaled network. Revise data, reorganize activity sequences, and reproduce as often as necessary to produce the CPM schedule within the limitations of the Contract Time.
- E. Initial Issue of Schedule: Prepare initial network diagram from a sorted activity list indicating straight "early start-total float." Identify critical activities. Prepare tabulated reports showing the following:
 - 1. Contractor or subcontractor and the Work or activity.
 - 2. Description of activity.
 - 3. Principal events of activity.
 - 4. Immediate preceding and succeeding activities.
 - 5. Early and late start dates.

CONSTRUCTION PROGRESS DOCUMENTATION SECTION 013200

- 6. Early and late finish dates.
- 7. Activity duration in workdays.
- 8. Total float or slack time.
- 9. Average size of workforce.
- 10. Dollar value of activity (coordinated with the schedule of values).
- F. Schedule Updating: Concurrent with making revisions to schedule, prepare tabulated reports showing the following:
 - 1. Identification of activities that have changed.
 - 2. Changes in early and late start dates.
 - 3. Changes in early and late finish dates.
 - 4. Changes in activity durations in workdays.
 - 5. Changes in the critical path.
 - 6. Changes in total float or slack time.
 - 7. Changes in the Contract Time.

2.3 REPORTS

- A. Material Location Reports: At Owner's request, prepare a comprehensive list of materials delivered to and stored at Project site. List shall be cumulative, showing materials previously reported plus items recently delivered. Include with list a statement of progress on and delivery dates for materials or items of equipment fabricated or stored away from Project site.
- B. Field Condition Reports: Immediately on discovery of a difference between field conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

2.4 SPECIAL REPORTS

- A. General: Submit special reports directly to Owner within one day of an occurrence. Distribute copies of report to parties affected by the occurrence.
- B. Reporting Unusual Events: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

- A. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate final completion percentage for each activity.
- B. Distribution: Distribute copies of approved schedule to Architect, Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.
 - 2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 013200

SECTION 013233 - PHOTOGRAPHIC DOCUMENTATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Administrative and procedural requirements for the following:
 - a. Preconstruction photographs.
 - b. Periodic construction photographs.

1.2 INFORMATIONAL SUBMITTALS

- A. Key Plan: Submit key plan of Project site and building with notation of vantage points marked for location and direction of each photograph. Indicate elevation or story of construction. Include same information as corresponding photographic documentation.
- B. Digital Photographs: Submit image files within two days of taking photographs.
 - 1. Digital Camera: Minimum sensor resolution of 4 megapixels.
 - 2. Format: Minimum 1600 by 768 pixels, in unaltered original files, with same aspect ratio as the sensor, un-cropped, date- and time-stamped, in folder named by date of photograph, accompanied by key plan file.
 - 3. Identification: Provide the following information with each image description in file metadata tag:
 - a. Name of Project.
 - b. Name and contact information for photographer.
 - c. Date photograph was taken.
 - d. Description of vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - e. Unique sequential identifier keyed to accompanying key plan.

1.3 USAGE RIGHTS

A. Obtain and transfer copyright usage rights from photographer to Owner for unlimited reproduction of photographic documentation.

PART 2 - PRODUCTS

2.1 PHOTOGRAPHIC MEDIA

A. Digital Images: Provide images in JPG format, with minimum size of 4 megapixels.

PART 3 - EXECUTION

3.1 CONSTRUCTION PHOTOGRAPHS

- A. General: Take photographs using the maximum range of depth of field, and that are in focus, to clearly show the Work. Photographs with blurry or out-of-focus areas will not be accepted.
 - 1. Maintain key plan with each set of construction photographs that identifies each photographic location.
- B. Digital Images: Submit digital images exactly as originally recorded in the digital camera, without alteration, manipulation, editing, or modifications using image-editing software.
 - 1. Date and Time: Include date and time in file name for each image.
 - 2. Field Office Images: Maintain one set of images accessible in the field office at Project site, available at all times for reference. Identify images in the same manner as those submitted to Architect.
- C. Preconstruction Photographs: Before commencement of demolition and starting construction, take photographs of Project site and surrounding properties, including existing items to remain during construction, from different vantage points, as directed by Architect.
 - 1. Flag construction limits before taking construction photographs.
 - 2. Take multiple photographs to show existing conditions adjacent to property before starting the Work.
- D. Periodic Construction Photographs: Take photographs within a few days associated with the cutoff date associated with each Application for Payment. Select vantage points to show status of construction and progress since last photographs were taken.
- E. Architect-Directed Additional Photographs: Architect may request photographs in addition to periodic photographs specified.

END OF SECTION 013233

SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

1.2 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action.
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements.

1.3 SUBMITTAL PROCEDURES

- A. General: One electronic copy of CAD Drawings of the Contract Drawings will be provided by the Architect, with appropriate disclaimers, for Contractor's use in preparing submittals.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals and related activities that require sequential activity.
 - 2. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittal are received.
- C. Submittals Schedule: Comply with requirements of Division 1 Section "Construction Progress Documentation" for list of submittals and time requirements for scheduled performance of related construction activities.
- D. Processing Time: Allow sufficient time for submittal review, including time for re-submittals so installation will not be delayed as a result of the time required to process submittals. Time for review shall commence on Architect's receipt of submittal.
 - 1. Initial Review: Allow two weeks for initial review of each submittal. Allow additional time if processing must be delayed to permit coordination with subsequent submittals. Architect will advise Contractor when a submittal being processed must be delayed for coordination.

- 2. If intermediate submittal is necessary, process it in same manner as initial submittal.
- 3. Allow two weeks for processing of each re-submittal.
- 4. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing.
- E. Identification: Place a permanent label or title block on each submittal for identification.
 - 1. Indicate name of firm or entity that prepared each submittal on label or title block.
 - 2. Provide two spaces approximately 4-inches by 5-inches on label or beside the title block to record Architect and Contractor's review and approval markings and action taken.
 - 3. Include the following information on label for processing and recording action taken:
 - a. Project name.
 - b. Date.
 - c. Name and address of Architect.
 - d. Name and address of Contractor.
 - e. Name and address of subcontractor.
 - f. Name and address of supplier.
 - g. Name of manufacturer.
 - h. Number and title of appropriate Specification section.
 - i. Drawing number and detail references, as appropriate.
 - j. Contractor / Architect's log number; ie, 03500-1A-B.
 - k. Other necessary information.
- F. Deviations: Highlight, encircle or otherwise identify deviations from the Contract Documents on submittals.
- G. Transmittal Form: Submit transmittal form to the Architect to review. The Architect will make revisions if necessary. Process transmittal forms to provide a record of activity.
- H. Transmittal Process: Package each submittal individually and appropriately for transmittal and handling. Transmit each submittal from Contractor to Architect using a transmittal form. Submittals received from sources other than the Contractor will be returned without action.
 - 1. On a separate but attached sheet, prepared on Contractor's letterhead, record relevant information, requests for data, revisions other than those requested by Architect on previous submittals, and deviations from requirements of the Contract Documents, including minor variations and limitations. Include the same label information as the related submittal.
 - 2. Include Contractor's certification stating that submitted information complies with requirements of Contract Documents.
- I. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal form.
 - 1. Do not proceed with installation until an applicable copy of Product Data is in the possession of the installer on-site.

J. Use for Construction: Use only final submittals with mark indicating action taken by Architect in connection with construction.

PART 2 - PRODUCTS

2.1 ACTION SUBMITTAL REQUIREMENTS

- A. LEED Submittals: Comply with requirements specified in Division 01 Section "Sustainable Design Requirements."
- B. General: Prepare and submit Action Submittals required by individual Specificaton Sections.
 - 1. Number of Copies: Submit copies of each submittal as follows, unless otherwise indicated:
 - a. Initial Submittal: Submit two preliminary copies of each submittal where selection of options, color, pattern, texture or similar characteristics is required. Architect will return one submittal with options selected.
 - b. Final Submittal: Submit three copies, unless copies are required for operation and maintenance manuals. Submit five copies where copes are required for operation and maintenance manuals. Architect will retain two copies; remainder will be returned. Mark up and retain one returned copy as a Project Record Document.
- C. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable. Where printed Product Data includes information on several products, some of which are not required, mark copies to indicate the applicable information.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's written recommendations.
 - b. Manufacturer's product specifications.
 - c. Manufacturer's installation instructions.
 - d. Standard color charts.
 - e. Manufacturer's catalog cut-sheets.
 - f. Wiring diagrams showing factory-installed wiring.
 - g. Printed performance curves.
 - h. Operational range diagrams.
 - i. Standard product operating and maintenance manuals.
 - j. Compliance statements indicating compliance with recognized standards.
 - k. Notation of dimensions verified by field measurements.
 - 1. Notation of coordination requirements.
 - m. Availability and delivery time information.
 - 4. Do not submit Product Data until compliance with requirements of the Construction Documents has been confirmed.

- D. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data. Do not use Shop Drawings without an appropriate final stamp indicating action taken in connection with construction.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Dimensions.
 - b. Identification of products.
 - c. Schedules.
 - d. Compliance with specified standards.
 - e. Notation of coordination requirements.
 - f. Notation of dimensions established by field measurement.
 - g. Relationship and attachment to adjoining construction clearly indicated.
 - h. Seal and signature of professional engineer if specified.
 - 2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm) but no larger than 30 by 42 inches (750 by 1067 mm).
 - 3. Submit Shop Drawings in the following format:
 - a. Initial Submittal: Submit one correctable, translucent, reproducible print and one blue-line or black-line print copy. Architect will return the reproducible print.
 - b. Final Submittal: Submit three blue- or black-line prints, unless prints are required for operation and maintenance manuals. Submit five prints where prints are required for operation and maintenance manuals. Architect will retain two copies; remainder will be returned.
 - 1) Maintain one of the returned prints as a Record Document.
- E. Coordination Drawings: Comply with requirements in Division 1 section, Project Management and Coordination.
- F. Samples: Prepare physical units of materials or products, including the following:
 - 1. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 - 2. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - 3. Preparation: Mount, display or package Samples in manner specified to facilitate review of qualities indicated. Prepare Samples to match Architect's sample where so indicated. Attach label on unexposed side that includes generic description, product name, manufacturer's name, and sample source.

- 4. Additional Information: On a separate, attached sheet, prepared on Contractor's letterhead, provide the following information:
 - a. Size limitations.
 - b. Compliance with recognized standards.
 - c. Availability.
 - d. Delivery time.
- 5. Submit Samples for review of kind, color, pattern and texture for a final check of these characteristics with other elements and for a comparison of these characteristics between final submittal and actual component as delivered and installed.
- 6. Number of Samples for Initial Selections: Submit two full set(s) of available choices where color, pattern, texture or similar characteristics are required to be selected from manufacturer's product line. Architect will return one set with options selected.
- 7. Number of Samples for Verification: Submit three full set(s) of samples. Architect will retain two sets; remainder will be returned.
- 8. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
- 9. Distribution of Samples: Prepare and distribute additional sets to manufacturers, subcontractors, suppliers, fabricators, installers and others as necessary for performance of the Work. Show distribution on transmittal forms.
- G. Application for Payment: Comply with requirements specified in Division 01 Section "Payment Procedures."
- H. Schedule of Values: Comply with requirements specified in Division 01 Section "Payment Procedures."
- I. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 - 1. Name, address and telephone number of entity performing subcontract or supplying products.
 - 2. Number and title of related specification section(s) covered by subcontract.
 - 3. Drawing numbers and detail references as appropriate, covered by subcontract.

2.2 INFORMATIONAL SUBMITTAL REQUIREMENTS

- A. General: Prepare and submit the following Informational Submittals required by other specification sections.
 - 1. Number of Copies: Submit two copies of each submittal, unless otherwise indicated. Architect will return copies.

- Certificates and Certifications: Provide a notarized statement that includes signature of
 entity responsible for preparing certification. Certificates and certifications shall be
 signed by an officer or other individual authorized to sign documents on behalf of that
 entity.
- 3. Test and Inspection Reports: Comply with requirements specified in Division 01 Section "Quality Requirements."
- B. Contractor's Construction Schedule: Comply with requirements specified in Division 01 Section "Construction Progress Documentation."
- C. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- D. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- E. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on American Welding Society (AWS) forms. Include names of firms and personnel certified.
- F. Installer Certificates: Prepare written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
- G. Manufacturer Certificates: Prepare written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- H. Material Certificates: Prepare written statements on manufacturer's letterhead certifying that material complies with requirements.
- I. Material Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements.
- J. Preconstruction Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
- K. Compatibility Test Reports: Prepare reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
- L. Field Test Reports: Prepare reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements.

- M. Product Test Reports: Prepare written reports indicating current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
- N. Research Reports: Prepare written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project.
- O. Maintenance Data: Prepare written and graphic instructions and procedures for operation and normal maintenance of products and equipment. Comply with requirements of Division 1 section, "Closeout Procedures".

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

- A. Review each submittal and check for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.

3.2 ARCHITECT'S ACTION

- A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.
- B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or modifications required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action, as follows:
 - 1. Final Unrestricted Release: When submittals are marked "Accepted", that part of the Work covered by the submittal may proceed provided it complies with requirements of the Contract Documents; final acceptance will depend upon that compliance.
 - 2. Final-But-Restricted Release: When submittals are marked "Accepted as Noted", that part of the Work covered by the submittal may proceed provided it complies with notations or corrections on the submittal and with requirements of the Contract Documents; final acceptance will depend upon that compliance.
 - 3. Returned for Re-Submittal: When submittal is marked "Revise and Resubmit as Requested", do not proceed with that part of the Work covered by the submittal, including purchasing, fabrication, delivery, or other activity. Revise or prepare a new submittal in accordance with the notations; re-submit without delay. Repeat if necessary to obtain a different action mark.

- 4. Rejected: When submittal is marked "Not Accepted", do not proceed with that part of the Work covered by the submittal, including purchasing, fabrication, delivery or other activity. Revise and prepare a new submittal in accordance with the notations, re-submit without delay.
- 5. Other Action: Where a submittal is primarily for information or record purposes, special processing or other activity, the submittal will be returned, marked "No Action Taken" or similar identifier.
- C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.
- D. Other Submittals: Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 013300

SECTION 013516 - ALTERATION PROJECT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Special procedures for alteration work.

1.2 DEFINITIONS

- A. Alteration Work: This term includes remodeling, renovation, repair, and maintenance work performed within existing spaces or on existing surfaces as part of the Project.
- B. Consolidate: To strengthen loose or deteriorated materials in place.
- C. Design Reference Sample: A sample that represents the Architect's prebid selection of work to be matched; it may be existing work or work specially produced for the Project.
- D. Dismantle: To remove by disassembling or detaching an item from a surface, using gentle methods and equipment to prevent damage to the item and surfaces; disposing of items unless indicated to be salvaged or reinstalled.
- E. Match: To blend with adjacent construction and manifest no apparent difference in material type, species, cut, form, detail, color, grain, texture, or finish; as approved by Architect.
- F. Refinish: To remove existing finishes to base material and apply new finish to match original, or as otherwise indicated.
- G. Repair: To correct damage and defects, retaining existing materials, features, and finishes. This includes patching, piecing-in, splicing, consolidating, or otherwise reinforcing or upgrading materials.
- H. Replace: To remove, duplicate, and reinstall entire item with new material. The original item is the pattern for creating duplicates unless otherwise indicated.
- I. Replicate: To reproduce in exact detail, materials, and finish unless otherwise indicated.
- J. Reproduce: To fabricate a new item, accurate in detail to the original, and from either the same or a similar material as the original, unless otherwise indicated.
- K. Retain: To keep existing items that are not to be removed or dismantled.
- L. Strip: To remove existing finish down to base material unless otherwise indicated.

1.3 COORDINATION

- A. Alteration Work Subschedule: A construction schedule coordinating the sequencing and scheduling of alteration work for entire Project, including each activity to be performed, and based on Contractor's Construction Schedule. Secure time commitments for performing critical construction activities from separate entities responsible for alteration work.
 - 1. Schedule construction operations in sequence required to obtain best Work results.
 - 2. Coordinate sequence of alteration work activities to accommodate the following:
 - a. Owner's continuing occupancy of portions of existing building.
 - b. Owner's partial occupancy of completed Work.
 - c. Other known work in progress.
 - d. Tests and inspections.
 - 3. Detail sequence of alteration work, with start and end dates.
 - 4. Utility Services: Indicate how long utility services will be interrupted. Coordinate shutoff, capping, and continuation of utility services.
 - 5. Use of elevator and stairs.
 - 6. Equipment Data: List gross loaded weight, axle-load distribution, and wheel-base dimension data for mobile and heavy equipment proposed for use in existing structure. Do not use such equipment without certification from Contractor's professional engineer that the structure can support the imposed loadings without damage.
- B. Pedestrian and Vehicular Circulation: Coordinate alteration work with circulation patterns within Project building(s) and site. Some work is near circulation patterns and adjacent to restricted areas. Circulation patterns cannot be closed off entirely and in places can be only temporarily redirected around small areas of work. Plan and execute the Work accordingly.

1.4 PROJECT MEETINGS FOR ALTERATION WORK

- A. Preliminary Conference for Alteration Work: Before starting alteration work, conduct conference at Project site.
 - 1. Attendees: In addition to representatives of Owner, Architect, and Contractor, testing service representative, specialists, and chemical-cleaner manufacturer(s) shall be represented at the meeting.
 - 2. Agenda: Discuss items of significance that could affect progress of alteration work, including review of the following:
 - a. Alteration Work Subschedule: Discuss and finalize; verify availability of materials, specialists' personnel, equipment, and facilities needed to make progress and avoid delays.
 - b. Fire-prevention plan.
 - c. Governing regulations.
 - d. Areas where existing construction is to remain and the required protection.
 - e. Material removal routes.
 - f. Sequence of alteration work operations.

- g. Storage, protection, and accounting for salvaged and specially fabricated items.
- h. Existing conditions, staging, and structural loading limitations of areas where materials are stored.
- i. Qualifications of personnel assigned to alteration work and assigned duties.
- j. Requirements for extent and quality of work, tolerances, and required clearances.
- k. Embedded work such as flashings and lintels, special details, collection of waste, protection of occupants and the public, and condition of other construction that affects the Work or will affect the work.
- 3. Reporting: Record conference results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from conference.
- B. Coordination Meetings: Conduct coordination meetings specifically for alteration work at regular intervals. Coordination meetings are in addition to specific meetings held for other purposes, such as progress meetings and preinstallation conferences.
 - 1. Attendees: In addition to representatives of Owner, Architect, and Contractor, each specialist, supplier, installer, and other entity concerned with progress or involved in planning, coordination, or performance of alteration work activities shall be represented at these meetings. All participants at conference shall be familiar with Project and authorized to conclude matters relating to alteration work.
 - 2. Agenda: Review and correct or approve minutes of previous coordination meeting. Review other items of significance that could affect progress of alteration work. Include topics for discussion as appropriate to status of Project.
 - a. Alteration Work Subschedule: Review progress since last coordination meeting. Determine whether each schedule item is on time, ahead of schedule, or behind schedule. Determine how construction behind schedule will be expedited with retention of quality; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities are completed within the Contract Time.
 - b. Schedule Updating: Revise Contractor's Alteration Work Subschedule after each coordination meeting where revisions to schedule have been made or recognized. Issue revised schedule concurrently with report of each meeting.
 - c. Review present and future needs of each entity present, including review items listed in the "Preliminary Conference for Alteration Work" Paragraph in this article and the following:
 - 1) Interface requirements of alteration work with other Project Work.
 - 2) Status of submittals for alteration work.
 - 3) Access to alteration work locations.
 - 4) Effectiveness of fire-prevention plan.
 - 5) Quality and work standards of alteration work.
 - 6) Change Orders for alteration work.
 - 3. Reporting: Record meeting results and distribute copies to everyone in attendance and to others affected by decisions or actions resulting from each meeting.

1.5 MATERIALS OWNERSHIP

- A. Historic items, relics, and similar objects including, but not limited to, commemorative plaques and tablets, antiques, and other items of interest or value to Owner that may be encountered or uncovered during the Work, regardless of whether they were previously documented, remain Owner's property.
 - 1. Carefully dismantle and salvage each item or object in a manner to prevent damage and protect it from damage, then promptly deliver it to Owner where directed at Project site.

1.6 INFORMATIONAL SUBMITTALS

- A. Alteration Work Subschedule: Submit alteration work subschedule within 30-days of date established for commencement of alteration work.
- B. Preconstruction Documentation: Show preexisting conditions of adjoining construction and site improvements that are to remain, including finish surfaces, that might be misconstrued as damage caused by Contractor's alteration work operations.

1.7 QUALITY ASSURANCE

- A. Specialist Qualifications: An experienced firm regularly engaged in specialty work similar in nature, materials, design, and extent to alteration work as specified in each Section and that has completed a minimum of five recent projects with a record of successful in-service performance that demonstrates the firm's qualifications to perform this work.
 - Field Supervisor Qualifications: Full-time supervisors experienced in specialty work similar in nature, material, design, and extent to that indicated for this Project. Supervisors shall be on-site when specialty work begins and during its progress. Supervisors shall not be changed during Project except for causes beyond the control of the specialist firm.
 - a. Construct new mockups of required work whenever a supervisor is replaced.
- B. Alteration Work Program: Prepare a written plan for alteration work for whole Project, including each phase or process and protection of surrounding materials during operations. Show compliance with indicated methods and procedures specified in this and other Sections. Coordinate this whole-Project alteration work program with specific requirements of programs required in other alteration work Sections.
 - 1. Dust and Noise Control: Include locations of proposed temporary dust- and noise-control partitions and means of egress from occupied areas coordinated with continuing on-site operations and other known work in progress.
 - 2. Debris Hauling: Include plans clearly marked to show debris hauling routes, turning radii, and locations and details of temporary protective barriers.

- C. Fire-Prevention Plan: Prepare a written plan for preventing fires during the Work, including placement of fire extinguishers, fire blankets, rag buckets, and other fire-control devices during each phase or process. Coordinate plan with Owner's fire-protection equipment and requirements. Include fire-watch personnel's training, duties, and authority to enforce fire safety.
- D. Safety and Health Standard: Comply with ANSI/ASSE A10.6.

1.8 STORAGE AND HANDLING OF SALVAGED MATERIALS

A. Salvaged Materials:

- 1. Clean loose dirt and debris from salvaged items unless more extensive cleaning is indicated.
- 2. Pack or crate items after cleaning; cushion against damage during handling. Label contents of containers.
- 3. Store items in a secure area until delivery to Owner.
- 4. Transport items to Owner's storage area designated by Owner.
- 5. Protect items from damage during transport and storage.

B. Salvaged Materials for Reinstallation:

- 1. Repair and clean items for reuse as indicated.
- 2. Pack or crate items after cleaning and repairing; cushion against damage during handling. Label contents of containers.
- 3. Protect items from damage during transport and storage.
- 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment unless otherwise indicated. Provide connections, supports, and miscellaneous materials to make items functional for use indicated.
- C. Existing Materials to Remain: Protect construction indicated to remain against damage and soiling from construction work. Where permitted by Architect, items may be dismantled and taken to a suitable, protected storage location during construction work and reinstalled in their original locations after alteration and other construction work in the vicinity is complete.
- D. Storage: Catalog and store items within a weathertight enclosure where they are protected from moisture, weather, condensation, and freezing temperatures.
 - 1. Identify each item for reinstallation with a nonpermanent mark to document its original location. Indicate original locations on plans, elevations, sections, or photographs by annotating the identifying marks.
 - 2. Secure stored materials to protect from theft.
 - 3. Control humidity so that it does not exceed 85 percent. Maintain temperatures 5 deg F (3 deg C) or more above the dew point.
 - 4. Contractor, if required, to arrange for off-site locations for storage and protection of salvaged material that cannot be stored and protected on-site.

1.9 FIELD CONDITIONS

- A. Survey of Existing Conditions: Record existing conditions that affect the Work by use of measured drawings, preconstruction photographs and preconstruction video as appropriate to the work. Those records and existing photo documentation of the Architect will be used to resolve discrepancies.
- B. Discrepancies: Notify Architect of discrepancies between existing conditions and Drawings before proceeding with removal and dismantling work.
- C. Size Limitations in Existing Spaces: Materials, products, and equipment used for performing the Work and for transporting debris, materials, and products shall be of sizes that clear surfaces within existing spaces, areas, rooms, and openings, including temporary protection, by 12 inches or more.

PART 2 - PRODUCTS - (Not Used)

PART 3 - EXECUTION

3.1 PROTECTION

- A. Protect persons, motor vehicles, surrounding surfaces of building, building site, plants, and surrounding buildings from harm resulting from alteration work.
 - 1. Use only proven protection methods, appropriate to each area and surface being protected.
 - 2. Provide temporary barricades, barriers, and directional signage to exclude the public from areas where alteration work is being performed.
 - 3. Erect temporary barriers to form and maintain fire-egress routes.
 - 4. Erect temporary protective covers over walkways and at points of pedestrian and vehicular entrance and exit that must remain in service during alteration work.
 - 5. Contain dust and debris generated by alteration work, and prevent it from reaching the public or adjacent surfaces.
 - 6. Provide shoring, bracing, and supports as necessary. Do not overload structural elements.
 - 7. Protect floors and other surfaces along hauling routes from damage, wear, and staining.
 - 8. Provide supplemental sound-control treatment to isolate demolition work from other areas of the building.

B. Temporary Protection of Materials to Remain:

- 1. Protect existing materials with temporary protections and construction. Do not remove existing materials unless otherwise indicated.
- 2. Do not attach temporary protection to existing surfaces except as indicated as part of the alteration work program.
- C. Comply with each product manufacturer's written instructions for protections and precautions. Protect against adverse effects of products and procedures on people and adjacent materials, components, and vegetation.

D. Utility and Communications Services:

- 1. Notify Owner, Architect, authorities having jurisdiction, and entities owning or controlling wires, conduits, pipes, and other services affected by alteration work before commencing operations.
- 2. Disconnect and cap pipes and services as required by authorities having jurisdiction, as required for alteration work.
- 3. Maintain existing services unless otherwise indicated; keep in service, and protect against damage during operations. Provide temporary services during interruptions to existing utilities.
- E. Existing Drains: Prior to the start of work in an area, test drainage system to ensure that it is functioning properly. Notify Architect immediately of inadequate drainage or blockage. Do not begin work in an area until the drainage system is functioning properly.
 - 1. Prevent solids such as adhesive or mortar residue or other debris from entering the drainage system. Clean out drains and drain lines that become sluggish or blocked by sand or other materials resulting from alteration work.
 - 2. Protect drains from pollutants. Block drains or filter out sediments, allowing only clean water to pass.

3.2 PROTECTION FROM FIRE

- A. General: Follow fire-prevention plan and the following:
 - 1. Comply with NFPA 241 requirements unless otherwise indicated.
 - 2. Remove and keep area free of combustibles, including rubbish, paper, waste, and chemicals, unless necessary for the immediate work.
 - a. If combustible material cannot be removed, provide fire blankets to cover such materials.
- B. Heat-Generating Equipment and Combustible Materials: Comply with the following procedures while performing work with heat-generating equipment or combustible materials, including welding, torch-cutting, soldering, brazing, removing paint with heat, or other operations where open flames or implements using high heat or combustible solvents and chemicals are anticipated:
 - 1. Obtain Owner's approval for operations involving use of open-flame or welding or other high-heat equipment. Notify Owner at least 72 hours before each occurrence, indicating location of such work.
 - 2. As far as practicable, restrict heat-generating equipment to shop areas or outside the building.
 - 3. Do not perform work with heat-generating equipment in or near rooms or in areas where flammable liquids or explosive vapors are present or thought to be present. Use a combustible gas indicator test to ensure that the area is safe.
 - 4. Use fireproof baffles to prevent flames, sparks, hot gases, or other high-temperature material from reaching surrounding combustible material.
 - 5. Prevent the spread of sparks and particles of hot metal through open windows, doors, holes, and cracks in floors, walls, ceilings, roofs, and other openings.

- 6. Fire Watch: Before working with heat-generating equipment or combustible materials, station personnel to serve as a fire watch at each location where such work is performed. Fire-watch personnel shall have the authority to enforce fire safety. Station fire watch according to NFPA 51B, NFPA 241, and as follows:
 - a. Train each fire watch in the proper operation of fire-control equipment and alarms.
 - b. Prohibit fire-watch personnel from other work that would be a distraction from fire-watch duties.
 - c. Cease work with heat-generating equipment whenever fire-watch personnel are not present.
 - d. Have fire-watch personnel perform final fire-safety inspection each day beginning no sooner than 30 minutes after conclusion of work to detect hidden or smoldering fires and to ensure that proper fire prevention is maintained.
 - e. Maintain fire-watch personnel at Project site until 60 minutes after conclusion of daily work.
- C. Fire-Control Devices: Provide and maintain fire extinguishers, fire blankets, and rag buckets for disposal of rags with combustible liquids. Maintain each as suitable for the type of fire risk in each work area. Ensure that nearby personnel and the fire-watch personnel are trained in fireextinguisher and blanket use.
- D. Sprinklers: Where sprinkler protection exists and is functional, maintain it without interruption while operations are being performed. If operations are performed close to sprinklers, shield them temporarily with guards.
 - 1. Remove temporary guards at the end of work shifts, whenever operations are paused, and when nearby work is complete.

3.3 PROTECTION DURING APPLICATION OF CHEMICALS

- A. Protect motor vehicles, surrounding surfaces of building, building site, plants, and surrounding buildings from harm or spillage resulting from applications of chemicals and adhesives.
- B. Cover adjacent surfaces with protective materials that are proven to resist chemicals selected for Project unless chemicals being used will not damage adjacent surfaces as indicated in alteration work program. Use covering materials and masking agents that are waterproof and UV resistant and that will not stain or leave residue on surfaces to which they are applied. Apply protective materials according to manufacturer's written instructions. Do not apply liquid masking agents or adhesives to painted or porous surfaces. When no longer needed, promptly remove protective materials.
- C. Do not apply chemicals during winds of sufficient force to spread them to unprotected surfaces.
- D. Neutralize alkaline and acid wastes and legally dispose of off Owner's property.
- E. Collect and dispose of runoff from chemical operations by legal means and in a manner that prevents soil contamination, soil erosion, undermining of paving and foundations, damage to landscaping, or water penetration into building interior.

3.4 GENERAL ALTERATION WORK

- A. Have specialty work performed only by qualified specialists.
- B. Ensure that supervisory personnel are present when work begins and during its progress.
- C. Record existing work before each procedure (preconstruction), and record progress during the work. Use digital preconstruction documentation photographs or video recordings.
- D. Perform surveys of Project site as the Work progresses to detect hazards resulting from alterations.
- E. Notify Architect of visible changes in the integrity of material or components whether from environmental causes including biological attack, UV degradation, freezing, or thawing or from structural defects including cracks, movement, or distortion.
 - 1. Do not proceed with the work in question until directed by Architect.

END OF SECTION 013516

SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and -control requirements for individual construction activities are specified in the Sections that specify those activities. Requirements in those Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.2 DEFINITIONS

- A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.
- C. Mockups: Full size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.
- D. Preconstruction Testing: Tests and inspections performed specifically for the Project before products and materials are incorporated into the Work to verify performance or compliance with specified criteria.

- E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- F. Source Quality-Control Testing: Tests and inspections that are performed at the source, i.e., plant, mill, factory, or shop.
- G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade or trades.
- J. Experienced: When used with an entity or individual, "experienced" means having successfully completed a minimum of five (5) previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.3 CONFLICTING REQUIREMENTS

- A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 ACTION SUBMITTALS

- A. Shop Drawings: For integrated exterior mockups, provide plans, sections, and elevations, indicating materials and size of mockup construction.
 - 1. Indicate manufacturer and model number of individual components.
 - 2. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.

1.5 INFORMATIONAL SUBMITTALS

- A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.
- B. Qualification Data: For Contractor's quality control personnel.
- C. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
- D. Schedule of Tests and Inspections: Prepare in tabular form and include the following:
 - 1. Specification Section number and title.
 - 2. Entity responsible for performing tests and inspections.
 - 3. Description of test and inspection.
 - 4. Identification of applicable standards.
 - 5. Identification of test and inspection methods.
 - 6. Number of tests and inspections required.
 - 7. Time schedule or time span for tests and inspections.
 - 8. Requirements for obtaining samples.
 - 9. Unique characteristics of each quality-control service.

1.6 CONTRACTOR'S QUALITY-CONTROL PLAN

- A. Quality-Control Plan, General: Submit quality-control plan within 10 days of Notice of Award, and not less than five days prior to preconstruction conference. Submit in format acceptable to Architect. Identify personnel, procedures, controls, instructions, tests, records, and forms to be used to carry out Contractor's quality-assurance and quality-control responsibilities. Coordinate with Contractor's construction schedule.
- B. Quality-Control Personnel Qualifications: Engage qualified full-time personnel trained and experienced in managing and executing quality-assurance and quality-control procedures similar in nature and extent to those required for Project. Project quality-control manager may also serve as Project superintendent.
- C. Submittal Procedure: Describe procedures for ensuring compliance with requirements through review and management of submittal process. Indicate qualifications of personnel responsible for submittal review.
- D. Testing and Inspection: Include in quality-control plan a comprehensive schedule of Work requiring testing or inspection, including the following:
 - 1. Contractor-performed tests and inspections including subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections.
 - 2. Special inspections required by authorities having jurisdiction and indicated on the "Statement of Special Inspections."
 - 3. Owner-performed tests and inspections indicated in the Contract Documents.

- E. Continuous Inspection of Workmanship: Describe process for continuous inspection during construction to identify and correct deficiencies in workmanship in addition to testing and inspection specified. Indicate types of corrective actions to be required to bring work into compliance with standards of workmanship established by Contract requirements and approved mockups.
- F. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.

1.7 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, and telephone number of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and reinspecting.
- B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, and telephone number of technical representative making report.
 - 2. Statement on condition of substrates and their acceptability for installation of product.
 - 3. Statement that products at Project site comply with requirements.
 - 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
 - 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 6. Statement indicating how conditions, products, and installation will affect warranty.
 - 7. Other required items indicated in individual Specification Sections.

- C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, and telephone number of factory-authorized service representative making report.
 - 2. Statement that equipment complies with requirements.
 - 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 4. Statement whether conditions, products, and installation will affect warranty.
 - 5. Other required items indicated in individual Specification Sections.
- D. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.8 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or products that are similar to those indicated for this Project in material, design, and extent.
- F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.
 - 1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

- G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and where required by authorities having jurisdiction, that is acceptable to authorities.
 - 1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
 - 2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.
- H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens, assemblies and mockups; do not reuse products on Project.
 - 2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- K. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups in location and of size indicated or, if not indicated, as directed by Architect.
 - 2. Notify Architect seven (7) days in advance of dates and times when mockups will be constructed.

- 3. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed during the construction at the Project.
- 4. Demonstrate the proposed range of aesthetic effects and workmanship.
- 5. Obtain Architect's approval of mockups before starting work, fabrication, or construction.
 - a. Allow seven (7) days for initial review and each re-review of each mockup.
- 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- 7. Demolish and remove mockups when directed, unless otherwise indicated.

1.9 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
 - 2. Costs for retesting and re-inspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.
- B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.
 - 1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 2. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 3. Notify testing agencies at least 24-hours in advance of time when Work that requires testing or inspecting will be performed.
 - 4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 5. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- C. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Division 01 Section "Submittal Procedures."

- D. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in pre-installation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- E. Retesting/Re-inspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- F. Testing Agency Responsibilities: Cooperate with Architect and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 - 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 - 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 - 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 - 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 - 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 - 6. Do not perform any duties of Contractor.
- G. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 6. Security and protection for samples and for testing and inspecting equipment at Project site.
- H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. Schedule times for tests, inspections, obtaining samples, and similar activities.
- I. Schedule of Tests and Inspections: Prepare a schedule of tests, inspections, and similar quality-control services required by the Contract Documents. Coordinate and submit concurrently with Contractor's construction schedule. Update as the Work progresses.
 - 1. Distribution: Distribute schedule to Owner, Architect, testing agencies, and each party involved in performance of portions of the Work where tests and inspections are required.

1.10 SPECIAL TESTS AND INSPECTIONS

- A. Special Tests and Inspections: Conducted by a qualified testing agency as required by authorities having jurisdiction, as indicated in individual Specification Sections, and as follows:
 - 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviewing the completeness and adequacy of those procedures to perform the Work.
 - 2. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
 - 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction.
 - 4. Submitting a final report of special tests and inspections at Substantial Completion that includes a list of unresolved deficiencies.
 - 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
 - 6. Retesting and re-inspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and modifications as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

- A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.
 - 1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Division 01 Section "Execution."

- B. Protect construction exposed by or for quality-control service activities.
- C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION 014000

SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Operations at Project site including unloading, temporarily storing, unpacking, assembling, erecting, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar operations.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.2 INDUSTRY STANDARDS

- A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

- C. Copies of Standards: Each entity engaged in construction on Project should be familiar with industry standards applicable to its construction activity. Copies of applicable standards are not bound with the Contract Documents.
 - 1. Where copies of standards are needed to perform a required construction activity, obtain copies directly from publication source.

1.3 ABBREVIATIONS AND ACRONYMS

A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities indicated in Gale's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the United States."

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 014200

SECTION 014300 - THRESHOLD BUILDING INSPECTION SERVICES CONCRETE

PART 1 - GENERAL

1.1 GENERAL

A. The Special Inspector of Threshold buildings or his designated representative shall observe that the structural portions of the work are executed in substantial accordance with the permitted Contract Documents. The Contract Documents are defined as the permitted plans, recorded addendum, and the specifications with all amendments thereto, including the Special Inspection Plan. The Special Inspector shall also review and note compliance or deviations from documents including but not limited to A/E approved RFI's, Proposal Requests, Addendums, Supplemental Instructions, and fabrication/erection drawings that have been signed and sealed by a designated Specialty Engineer.

1.2 QUALIFICATIONS

A. The Special Inspector shall be registered as required by current legislation and shall posses a minimum of 10 years of verifiable experience in the structural systems being used. The Special Inspector may send a full-time employee as his authorized representative to the project, but that person shall posses a minimum of 5 years verifiable experience and knowledge in the structural systems being used. The Special Inspector and his designated representative shall meet current qualification requirements as outlined by Florida Statutes for the duration of the project. Documentation of the above-required experience shall be submitted to the Architect/Engineer of Record for approval prior to commencing work.

1.3 DUTIES

A. The Special Inspector shall maintain a record of the progress, working conditions, any observations given to the Contractor and suspected deviations from the Contract Documents. The Special Inspector shall be present on site at times when significant work to the primary structure is scheduled to occur and shall make required inspections and note compliance or any deviations in sufficient time as to not delay the progress of the work. The reports shall be in writing and shall be completed promptly at the end of each work period. The reports will be available on the job site at all times in the form of an inspection field report file.

1.4 REPORTING INFORMATION AND OBSERVATIONS

A. Field reports may be signed by the duly authorized representative, but shall be submitted under a signed and sealed cover letter to the agency having jurisdiction for the project on an "as needed" basis during construction. In addition, the Specialty Inspector shall submit copies of his report to the Owner, Architect, Engineer and the Contractor. The Report will describe construction progress and all conditions that were not in compliance as required above. The report shall also state necessary measures taken by the Contractor to correct these conditions.

- B. The Special Inspector shall keep an exceptions and corrections file for follow-up. The exceptions log shall be submitted with the reports. This file shall be reviewed on a daily basis and updated as exceptions are rectified.
- C. Each report shall identify working conditions including weather, temperature, time of day, type and location of work being performed, exceptions and corrections as well as any unusual circumstances affecting the performance of work.
- D. The reports may include specified records such as pile driving logs, mill tests, photographs, RFI's and addendums.
- E. Note changes in working sequence or materials and any unusual circumstances affecting the performance of work.
- F. Upon completion of the structural construction and prior to the issuance of a Certificate of Occupancy, a signed and sealed statement by the Special Inspector must be submitted to the Enforcing Agency stating that the portion of the project under his inspection responsibilities has been constructed in general conformance with the Contract Documents. This statement shall be in accordance with section 553.79(7)a of the Florida Statutes.

1.5 REQUIREMENTS OF THE OWNER

A. The Owner will engage a qualified inspection agency to perform the Threshold Inspections. The Owner shall arrange for all necessary construction records to be available to the Special Inspector during the progress of the work. Such records shall consist of but may not be limited to: Addendums, RFI's, PR's, ASI's, concrete cylinder test reports, soil density test records, mill records, shop drawings, mix designs, batch tickets, etc.

1.6 REQUIREMENTS OF THE CONTRACTOR

A. The Contractor shall provide the Special Inspector safe access to all portions of the structure that need inspections. Advise the Special Inspector in advance of construction schedules and planned operations. A minimum of 24 hours notice shall be given for all inspections.

1.7 RESPONSIBILITY

A. The Special Inspector does not surrogate the Building Official's or the Architect/Engineer of Record's responsibilities. Further, it is not intended that the Contractor's statutory or contractual obligations are anyway relieved or foregone by the presence of the Special Inspector. The Contractor has the sole responsibility for any deviations from the Contract Documents. The Special Inspector does not replace the quality control responsibility of the Contractor. All inspections shall be in accordance with the Florida Statutes, Building Construction Standards, Chapter 553, Part IV.

B. The Special Inspector shall use the Construction Documents for checking all structural elements. In the event that inconsistencies exist in the shop drawings and the Construction Documents, the Engineer of Record shall resolve the issue. The Engineer of Record and Special Inspector will endeavor to assist the Contractor to correct errors. The Special Inspector or his representative shall not direct the contractor as to means and methods of construction or interpretations of the Contract Documents. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

1.8 LIMITATIONS

- A. The following inspection plan is outlined as a minimum only, and may be supplemented by special requirements as deemed necessary during the course of the work. Contractor performance and capability may only increase the Special Inspector's involvement in any project. This document will outline the plan as well as delineate specified submission requirements. The actual details of inspector checklists will not be elaborated upon, but rather a clear definition of responsibilities, scheduled visits, and intent will be given. The Special Inspector is to provide services only with regard to the structure of the building including foundation, primary and secondary framing systems, glass and curtain wall systems, and all items included in the inspection plan. This does not include inspection of any safety provisions as required by OSHA or other safety standards, which apply during the construction period, nor does it apply to elements such as glass, metal, or wooden railings, fire protection, roofing, mechanical/electrical systems, architectural components, site work or other elements not contributing to the capacity of the structural building frame.
- B. Since the Special Inspector does not certify that the Contract Documents are, in themselves, in compliance with the applicable building codes all certifications issued will refer to completed work being in substantial accordance with the Contract Documents rather than the applicable building code.
- C. The Special Inspector's representative on the site shall not have any other non-inspection duties such as making concrete cylinders or otherwise monitoring the ready-mix concrete operation. Further, the Special Inspector shall personally visit the site on a monthly basis to verify that his representative is correctly interpreting the Contract Documents, and fulfilling his responsibilities.

PART 2 - PLAN

2.1 INSPECTION PLAN

- A. Following is a description of the structural system employed for Orange County Convention Center:
 - 1. Foundation New foundations for new CMU walls and elevator pits.
 - 2. Frame Revisions to the existing steel framing to allow for the construction of new elevators and outdoor terrace.
 - 3. Roof New terrace to be constructed over the existing roof in Area 12.

THRESHOLD BUILDING INSPECTION SERVICES CONCRETE SECTION 014300

B. Structural drawings S0.201 through S7.301 in addition to the other portions of the Contract Documents shall govern the requirements of this work.

2.2 DEMOLITION OF EXISTING STRUCTURE

- A. Verify that all demolition and installation procedures are in conformance to the submitted Demolition and Installation Plan.
- B. Verify that materials are not stored on the existing structure in excess of capacity shown on the plan or as approved by the Engineer of Record.
- C. Verify that the demolition and installation limitations defined in the Contract Documents are not exceeded. Note any damage to structural components which remain in place.
- D. Verify that all hoisting and demolition equipment used on site has been specified in the Demolition and Installation Plans.
- E. All new openings in the existing structure shall be reviewed by the Engineer of Record before the commencement of core drilling or demolition.

2.3 SUBSURFACE AND FOUNDATIONS

- A. The Special Inspector shall request a copy of the Geotechnical Report providing site and foundation preparation and installation recommendations. The report shall be signed and sealed by a Florida Registered Engineer.
- B. Verify that a qualified Testing Laboratory has inspected, documented and certified that all foundation installation and site preparation work is in compliance with geotechnical recommendations.
- C. Prior to excavation work, confirm shoring and soil stabilization plan is in accordance with the recommendations of the Geotechnical Engineer.
- D. All other excavation and filling work shall be performed in accordance with the Geotechnical Engineer's recommendations.
- E. Visually monitor reference benchmarks for any settlements or displacement during construction.
- F. Report any existing foundation or structural distress or displacement during construction.
- G. Monitor removal of all temporary shoring and bracing components. Note any damage to remaining components.
- H. The Special Inspector shall request a final report from the project Geotechnical Engineer confirming that all soil compaction was performed in compliance with contract documents.

2.4 FOUNDATION - SPREAD FOOTINGS

- A. The Geotechnical Engineer shall be employed to monitor the sub-surface densification. Results of all compaction tests shall be made available to the Special Inspector prior to inspection of reinforcing steel.
- B. Observe placement of reinforcement in the spread footings for compliance with the Contract Documents as outlined in the Reinforcing Steel Section of this Inspection Plan.
- C. Observe concrete placement as outlined in the Concrete Section of this Inspection Plan.

2.5 FOUNDATION - WALLS AND PITS

- A. Observe placement of reinforcement for compliance with the Contract Documents as outlined in the Reinforcing Steel Section of this Inspection Plan.
- B. Observe concrete placement as outlined in the Concrete Section of this Inspection Plan.

2.6 SLAB-ON-GRADE

- A. Verify that performance of compaction tests by Testing Laboratories have been completed prior to concrete placement.
- B. Note any alteration and subsequent replacement of subgrade materials required by mechanical or other trades.
- C. Observe placement of screeds to obtain proper level and thickness of slabs. Observe location of slab depressions and steps in slab while maintaining required slab thickness.
- D. Check size and lap lengths of welded wire fabric and other reinforcing.
- E. Check that location and type of slab control joints and construction joints conform to the Contract Documents.

2.7 CONCRETE – GENERAL

- A. Verify formwork for correct location alignment and dimensions.
- B. Verify form surfaces have been wetted, oiled or coated in accordance with the Contract Documents. Verify no oil is on reinforcing steel surfaces.
- C. Verify that the Testing Laboratory support staff made tests as required.
- D. Periodically inspect transit mix delivery slips to review the correct mix and elapsed time between batching and depositing of concrete and that the concrete delivered is the approved mix.
- E. Periodically verify that slump is measured at point of discharge for each day's pour.

- F. Periodically verify that concrete test cylinders have been taken in accordance with the Contract Documents.
- G. Verify that site addition of water to the concrete mix is based on the guideline set forth in the Contract Documents.
- H. Observe concrete placement to check that embedded items and reinforcing steel are not adversely altered during placement.
- I. Review contractor's plan for curing to determine if it is in accordance with the Contract Documents.
- J. Verify all foreign material such as chips, blocks, sawdust and debris have been removed from the forms prior to the placement of concrete.
- K. Verify the location of construction and expansion joints in beams, columns, slabs, walls, etc. for compliance with the joint locations shown on Contract Documents or approve construction joint location plans.
- L. Verify that dowels, fillers, keys and bulkheads at joints are in conformance with the Contract Documents.
- M. Report all individual and groups of slab openings larger than 12", which are not shown on the Contract Documents.
- N. Check placement of additional reinforcement around openings. No sleeves or openings will be permitted in beams or columns without prior approval of the Engineer of Record.
- O. Verify that conduits placed in the slab do not exceed the maximum size and are spaced in accordance with ACI requirements to ensure integrity of the slab.
- P. Inspect and note any honeycombing, cracks, deflection, settlement or other discrepancies after concrete has been placed.

2.8 CONCRETE – FORMS, SHORING AND RE-SHORING

- A. Confirm that detailed drawings and design calculations signed and sealed by a Professional Engineer registered in the State of Florida for formwork, shoring and reshoring have been submitted.
- B. Verify that a professional Engineer Registered in the State of Florida has inspected the formwork, shoring and reshoring and submitted a certification that the work is in conformance with the plans submitted to the Enforcement Agency.

2.9 CONCRETE – REINFORCEMENT

A. Check if all reinforcement is in place in accordance with the Contract Documents and the approved shop drawings. Verify other trades have not displaced any reinforcing.

- B. Reinforcement shall be checked for size, bending, grade, lengths of splices, and bar-to-bar spacing.
- C. Check if reinforcement has been cleaned of all loose, flaky, rust and scale, grease or other foreign materials, which would reduce or prevent bond.
- D. Check if reinforcement is tied and supported securely so that displacement will not occur during concrete placement or foot traffic.
- E. Check all reinforcement in place for proper concrete cover.
- F. Location of all splices of reinforcement should be checked and no splices should be made unless shown on the Contract Documents or approved in writing by the Engineer of Record.

2.10 CONCRETE – CAST-IN-PLACE BEAMS

- A. Concrete beams shall be checked for dimensions, rebar size, quantity and correct placement. Proper clearance between reinforcing steel and forms shall be maintained.
- B. Stirrups shall be checked for size, quantity, proper bends and correct placement. Stirrups shall be spaced in accordance with the Contract Documents.
- C. Check corner bars and tie beam dowel bars for proper size, location, and lap splice length as shown on Contract Documents.

2.11 CONCRETE – REINFORCED STRUCTURAL SLABS

- A. Observe placement of reinforcing steel for compliance with the Contract Documents as outlined in the Reinforcing Steel Section of this Inspection Plan.
- B. Verify that slab is checked for proper thickness, levelness, and flatness as defined by the Contract Documents.
- C. Check column dowels for size, quantity, laps and location.
- D. Check reinforcing size and placement around all slab openings.
- E. Observe all concrete placements for compliance with ACI and Contract Documents.

2.12 REINFORCING DOWELING AND EXPANSION/CHEMICAL ANCHORS

- A. Periodically verify depth, diameter and preparation of drilled holes used for structural fastening.
- B. Periodically verify proper mixing and installation of all structural epoxy.
- C. Verify that the testing laboratory has inspected expansion bolts for proper torque.

THRESHOLD BUILDING INSPECTION SERVICES CONCRETE SECTION 014300

2.13 MASONRY – REINFORCED

- A. Obtain copies of certifications for conformance of all materials used for structural components that include but are not limited to: concrete masonry units, reinforcing steel, mortar mix, and embeds.
- B. Periodically observe mortar mix and placement. Verify that grout inspection and testing is in accordance with Contract Documents.
- C. Verify placement of joint reinforcing, wall vertical steel, control joints, lintels, door and window jambs.
- D. Verify proper connection to columns, beams, walls and slabs.
- E. Verify that materials are stored properly before placement in the structure.
- F. Notify the Engineer of Record when placement of conduit or piping interferes with cell grouting and vertical reinforcing steel.
- G. Verify placement and consolidation of grout is in accordance with the Contract Documents.

2.14 STRUCTURAL STEEL

- A. Review certifications provided by Contractor for all structural steel components used in the construction. Components to be certified shall include: steel joists, cold rolled shapes, hot rolled shapes, metal decking assembly, bolts, welding electrode, high strength bolts, and anchor bolts. Review all welders' certifications.
- B. Obtain copies of shop drawings, which should include all details for field connections including weld sizes, bolt sizes, metal deck anchoring, and assembly.
- C. Observe and review all structural connections for beams, shear connectors, columns, anchor bolts, metal decking, and joists.
- D. Observe and document that metal deck fastening, gage and size conforms to Contract Documents.
- E. Check the installation of column base plates for proper leveling, grout type and grout application.
- F. Check steel as received for possible damage in shipping; check workmanship and piece marking.
- G. Visually check that all connections are completed in accordance with the Contract Documents.
- H. Verify grade and size of structural members.

2.15 MISCELLANEOUS STRUCTURAL COMPONENTS

- A. Guardrails Verify the installation is in compliance with approved shop drawings.
- B. Pre-engineered steel stairs Verify the installation is in compliance with approved shop drawings.
- C. Windows and Door Framing Verify the installation is in compliance with approved shop drawings.

END OF SECTION 014300

SECTION 014329 - THRESHOLD BUILDING INSPECTION PLAN

PART 1 - GENERAL

1.1 GENERAL

A. The Special Inspector of Threshold buildings or his designated representative shall observe that the structural portions of the work are executed in substantial accordance with the permitted Contract Documents. The Contract Documents are defined as the permitted plans, recorded addendum, and the specifications with all amendments thereto, including the Special Inspection Plan. The Special Inspector shall also review and note compliance or deviations from documents including but not limited to A/E approved RFI's, Supplemental Instructions, and fabrication/erection drawings that have been signed and sealed by a designated Specialty Engineer.

1.2 QUALIFICATIONS

- A. In addition to the requirements of the Board of Building Codes and Standards, including a Special Inspector in the State of Florida, the Special Inspector shall have a minimum of ten years of experience in inspection and actual design of similar structures. Similar structures are defined as those included in large scale projects with structural systems similar to the structural systems designed for this Project. The Special Inspector's Representative shall have a minimum of five years of experience in inspection of similar structures and shall be qualified by education or licensure to perform the duties assigned by the Special Inspector. These qualifications shall include licensure as a professional engineer in the State of Florida, graduation from an engineering education program in structural engineering, successful completion of the NCEES Fundamentals Examination, or registration as building inspector or general contractor.
- B. The Special Inspector's Representative must dedicate his time on-site to the inspection requirements of this plan. He shall not be required to perform other work on the project including materials testing services.
- C. Documentation of the above-required experience shall be submitted to the Architect/Engineer of Record for approval prior to commencing work.

1.3 DUTIES

A. The Special Inspector shall maintain a record of the progress, working conditions, any observations given to the Contractor and suspected deviations from the Contract Documents. The Special Inspector shall be present on site at times when significant work (with a minimum site visits of 3 times a month) to the primary structure is scheduled to occur and shall make required inspections and note compliance or any deviations in sufficient time as to not delay the progress of the work. The reports shall be in writing and shall be completed promptly at the end of each work period. The reports will be available on the job site at all times in the form of an inspection field report file.

1.4 REPORTING INFORMATION AND OBSERVATIONS

- A. Field reports may be signed by the duly authorized representative, but shall be submitted under a signed and sealed cover letter to the agency having jurisdiction for the project on a regular basis during construction. In addition, the Special Inspector shall submit a monthly report addressed to the Building Official with copies distributed to the Owner, Architect, Structural Engineer of Record, and the Contractor. The Report will describe construction progress and all conditions that were not in compliance as required above. The report shall also state necessary measures taken by the Contractor to correct these conditions.
- B. The Special Inspector shall keep an exceptions and corrections file for follow-up. The exceptions log shall be submitted with the reports. This file shall be reviewed on a daily basis and updated as exceptions are rectified. Acceptance of an exception or acceptance of a repair of an exception by the engineer-of-record shall be sufficient to remove the exception from the reports.
- C. Each report shall identify working conditions including weather, temperature, time of day, type and location of work being performed, exceptions and corrections as well as any unusual circumstances affecting the performance of work.
- D. The reports may include specified records such as pile driving logs, mill tests, photographs, RFI's and addendums.
- E. Note changes in working sequence or materials and any unusual circumstances affecting the performance of work.
- F. Upon completion of the structural construction and prior to the issuance of a Certificate of Occupancy, a signed and sealed statement by the Special Inspector must be submitted to the Enforcing Agency stating that the portion of the project under his inspection responsibilities has been constructed in general conformance with the Contract Documents. This statement shall be in accordance with section 553.79(7)a of the Florida Statutes.

1.5 REQUIREMENTS OF THE OWNER

A. The Owner shall arrange for all necessary construction records to be available to the Special Inspector during the progress of the work. Such records shall consist of but may not be limited to: RFI's, ASI's, concrete cylinder test reports, soil density test records, mill records, shop drawings, mix designs, batch tickets, etc.

1.6 REQUIREMENTS OF THE CONTRACTOR

A. The Contractor shall provide the Special Inspector safe access to all portions of the structure that need inspections. Advise the Special Inspector in advance of construction schedules and planned operations. A minimum of 24 hours notice shall be given for all inspections.

1.7 RESPONSIBILITY

A. The Special Inspector does not surrogate the Building Official's or the Architect/Engineer of Record's responsibilities. Further, it is not intended that the Contractor's statutory or contractual

obligations are anyway relieved or foregone by the presence of the Special Inspector. The Contractor has the sole responsibility for any deviations from the Contract Documents. The Special Inspector does not replace the quality control responsibility of the Contractor. All inspections shall be in accordance with the Florida Statues, Building Construction Standards, Chapter 553, Part IV.

1.8 LIMITATIONS

- A. The following inspection plan is outlined as a minimum only, and may be supplemented by special requirements as deemed necessary during the course of the work. Contractor performance and capability may only increase the Special Inspector's involvement in any project. This document will outline the plan as well as delineate specified submission requirements. The actual details of inspector checklists will not be elaborated upon, but rather a clear definition of responsibilities, scheduled visits, and intent will be given. The Special Inspector is to provide services only with regard to the structure of the building including foundation, primary and secondary framing systems, glass and curtain wall systems, and all items included in the inspection plan. This does not include inspection of any safety provisions as required by OSHA or other safety standards, which apply during the construction period, nor does it apply to elements such as glass, metal, or wooden railings, fire protection, roofin g, mechanical/electrical systems, architectural components, site work or other elements not contributing to the capacity of the structural building frame.
- B. It is not the intent of this Threshold Inspection Plan for the Special Inspector to be responsible for any material testing, weld testing or sizing or bolt testing for project structural members and/or connections. All material testing and structural component testing will be covered under a separate contract with appropriate parties.
- C. Since the Special Inspector does not certify that the Contract Documents are, in themselves, in compliance with the applicable building codes all certifications issued will refer to completed work being in substantial accordance with the Contract Documents rather than the appropriate building code.
- D. The Special Inspector's representative on the site shall not have any other non-inspection duties such as making concrete cylinders or otherwise monitoring the ready-mix concrete operation. Further, the Special Inspector shall personally visit the site starting with the first pile cap supporting the shear walls and monthly thereafter to verify that his representative is correctly interpreting the Contract Documents.

PART 2 - STRUCTURAL INSPECTION PLAN

2.1 STRUCTURAL SYSTEM

- A. The following is a description of the prominent structural systems found on the Valencia Ballroom at OCCC, Orlando, Florida:
 - 1. Existing Concrete Slab/Metal Deck Floor at Level +145'-0"
 - 2. Existing Structural Steel Sections At Floor Level +145'-0"
 - 3. Existing Structural Steel Framing at Ceiling Level +177'-0"
 - 4. Existing Steel Rigging Points.

- 5. Existing CMU Peripheral Walls
- 6. Existing CMU Walls at Four (4) Mechanical Rooms
- 7. Existing Light Gage Cold Form Studs at Ceiling
- B. The following is a description of the structural materials to be used on the remodeling of Valencia Ballroom at OCCC, Orlando, Florida:
 - 1. Metal Deck to be used below Level +145'-0"
 - 2. Structural Steel Sections At Floor Level +145'-0"
 - 3. Structural Steel Framing at Ceiling Level +177'-0"
 - 4. New Steel Rigging Points.
 - 5. Structural Steel Sections at 4'-6" wide soffits.
 - 6. Temporary Structural Steel Sections at door headers.
 - 7. Pre-cast Concrete U-Lintels.
 - 8. Reinforcement Bars for CMU Walls reinforcement and floor boxes removal and patching.
 - 9. Light Gage Cold Form Studs at New 4'-6" Wide Soffits.
 - 10. New A/V/Data/AC floor boxes.
- C. Structural drawings in addition to the other portions of the Contract Documents shall govern the requirements of this work.
- D. Demolition Of Existing Structure:
 - 1. Verify that all demolition and installation procedures are in conformance to the submitted Demolition and Installation Plan. (I.e. existing CMU wall openings, floor boxes removal, etc....).
 - 2. Verify that materials are not stored on the existing structure in excess of capacity shown on the plan or as approved by the Engineer of Record. Contractor shall present methods to avoid drop the wasted ceiling materials down to the existing floor.
 - 3. Verify that the demolition and installation limitations defined in the Contract Documents are not exceeded. Note any damage to structural components which remain in place.
 - 4. Verify that all hoisting and demolition equipment used on site has been specified in the Demolition and Installation Plans.
 - 5. All new openings in the existing structure, walls and/or floors, shall be reviewed by the Engineer of Record before the commencement of core drilling or demolition.
 - 6. Verify the existence of acoustical sand fill inside existing CMU walls before proceed with demolition procedures. Submit acoustical sand management plan before proceed.

E. Concrete - General:

- 1. Verify formwork for correct location alignment and dimensions.
- 2. Verify form surfaces have been wetted, oiled or coated in accordance with the Contract Documents. Verify no oil is on reinforcing steel surfaces.
- 3. Verify that the Testing Laboratory support staff will be available to make tests as required.
- 4. Periodically inspect transit mix delivery slips to review the correct mix and elapsed time between batching and depositing of concrete and that the concrete delivered is the approved mix.
- 5. Periodically verify that slump is measured at point of discharge for each day's pour.

- 6. Periodically verify that concrete test cylinders have been taken in accordance with the Contract Documents.
- 7. Verify that addition of water to the concrete mix in the field is based on the guideline set forth in the Contract Documents.
- 8. Observe concrete placement to check that embedded items and reinforcing steel are not adversely altered during placement.
- 9. Verify that curing methods have been executed in accordance with the Contract Documents
- 10. Verify all foreign material such as chips, blocks, sawdust and debris have been removed from the forms prior to the placement of concrete.
- 11. Verify the location of construction and expansion joints in beams, columns, slabs, walls, etc. for compliance with the joint locations shown on Contract Documents or approve construction joint location plans.
- 12. Verify that dowels, fillers, keys and bulkheads at joints are in conformance with the Contract Documents.
- 13. Report all individual and groups of slab openings larger than 12", which are not shown on the Contract Documents.
- 14. Check placement of additional reinforcement around openings. No sleeves or openings will be permitted in beams or columns without prior approval of the Engineer of Record.
- 15. Verify that conduits placed in the slab do not exceed the maximum size and are spaced in accordance with ACI requirements to ensure integrity of the slab.
- 16. Inspect and note any honeycombing, cracks, deflection, settlement or other discrepancies after concrete has been placed.
- 17. A representative must be present for a sufficient time prior to concrete placement to review reinforcement and shoring for conformance with the drawings.
- 18. Observe concrete placement, as noted below, to check that embedded items and reinforcing steel are not adversely altered during placement.
 - a. Concrete on Metal Deck: A representative must check the reinforcement before all concrete pours and must periodically inspect 25% of the concrete placement as it
 - b. Concrete on Horizontal Framework (slabs and beams): A representative must be present during all concrete placement.
- 19. Review load carrying embedded items (embed plates, etc.) as placed for compliance with the Contract Documents. Relocation of embedded items in conflict with reinforcing shall not be permitted without the prior approval of the Engineer.
- 20. Verify that all repairs have been carried out per the Contract Documents requirements.
- 21. Verify that conduit placed in concrete is installed per accepted conduit coordinated shop drawings.

F. Concrete – Shoring and Re-Shoring:

- 1. Obtain detailed drawings and design calculations signed and sealed by a Professional Engineer registered in the State of Florida for formwork, shoring and reshoring showing assumed live loads, construction loads, and safety factors.
- 2. Review the general arrangement of forms for compliance with the formwork shop drawings, and check that the forms are visually aligned, level and plumb.

G. Concrete – Reinforcement:

- 1. Check if all reinforcement is in place in accordance with the Contract Documents and the approved shop drawings. Verify other trades have not displaced any reinforcing.
- 2. Reinforcement shall be checked for size, bending, grade, lengths of splices, and bar-to-bar spacing.
- 3. Check if reinforcement has been cleaned of all loose, flaky, rust and scale, grease or other foreign materials, which would reduce or prevent bond.
- 4. Check if reinforcement is tied and supported securely so that displacement will not occur during concrete placement or foot traffic.
- 5. Check all reinforcement in place for proper concrete cover.
- 6. Location of all splices of reinforcement should be checked and no splices should be made unless shown on the Contract Documents or approved in writing by the Engineer of Record.

H. Concrete – Cast-In-Place Beams:

- 7. Concrete beams shall be checked for dimensions, rebar size, quantity and correct placement. Proper clearance between reinforcing steel and forms shall be maintained.
- 8. Stirrups shall be checked for size, quantity, proper bends and correct placement. Stirrups shall be spaced in accordance with the Contract Documents.
- 9. Check corner bars and tie beam dowel bars for proper size, location, and lap splice length as shown on Contract Documents.

I. Concrete – Reinforced Slabs:

- 10. Observe placement of reinforcing steel for compliance with the Contract Documents as outlined in the Reinforcing Steel Section of this Inspection Plan.
- 11. Slab shall be checked for proper thickness, levelness, and flatness as defined by the Contract Documents.
- 12. Check column dowels for size, quantity, laps and location.
- 13. Check reinforcing size and placement around all slab openings.
- 14. Observe all concrete placements for compliance with ACI and Contract Documents.

J. Reinforcing Doweling And Expansion/Chemical Anchors:

- 15. Verify depth, diameter and preparation of drilled holes used for structural fastening for all
- 16. Verify proper mixing and installation of all structural epoxy for all.
- 17. Verify that the testing laboratory has inspected expansion bolts for proper torque.

K. Masonry – Un-Reinforced Veneer:

- 18. Obtain copies of certifications for conformance of all materials used for structural components that include but are not limited to: concrete masonry units, reinforcing steel, mortar mix, embeds and lateral supports (i.e., dovetails, Heli-Tie anchors, etc.)
- 19. Periodically observe mortar mix and placement. Verify that grout inspection and testing is in accordance with Contract Documents.
- 20. Verify proper connection to columns, beams, walls and slabs.
- 21. Verify that materials are stored properly before placement in the structure.
- 22. Verify placement and consolidation of grout is in accordance with the Contract Documents.

23. Verify deflection joints around non-load-bearing CMU walls have been installed.

L. Masonry – Reinforced:

- 24. Verify placement of joint reinforcing, wall vertical steel, control joints, lintels, and door and window jambs.
- 25. Notify the Engineer of Record when placement of conduit or piping interferes with cell grouting and vertical reinforcing steel.

M. Composite, Form and Metal Deck:

- 1. Verify that deck of proper size, type, gauge, and finish is being erected.
- 2. Verify proper deck attachment, including sizes, locations, and procedures of welds, screws, and other fasteners.
- 3. Verify that proper deck reinforcement is used around openings.
- 4. Verify that deck accessories are being installed.
- 5. Verify alignment of ribs in exposed (AESS) conditions.
- 6. Verify placement of electrical and security conduit in concrete and composite slabs is in agreement with the Contract Documents.
- 7. Observe concrete placement to check that embedded items (e.g. electrical conduit) and reinforcing steel are not adversely altered during placement.

N. Structural Steel:

- 1. A Testing Laboratory shall be employed to carry out all necessary material and component tests (e.g. weld integrity and sizes and bolt tests). Results of all such tests shall be made available to the Special Inspector.
- 2. Review certifications provided by Contractor for all structural steel components used in the construction. Components to be certified shall include: prefabricated trusses, cold rolled shapes, hot rolled shapes, metal decking assembly, bolts, welding electrode, high strength bolts, and anchor bolts. Review all welders' certifications.
- 3. Obtain copies of shop drawings, which should include all details for field connections including weld sizes, bolt sizes, metal deck anchoring, and assembly.
- 4. Observe and review all structural connections for beams, shear connectors, columns, anchor bolts, metal decking, and joists.
- 5. Observe welds made in the shop.
- 6. Observe and document that metal deck fastening, gage and size conforms to Contract Documents.
- 7. Check the installation of column base plates for proper leveling, grout type and grout application.
- 8. Check steel as received for possible damage in shipping; check workmanship and piece marking.
- 9. Visually check that all connections are completed in accordance with the Contract Documents.
- 10. Observe welding of shear connectors. Check that the proper number of connectors are being installed.
- 11. Verify that shear connectors are being tested by the Testing Laboratory.
- 12. Inspect welded wire reinforcing for proper size and laps in metal deck slab.
- 13. Verify that steel is erected in accordance with the submitted erection plan.
- 14. Verify that steel is erected in accordance with the submitted sequence plan.
- 15. Verify that impact wrenches are being calibrated.

- 16. Visually check AESS steel for damage during transit and erection.
- 17. Periodically check that AESS steel detailing complies with the Contract Document requirements.
- 18. Verify that the camber of steel members was checked on the ground, prior to lifting into position.
- 19. Perform inspections at the fabrication yards to ensure that cleaning, welding and erection practices are being carried out in accordance with the Contract Drawings.
- 20. Verify galvanized steel repairs have been carried out per the Contract Documents requirements.
- 21. Verify that all repairs have been carried out per the Contract Documents requirements.
- 22. Review shop drawings and sequencing plan. Verify that the structural steel is erected in accordance with the sequence plan prepared by the contractor's Specialty Engineer.

O. Existing Steel Roof Trusses:

1. Verify that the truss camber was considered before field cut of the existing rigging points.

P. Light Gage Cold Form Steel:

- 1. Review shop drawings and erection plan. Verify that wall and ceiling soffit structures are specified in accordance with the erection plan prepared and sealed by the contractor's Specialty Engineer.
- 2. Verify that wall and ceiling structures have been preassembled in the shop if required by the Contract Documents.
- 3. Verify proper size, type, washers and method of tightening for high strength bolts.
- 4. Verify that trusses are lifted at the designed lift points. Verify that temporary and permanent bracing is in conformance with the approved, signed and sealed erection drawings.
- 5. Verify that erection proceeds in the sequence and method as shown on the approved erection plan. Report any discrepancies to the Engineer of Record.
- 6. Inspect field splices to ensure that trusses are properly connected before removal of temporary bracing.

Q. Steel - Shoring:

1. Obtain detailed drawings and design calculations signed and sealed by a Professional Engineer registered in the State of Florida for shoring and temporary platforms showing assumed live loads, construction loads, and safety factors.

PART 3 - NOT USED

END OF SECTION 014329

SECTION 015000 - TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.
- B. Related Section: Division 01 Section "Summary" for work restrictions and limitations on utility interruptions.

1.2 USE CHARGES

- A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Architect, testing agencies, and authorities having jurisdiction.
- B. Water and Sewer Service from Existing System: Water from Owner's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.
- C. Electric Power Service from Existing System: Electric power from Owner's existing system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.

1.3 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

- A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.
- B. Storage and Fabrication Sheds: Provide sheds sized, furnished, and equipped to accommodate materials and equipment for construction operations.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.
 - 1. Locate facilities to limit site disturbance as specified in Division 01 Section "Summary."
- B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

- A. Sanitary Facilities: Use of Owner's existing toilet facilities will be permitted, as long as facilities are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.
- B. Electric Power Service: Connect to Owner's existing electric power service. Maintain equipment in a condition acceptable to Owner.

3.3 SUPPORT FACILITIES INSTALLATION

- A. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 - 1. Protect existing site improvements to remain including curbs, pavement, and utilities.
 - 2. Maintain access for fire-fighting equipment and access to fire hydrants.
- B. Parking: Use designated areas of Owner's existing parking areas for construction personnel.
- C. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.
 - 1. Optional Identification Sign(s): Provide single, 4-ft x 8-ft Project identification sign at location designated by Owner. Construct of non-degradable materials for panel, posts, and framework. Sign design, layout, position, and content shall be approved by Owner prior to installation. Sign shall include project name, contractors information and contact phone numbers.
 - 2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project. Provide temporary, directional signs for construction personnel and visitors.
 - 3. Maintain and touchup signs so they are legible at all times.
- D. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with Division 01 Section "Execution" for progress cleaning requirements.

- E. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 - 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.
- F. Existing Elevator Use: Use of Owner's existing elevators will be permitted, provided elevators are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore elevators to condition existing before initial use, including replacing worn cables, guide shoes, and similar items of limited life.
 - 1. Do not load elevators beyond their rated weight capacity.
 - 2. Provide protective coverings, barriers, devices, signs, or other procedures to protect elevator car and entrance doors and frame. If, despite such protection, elevators become damaged, engage elevator Installer to restore damaged work so no evidence remains of correction work. Return items that cannot be refinished in field to the shop, make required repairs and refinish entire unit, or provide new units as required.
- G. Existing Stair Usage: Use of Owner's existing stairs will be permitted, provided stairs are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore stairs to condition existing before initial use.
 - 1. Provide protective coverings, barriers, devices, signs, or other procedures to protect stairs and to maintain means of egress. If stairs become damaged, restore damaged areas so no evidence remains of correction work.

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

- A. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.
- B. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each work day.
- C. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.
- D. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.
- E. Temporary Partitions: Provide floor-to-ceiling dustproof partitions to limit dust and dirt migration and to separate areas occupied by Owner and tenants from fumes and noise.
 - 1. Construct dustproof partitions with two layers of 6-mil (0.14-mm) polyethylene sheet on each side. Cover floor with two layers of 6-mil (0.14-mm) polyethylene sheet, extending sheets 18 inches (460 mm) up the sidewalls. Overlap and tape full length of joints. Cover floor with fire-retardant treated plywood.

2. Seal joints and perimeter. Equip partitions with gasketed dustproof doors and security locks where openings are required.

3.5 OPERATION, TERMINATION, AND REMOVAL

- A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.
- B. Maintenance: Maintain facilities in good operating condition until removal.
 - 1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.
- C. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.
 - 1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
 - 2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures."

END OF SECTION 015000

SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

1.2 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a specific manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

- A. Comparable Product Requests: Submit request for consideration of each comparable product. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.

- 2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15-days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Approval: As specified in Division 01 Section "Submittal Procedures."
 - b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 01 Section "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
 - 1. Each contractor is responsible for providing products and construction methods compatible with products and construction methods of other contractors.
 - 2. If a dispute arises between contractors over concurrently selectable but incompatible products, Architect will determine which products shall be used.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

1.6 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution. Use the manufacturer's warranty form modified to include Project-specific information and properly executed. Refer to individual sections of Divisions 02 through 49 for specific content requirements and particular requirements for submitting special warranties.
- C. Submittal Time: Comply with requirements in Division 01 Section "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
 - 6. Or Equal: For products specified by name and accompanied by the term "or equal," or "or approved equal," or "or approved," comply with requirements in "Comparable Products" Article to obtain approval for use of an unnamed product.

B. Detailed Product Selection Procedures:

- 1. Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
- 2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

3. Products:

a. Restricted List: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered, unless otherwise indicated.

b. Non-restricted List: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product.

4. Manufacturers:

- a. Restricted List: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered, unless otherwise indicated.
- b. Non-restricted List: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, that complies with requirements. Comply with requirements in "Comparable Products" Article for consideration of an unnamed manufacturer's product.
- 5. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample", provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Division 01 Section "Substitution Procedures" for proposal of product.
- D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that the proposed product does not require revisions to the Contract Documents; that it is consistent with the Contract Documents and will produce the indicated results; and that it is compatible with other portions of the Work.

- 2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
- 3. Evidence that proposed product provides specified warranty.
- 4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
- 5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000

SECTION 017300 - EXECUTION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:
 - 1. Construction layout.
 - 2. Field engineering and surveying.
 - 3. Installation of the Work.
 - 4. Cutting and patching.
 - 5. Progress cleaning.
 - 6. Starting and adjusting.
 - 7. Protection of installed construction.
 - 8. Correction of the Work.

1.2 QUALITY ASSURANCE

- A. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.
 - 1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from the Architect before proceeding. Shore, brace, and support structural element during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection
 - 2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operational elements include the following:
 - a. Fire separation assemblies.
 - b. Air or smoke barriers.
 - c. Fire-suppression systems.
 - d. Mechanical systems piping and ducts.
 - e. Control systems.
 - f. Communication systems.
 - g. Electrical wiring systems.
 - 3. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that result in increased maintenance or decreased operational life or safety.

- 4. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Architect's opinion, reduce the building's aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.
- B. Cutting and Patching Conference: Before proceeding, meet at Project site with parties involved in cutting and patching, including mechanical and electrical trades. Review areas of potential interference and conflict. Coordinate procedures and resolve potential conflicts before proceeding.
- C. Manufacturer's Installation Instructions: Obtain and maintain on-site manufacturer's written recommendations and instructions for installation of products and equipment.

1.3 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 MATERIALS – NOT USED

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Existing Conditions: The existence and location of utilities and construction indicated as existing are not guaranteed. Before beginning work, investigate and verify the existence and location of utilities, mechanical and electrical systems, and other construction affecting the Work.
- B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.
 - 1. Written Report: Where a written report listing conditions detrimental to performance of the Work is required by other Sections, include the following:
 - a. Description of the Work.
 - b. List of detrimental conditions, including substrates.
 - c. List of unacceptable installation tolerances.
 - d. Recommended corrections.
 - 2. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
 - 3. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.

- 4. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
- 5. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Existing Utility Information: Furnish information to Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.
 - 1. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - a. Notify Owner not less than two (2) days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruption without Architect's written permission.
- B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
- C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.
- D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of the Contractor, submit a request for information to Architect according to requirements in Division 01 Section "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

- A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to existing benchmarks. If discrepancies are discovered, promptly notify Architect.
- B. Building Lines and Levels: Locate and lay out control lines and levels for structure, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels.
- C. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

- A. Identification: Owner will identify existing benchmarks, control points, and property corners.
- B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.
 - 1. Do not change or relocate existing benchmarks or control points without prior written approval of Architect. Report lost or destroyed permanent benchmarks or control points promptly. Report the need to relocate permanent benchmarks or control points to Architect before proceeding.
 - 2. Replace lost or destroyed permanent benchmarks and control points promptly. Base replacements on the original survey control points.
- C. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.
 - 1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.
 - 2. Where the actual location or elevation of layout points cannot be marked, provide temporary reference points sufficient to locate the Work.
 - 3. Remove temporary reference points when no longer needed. Restore marked construction to its original condition.

3.5 INSTALLATION

- A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.
 - 1. Make vertical work plumb and make horizontal work level.
 - 2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
 - 3. Conceal pipes, ducts, and wiring in finished areas, unless otherwise indicated.
 - 4. Maintain minimum headroom clearance of 96 inches (2440 mm) in occupied spaces and [90 inches (2300 mm) in unoccupied spaces.
- B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.
- C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.
- D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.
- E. Tools and Equipment: Do not use tools or equipment that produces harmful noise levels.

- F. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.
 - 1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
 - 2. Allow for building movement, including thermal expansion and contraction.
- G. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.
- H. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 CUTTING AND PATCHING

- A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.
 - 1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.
- B. Temporary Support: Provide temporary support of work to be cut.
- C. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.
- D. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching in accordance with requirements of Division 01 Section "Summary."
- E. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.
- F. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.
 - 1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
 - 2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.
 - 3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

- 4. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
- 5. Proceed with patching after construction operations requiring cutting are complete.
- G. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.
 - 1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
 - 2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 - a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 - b. Restore damaged pipe covering to its original condition.
 - 3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.
 - a. Where patching occurs in a painted surface, prepare substrate and apply primer and intermediate paint coats appropriate for substrate over the patch, and apply final paint coat over entire unbroken surface containing the patch. Provide additional coats until patch blends with adjacent surfaces.
 - 4. Ceilings: Patch, repair, or re-hang in-place ceilings as necessary to provide an evenplane surface of uniform appearance.
- H. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

- A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.
 - 1. Comply with requirements in NFPA 241 for removal of combustible waste materials and debris.
 - 2. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

- B. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.
 - 1. Remove liquid spills promptly.
 - 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.
- C. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.
- D. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.
- E. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
- F. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.
- G. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.
- H. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.
- I. Limiting Exposures: Supervise construction operations to assure that no part of the construction (completed or in-progress) is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

- A. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.
- B. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.
- C. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Manufacturer's Field Service: Comply with qualification requirements in Division 01 Section "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

- A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.
- B. Comply with manufacturer's written instructions for temperature and relative humidity.

3.10 CORRECTION OF THE WORK

- A. Repair or remove and replace defective construction. Restore damaged substrates and finishes. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment.
- B. Restore permanent facilities used during construction to their specified condition.
- C. Remove and replace damaged surfaces that are exposed to view if surfaces cannot be repaired without visible evidence of repair.
- D. Repair components that do not operate properly. Remove and replace operating components that cannot be repaired.
- E. Remove and replace chipped, scratched, and broken glass or reflective surfaces.

END OF SECTION 017300

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Inspection procedures.
 - 2. Project record documents.
 - 3. Operation and maintenance manuals.
 - 4. Warranties.
 - 5. Instruction of Owner's personnel.
 - 6. Final cleaning.
- B. Supplemental Conditions: Refer to Volume 1, General and Supplemental Conditions for additional submittal requirements related to Project closeout..

1.2 SUBSTANTIAL COMPLETION

- A. Preliminary Procedures: Before requesting inspection for determining date of Substantial Completion, complete the following. List items below that are incomplete with request.
 - 1. Prepare a list of items to be completed and corrected (punch list), the value of items on the list, and reasons why the Work is not complete.
 - 2. Advise Owner of pending insurance changeover requirements.
 - 3. Submit specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Obtain and submit releases permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 5. Deliver tools, spare parts, extra materials, and similar items to location designated by Owner. Label with manufacturer's name and model number where applicable.
 - 6. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 7. Complete startup testing of systems.
 - 8. Submit test/adjust/balance records.
 - 9. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 10. Advise Owner of changeover in heat and other utilities.
 - 11. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.
 - 12. Complete final cleaning requirements, including touchup painting.
 - 13. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

- B. Inspection: Submit a written request for inspection for Substantial Completion. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 - 1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
 - 2. Results of completed inspection will form the basis of requirements for final completion.

1.3 FINAL COMPLETION

- A. Preliminary Procedures: Before requesting final inspection for determining final completion, complete the following:
 - 1. Submit a final Application for Payment according to Division 01 Section "Payment Procedures."
 - Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. The certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
 - 3. Submit evidence of final, continuing insurance coverage complying with insurance requirements.
 - 4. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings.
- B. Inspection: Submit a written request for final inspection for acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.
 - 1. Re-inspection: Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.4 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect.
 - d. Name of Contractor.
 - e. Page number.

1.5 WARRANTIES

- A. Submittal Time: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated.
- B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.
 - 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper.
 - 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
 - 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
- C. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a portion of Project:
 - a. Clean Project work site, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.

- b. Remove tools, construction equipment, machinery, and surplus material from Project site.
- c. Clean exposed interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Restore reflective surfaces to their original condition.
- d. Remove debris and surface dust from limited access spaces, including plenums, shafts and similar spaces.
- e. Sweep concrete floors broom clean in unoccupied spaces.
- f. Vacuum carpet and similar soft surfaces, removing debris and excess nap; shampoo if visible soil or stains remain.
- g. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Replace chipped or broken glass and other damaged transparent materials. Polish mirrors and glass, taking care not to scratch surfaces.
- h. Remove labels that are not permanent.
- i. Touch up and otherwise repair and restore marred, exposed finishes and surfaces. Replace finishes and surfaces that cannot be satisfactorily repaired or restored or that already show evidence of repair or restoration.
 - 1) Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates.
- j. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
- k. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
- 1. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- m. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- n. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter upon inspection.
 - 1) Clean HVAC system in compliance with NADCA Standard 1992-01. Provide written report upon completion of cleaning.
- o. Clean light fixtures and reflectors to function with full efficiency. Replace burnedout bulbs, and those noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.
- p. Leave Project clean and ready for occupancy.
- 2. Comply with safety standards for cleaning. Do not discharge volatile, harmful or dangerous materials into atmosphere or drainage systems. Remove waste materials from project site and dispose of lawfully.

END OF SECTION 017700

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operation and maintenance documentation directory.
 - 2. Emergency manuals.
 - 3. Operation manuals for systems, subsystems, and equipment.
 - 4. Maintenance manuals for care and maintenance of products, materials, finishes, systems and equipment.

1.2 SUBMITTALS

- A. Initial Submittal: Submit two (2) draft copies of each manual at least fifteen (15) days before requesting inspection for Substantial Completion. Include a complete operation and maintenance directory. Architect will return one (1) copy of draft and mark whether general scope and content of manual are acceptable.
- B. Final Submittal: Submit one (1) copy of each manual in final form at least fifteen (15) days before final inspection. Architect will return one (1) copy with comments within seven (7) days after final inspection.
 - 1. Correct or modify each manual to comply with Architect's comments. Submit three (3) copies of each corrected manual within seven (7) days of receipt of Architect's comments.

1.3 COORDINATION

A. General: where operation and maintenance documentation includes information on installations by more than one factory-authorized service representative, assemble and coordinate information furnished by representatives and prepare manuals.

PART 2 - PRODUCTS

2.1 OPERATION AND MAINTENANCE DOCUMENTATION DIRECTORY

- A. Organization: Include a section in the directory for each of the following:
 - 1. List of documents.
 - 2. List of systems.
 - 3. List of equipment.
 - 4. Table of contents.

- B. List of Systems and Subsystems: List systems alphabetically. Include references to operation and maintenance manuals that contain information about each system.
- C. List of Equipment: List equipment for each system, organized alphabetically by system. For pieces of equipment not part of system, list alphabetically in separate list.
- D. Tables of Contents: Include a table of contents for each emergency, operation, and maintenance manual.
- E. Identification: In the documentation directory and in each operation and maintenance manual, identify each system, subsystem, and piece of equipment with same designation used in the Contract Documents. If no designation exists, assign a designation according to ASHRAE Guideline 4, "Preparation of Operating and Maintenance Documentation for Building Systems."

2.2 MANUALS, GENERAL

- A. Organization: Unless otherwise indicated, organize each manual into a separate section for each system and subsystem, and a separate section for each piece of equipment not part of a system. Each manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Architect.
 - 7. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
 - 1. If operation or maintenance documentation requires more than one volume to accommodate data, include comprehensive table of contents for all volumes in each volume of the set.

- D. Manual Contents: Organize into sets of manageable size. Arrange contents alphabetically by system, subsystem, and equipment. If possible, assemble instructions for subsystems, equipment, and components of one system into a single binder.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch (215-by-280-mm) paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. If two or more binders are necessary to accommodate data of a system, organize data in each binder into groupings by subsystem and related components. Cross-reference other binders if necessary to provide essential information for proper operation or maintenance of equipment or system.
 - b. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents. Indicate volume number for multiple-volume sets.
 - 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
 - 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment.
 - 4. Supplementary Text: Prepared on 8-1/2-by-11-inch (215-by-280-mm) white bond paper.
 - 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

2.3 OPERATION MANUALS

- A. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor is delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.

- 11. Product name and model number. Use designations for products indicated on Contract Documents.
- 12. Manufacturer's name.
- 13. Equipment identification with serial number of each component.
- 14. Equipment function.
- 15. Operating characteristics.
- 16. Limiting conditions.
- 17. Performance curves.
- 18. Engineering data and tests.
- 19. Complete nomenclature and number of replacement parts.
- B. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- C. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- D. Piped Systems: Diagram piping as installed, and identify color-coding where required for identification.

2.4 PRODUCT MAINTENANCE MANUALS

- A. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- B. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.

- D. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- E. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- F. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

2.5 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Content: For each system, subsystem, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranty and bond information, as described below.
- B. Source Information: List each system, subsystem, and piece of equipment included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- C. Manufacturers' Maintenance Documentation: Manufacturers' maintenance documentation including the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins.
 - 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
 - 3. Identification and nomenclature of parts and components.
 - 4. List of items recommended to be stocked as spare parts.
- D. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.

- E. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- F. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- G. Maintenance Service Contracts: Include copies of maintenance agreements with name and telephone number of service agent.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 3 - EXECUTION

3.1 MANUAL PREPARATION

- A. Operation and Maintenance Documentation Directory: Prepare a separate manual that provides an organized reference to emergency, operation, and maintenance manuals.
- B. Emergency Manual: Assemble a complete set of emergency information indicating procedures for use by emergency personnel and by Owner's operating personnel for types of emergencies indicated.
- C. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.
- D. Operation and Maintenance Manuals: Assemble a complete set of operation and maintenance data indicating operation and maintenance of each system, subsystem, and piece of equipment not part of a system.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.

- E. Manufacturers' Data: Where manuals contain manufacturers' standard printed data, include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.
 - 1. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- F. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of operation and maintenance manuals.
 - 2. Comply with requirements of newly prepared record Drawings in Division 01 Section "Project Record Documents."
- G. Comply with Division 01 Section "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

END OF SECTION 017823

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.

1.2 SUBMITTALS

- A. Record Drawings: Submit one (1) set of marked-up record prints.
- B. Record Specifications: Submit one paper copy of Project's Specifications, including addenda and contract modifications.
- C. Record Product Data: Submit one paper copy of each submittal.
 - 1. Where Record Product Data is required as part of operation and maintenance manuals, submit marked-up Product Data as an insert in the manual instead of submittal as Record Product Data.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an understandable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.

- 2. Content: Types of items requiring marking include, but are not limited to the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations below the first floor.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduit.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Change made following Architect's written orders.
 - 1. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
- 3. Mark the Contract Drawings and Shop Drawings, whichever is most capable of showing actual physical conditions, completely and accurately. If shop drawings are marked, show cross-reference on the Contract Drawings. Utilize personnel proficient at recording graphic information in production of marked-up record prints.
- 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
- 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
- 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
 - 3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.

- 4. For each principal product, indicate whether Record Product Data has been submitted in operation and maintenance manuals instead of submitted as Record Product Data.
- 5. Note related Change Orders, record Product Data and record Drawings where applicable.

2.3 RECORD PRODUCT DATA

- A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Drawings and Product Data where applicable.

2.4 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and modifications to project record documents as they occur; do not wait until the end of Project.
- B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 017839

SECTION 017900 - DEMONSTRATION AND TRAINING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes administrative and procedural requirements for instructing Owner's personnel, including the following:
 - 1. Demonstration of operation of systems, subsystems, and equipment.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.

1.2 SUBMITTALS

- A. Instruction Program: Submit outline of instructional program for demonstration and training, including a list of training modules and a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module.
 - 1. At completion of training, submit one complete training manual for Owner's use.
- B. Attendance Record: For each training module, submit list of participants and length of instruction time.
- C. Demonstration and Training Video Recordings: Submit two copies within seven days of end of each training module.

1.3 QUALITY ASSURANCE

- A. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- B. Pre-instruction Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to demonstration and training including, but not limited to, the following:
 - 1. Inspect and discuss locations and other facilities required for instruction.
 - 2. Review and finalize instruction schedule and verify availability of educational materials, instructors' personnel, audiovisual equipment, and facilities needed to avoid delays.
 - 3. Review required content of instruction.
 - 4. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.

1.4 COORDINATION

- A. Coordinate instruction schedule with Owner's operations. Adjust schedule as required to minimize disrupting Owner's operations.
- B. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- C. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by Architect.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM

- A. Program Structure: Develop an instruction program that includes individual training modules for each system and for equipment not part of a system, as required by individual Specification Sections, including but not limited to the following:
 - 1. Motorized doors, including overhead coiling doors.
 - 2. Equipment, including food service equipment.
 - 3. Fire protection systems including fire alarm, fire pumps, and fire extinguishing systems.
 - 4. Refrigeration systems.
 - 5. HVAC systems, including air-handling equipment, air distribution systems and terminal equipment and devices.
 - 6. HVAC instrumentation and controls.
 - 7. Electrical service and distribution, including transformers, switchboards, panel boards, uninterruptible power supplies and motor controls.
 - 8. Lighting equipment and controls.
- B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following as applicable to the system, equipment, or component:
 - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.

- 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project record documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.
 - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.

- c. List of cleaning agents and methods of cleaning detrimental to product.
- d. Procedures for routine cleaning
- e. Procedures for preventive maintenance.
- f. Procedures for routine maintenance.
- g. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a training manual organized in coordination with requirements in Division 01 Section "Operations and Maintenance Data."
- B. Set up instructional equipment at instruction location.

3.2 INSTRUCTION

- A. The Contractor shall engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1. Architect will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2. Owner will furnish an instructor to describe Owner's operational philosophy.
 - 3. Owner will furnish Contractor with names and positions of participants.
- B. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.
 - 1. Schedule training with Owner, through Architect, with at least seven (7) days' advance notice.

- C. Demonstration and Training Videotape: Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice.
 - 1. At beginning of each training module, record each chart containing learning objective and lesson outline.

END OF SECTION 017900

SECTION 018113 - SUSTAINABLE DESIGN REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes general requirements and procedures for compliance with certain USGBC LEED prerequisites and credits needed for the Owner's future effort to achieve certification based on USGBC's "LEED 2009 for Existing Buildings."
 - 1. MRc 3: Sustainable Purchasing Facility Alterations and Additions
 - 2. MRc 9: Solid Waste Management Facility Alterations and Additions

1.2 DEFINITIONS

- A. Chain-of-Custody Certificates: Certificates signed by manufacturers certifying that wood used to make products was obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001, "FSC Principles and Criteria for Forest Stewardship." Certificates shall include evidence that manufacturer is certified for chain of custody by an FSC-accredited certification body.
- B. Regional Materials: Materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles (800 km) of Project site. If only a fraction of a product or material is extracted/harvested/recovered and manufactured locally, then only that percentage (by weight) shall contribute to the regional value.
- C. Recycled Content: The recycled content value of a material assembly shall be determined by weight. The recycled fraction of the assembly is then multiplied by the cost of assembly to determine the recycled content value.
 - 1. "Post-consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-consumer" material is defined as material diverted from the waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- D. Construction and Demolition Debris: Waste and recyclables generated from construction and from the renovation, demolition or deconstruction of pre-existing structures. It does not include land-clearing debris such as soil, vegetation and rocks.
- E. Recycling: The collection, reprocessing, marketing and use of materials that were diverted or recovered from the solid waste stream.
- F. Reuse: Materials that returns to active use in the same or a related capacity as their original use, thus extending the lifetime of materials that would otherwise be discarded.

- G. Waste: All materials that flow from the building to final disposal. For LEED purposes, waste refers to all materials that are capable of being diverted from the building's waste stream through waste reduction.
- H. Waste Disposal: Eliminates waste by means of burial in a landfill, combustion in an incinerator, dumping at sea, or any other way that is not recycling or reuse.
- I. Waste Diversion: Management activity that disposes of waste other than through incineration or the use of landfills, such as through re-use and recycling.
- J. Waste Reduction: Source reduction and diversion of waste by means of re-use or recycling.

1.3 ADMINISTRATIVE REQUIREMENTS

- A. General: Contractor shall document project-specific compliance with the following "Facility Alterations and Additions Policy" for MR3 and MR9 requirements and deliver documentation to the Owner upon completion of the project.
- B. Facility Alterations and Additions Policy: This policy covers materials that are permanently or semi-permanently attached to the building itself in the course of facility renovations, demolitions, refits and new construction additions. These products may include, but are not limited to building components and structures (wall studs, insulation, doors and windows), panels, attached finishes (drywall, trim, ceiling panels), carpet and other flooring materials, adhesives, paints and coatings. The Owner's goal is that at least 10% of the cost of goods purchased will comply with one or more of the following criteria:
 - Contains at least 10% post-consumer and/or 20% post-industrial material
 - Contains at least 70% salvaged material from off-site or outside the organization
 - Contains at least 70% salvaged material from on-site through an internal materials and equipment reuse program
 - Contains at least 50% rapidly renewable material (bamboo, cotton, cork, wool)
 - Contains at least 50% materials harvested/extracted and processed within 500 miles of the facility/site
 - Consists of at least 50% Forest Stewardship Council (FSC) certified wood
 - Adhesives and sealants comply with SCAQMD rules governing allowable VOC content
 - Paints and coatings comply with Green Seal's GS-11 requirements governing VOC emission levels
 - Finished flooring is FloorScore-certified and constitutes a minimum of 25% of the finished floor area
 - Carpet and carpet cushion meets the requirements of the Carpet and Rug Institute (CRI) Green Label Plus carpet testing program
 - Composite panels and agrifiber products contain no added urea-formaldehyde resins

The Owner (OCCC) acknowledges the value of purchasing sustainable products and requires that vendor(s) support that effort when appropriate and/or possible. The Owner requests that vendors notify them of potential opportunities that would comply with the above specifications, as well as reduced packaging options.

1.4 ACTION SUBMITTALS

- A. LEED documentation submittals are in addition to other submittal documentation requirements of this Project. If submitted item is identical to that submitted to comply with other requirements, submit duplicate copies as a separate document submittal to verify compliance with indicated LEED requirements.
- B. LEED Documentation Submittals: In accordance with the Owner's Purchasing Policy requirements, submit documentation for materials applicable to the following Credits.
 - 1. Credit MRc-3: building components and structures (wall studs, insulation, doors, windows), panels, attached finishes (drywall, trim, ceiling panels), carpet and other flooring materials, adhesives, paints and coatings OCCC's goal is that at least 10% of the cost of goods purchased will comply with one or more of the following criteria:
 - Contains at least 10% post-consumer and/or 20% post-industrial material
 - Contains at least 70% salvaged material from off-site or outside the organization
 - Contains at least 70% salvaged material from on-site through an internal materials and equipment reuse program
 - Contains at least 50% rapidly renewable material (bamboo, cotton, cork, wool)
 - Contains at least 50% materials harvested/extracted and processed within 500 miles of the facility/site
 - Consists of at least 50% Forest Stewardship Council (FSC) certified wood
 - Adhesives and sealants comply with SCAQMD rules governing allowable VOC content
 - Paints and coatings comply with Green Seal's GS-11 requirements governing VOC emission levels
 - Finished flooring is FloorScore-certified and constitutes a minimum of 25% of the finished floor area
 - Carpet and carpet cushion meets the requirements of the Carpet and Rug Institute (CRI) Green Label Plus carpet testing program
 - Composite panels and agrifiber products contain no added urea-formaldehyde resins
 - 2. Credit MRc-9: Waste Management Policy Contractor to provide documentation for material applicable to this Credit. "Divert at least 70% of waste (by volume) generated by facility alternations and additions from disposal to landfills and incineration facilities. This applies only to base building elements permanently or semipermanently attached to the building itself that enter the waste stream during facility renovations, demolitions, refits and new construction additions. Base building elements include at a minimum, building components and structures (wall stud, insulation, doors, windows), panels, attached finishings (drywall, trim, ceiling panels), carpet and other flooring materials, adhesives, sealants, paints, and coatings. Furniture, fixtures and equipment (FF&E) are not considered base building elements and are excluded from this requirement. Mechanical, electrical, and plumbing components and specialty items such as elevators are also excluded."
 - 3. For each qualifying material, documentation shall include receipts indicating sources and costs.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For LEED coordinator.
- B. Project Materials Cost Data: Provide statement indicating total cost for LEED's Credit-specific materials used for this Project. Costs exclude labor, overhead, and profit. Include breakout of costs.
- C. LEED Action Plans: Provide preliminary submittals within 30-days of date established for the Notice to Proceed indicating how the following requirements will be met:
 - 1. Credit MRc-3: Materials.
 - 2. Credit MRc-9: Materials.
- D. LEED Progress Reports: Concurrent with each Application for Payment, submit reports comparing actual construction and purchasing activities with LEED action plans for the following:
 - 1. Credit MRc-3: OCCC Sustainable Purchasing Policy.
 - 2. Credit MRc-9: Solid Waste Management Policy.

PART 2 - PRODUCTS

PART 3 - EXECUTION

END OF SECTION 018113

SECTION 024119 - SELECTIVE STRUCTURE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Demolition and removal of selected portions of building or structure.
- 2. Demolition and removal of selected site elements.
- 3. Salvage of existing items to be reused or recycled.

1.2 DEFINITIONS

- A. Remove: Detach items from existing construction and legally dispose of them off-site unless indicated to be removed and salvaged or removed and re-installed.
- B. Remove and Salvage: Carefully detach from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse.
- C. Remove and Reinstall: Detach items from existing construction, prepare for reuse, and reinstall where indicated.
- D. Existing to Remain: Existing items of construction that are not to be permanently removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.3 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project Site.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For refrigerant recovery technician.
- B. Predemolition Photographs or Video: Submit before Work begins.
- C. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician.

1.5 CLOSEOUT SUBMITTALS

A. Landfill Records: Indicate receipt and acceptance of hazardous wastes by a landfill facility licensed to accept hazardous wastes.

1.6 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.

1.7 FIELD CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
 - 1. Before selective demolition, Owner will remove the following items:
 - a. Tables, seats, carts, dollies, temporary installations, furniture and all other non-attached equipment.
- C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. Hazardous materials will be removed by Owner before start of the Work.
 - 2. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. Hazardous Materials: Hazardous materials are present in buildings and structures to be selectively demolished. A report on the presence of hazardous materials is on file for review and use. Examine report to become aware of locations where hazardous materials are present.
 - 1. Hazardous material remediation is specified elsewhere in the Contract Documents.
 - 2. Do not disturb hazardous materials or items suspected of containing hazardous materials except under procedures specified elsewhere in the Contract Documents.
- F. Storage or sale of removed items or materials on-site is not permitted.
- G. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

1.8 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 PEFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI/ASSE A10.6 and NFPA 241.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- D. Engage a professional engineer to perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.
- E. Survey of Existing Conditions: Record existing conditions by use of all the available means: measured drawings, preconstruction photographs, preconstruction videotapes, and templates.
 - 1. Comply with requirements specified in Division 01 Section "Photographic Documentation."

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
 - 1. Comply with requirements for existing services/systems interruptions specified in Division 01 Section "Summary."
- B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.

- 1. Owner/Building Manager will arrange to shut off indicated services/systems when requested by Contractor.
- 2. Arrange to shut off indicated utilities with utility companies.
- 3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
- 4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated to be removed.
 - a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
 - f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
- C. Refrigerant: Remove refrigerant from mechanical equipment to be selectively demolished according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Division 01 Section "Temporary Facilities and Controls."
 - 2. GC shall prepare a loading plan showing the areas to be used for the temporary deposit of all the debris to be produced during existing Valencia Room ceiling dismantling, transporting and depositing over the existing floor. Plan shall also include the path assigned to the loaders (forklifts, dollies, etc...) for pick-up, moving and removal of the debris and related logistics, including number of loaders and location planned to be at the same time over the structural floor all around the hall area. Debris pile height shall be calculated based on the floor rate depicted on the existing structural drawings, i.e., one-hundred pounds per square foot (100 psf). Loading plan shall be signed and sealed by a professional engineer licensed in the state of Florida.
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

C. Temporary Shoring: Provide and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

3.4 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping, to minimize disturbance of adjacent surfaces. Temporarily cover openings to remain.
 - 2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.
 - 3. Do not use cutting torches until work area is cleared of flammable materials. At concealed spaces, such as duct and pipe interiors, verify condition and contents of hidden space before starting flame-cutting operations. Maintain fire watch and portable fire-suppression devices during flame-cutting operations.
 - 4. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.
 - 5. Dispose of demolished items and materials promptly. Comply with requirements in Division 01 Section "Construction Waste Management and Disposal."
- B. Reuse of Building Elements: Project has been designed to result in end-of-Project rates for reuse of building elements as follows. Do not demolish building elements beyond what is indicated on Drawings without Architect's approval.
 - 1. Building Structure and Shell: Maintain existing building structure (including structural floor and roof decking) and envelope (exterior skin and framing, excluding window assemblies and nonstructural roofing material) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.
 - 2. Nonshell Elements: Maintain existing interior nonstructural elements (interior walls, doors, floor coverings, and ceiling systems) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.
 - 3. Nonshell Elements: Maintain existing nonshell, nonstructural components (walls, flooring, and ceilings) not indicated to be demolished; do not demolish such existing construction beyond indicated limits.

C. Removed and Salvaged Items:

- 1. Clean salvaged items.
- 2. Pack or crate items after cleaning. Identify contents of containers.
- 3. Store items in a secure area until delivery to Owner.
- 4. Transport items to Owner's storage area designated by Owner.
- 5. Protect items from damage during transport and storage.

D. Removed and Reinstalled Items:

- 1. Clean and repair items to functional condition adequate for intended reuse.
- 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
- 3. Protect items from damage during transport and storage.
- 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.5 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be recycled, reused, salvaged, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.6 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119

SECTION 024121 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Demolition and removal of building components and materials.
- 2. Disconnecting, capping or sealing, abandoning in-place and removing site utilities.

1.2 DEFINITIONS

- A. Demolish: Detach items from existing construction and legally dispose of them off-site, unless indicated to be removed and reinstalled.
- B. Remove and Store: Detach items from existing construction and deliver them to Owner's on site storage area ready to be reinstalled.
- C. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed or removed and reinstalled.

1.3 MATERIALS OWNERSHIP

- A. Unless otherwise indicated, demolition waste becomes property of Contractor.
- B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 - 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.4 SUBMITTALS

- A. Proposed Protection Measures: Submit informational report, including drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and, for noise control. Indicate proposed locations and construction of barriers.
- B. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Detailed sequence of selective demolition and removal work, with starting and ending dates for each activity. Ensure Owner's on-site operations are uninterrupted.
 - 2. Interruption of utility services. Indicate how long utility services will be interrupted.
 - 3. Coordination for shutoff, capping, and continuation of utility services.
 - 4. Coordination of Owner's continuing occupancy of portions of existing building.
 - 5. Means of protection for items to remain and items in path of waste removal from building site.

C. Predemolition Photographs or Video: Show existing conditions of adjoining construction and site improvements, including finish surfaces that might be misconstrued as damage caused by building demolition operations. Submit before the Work begins.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ANSI A10.6 and NFPA 241.
- C. Predemolition Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to selective demolition including, but not limited to, the following:
 - 1. Review methods and procedures for vermin eradication and cleanup.
 - 2. Inspect and discuss condition of construction to be demolished.
 - 3. Review structural load limitations of existing structures.
 - 4. Review and finalize building demolition schedule and verify availability of demolition personnel, equipment, and facilities needed to make progress and avoid delays.
 - 5. Review and finalize protection requirements.
 - 6. Review procedures for noise control and dust control.
 - 7. Review procedures for protection of adjacent buildings.

1.6 PROJECT CONDITIONS

- A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.
- B. Owner assumes no responsibility for buildings and structures to be demolished.
- C. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. If materials suspected of containing hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- E. On-site storage or sale of removed items or materials is not permitted.
- F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

G. Building exclusion and rodent eradication and removal shall be completed prior to the beginning of Selective Structural Demolition operations.

1.7 COORDINATION

A. Arrange demolition schedule so as not to interfere with Owner's on-site operations.

1.8 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials so as not to void existing warranties.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting demolition operations.
- B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.
- C. Review Project Record Documents of existing construction provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.
- D. When unanticipated mechanical, electrical, or structural elements that conflict with intended function or design are encountered, investigate and measure the nature and extent of conflict. Promptly submit a written report to Architect.
- E. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during building demolition operations.
- F. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or video.
- G. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems: Maintain services/systems indicated to remain and protect them against damage during selective demolition operations.

- B. Service/System Requirements: Locate, identify, disconnect, and seal or cap off indicated utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If services/systems are required to be removed, relocated, or abandoned, before proceeding with selective demolition provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 4. Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing.
 - a. Where entire wall is to be removed, existing services/systems may be removed with removal of the wall.

3.3 PREPARATION

- A. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Comply with requirements for access and protection specified in Division 01 Section "Temporary Facilities and Controls."
- B. Temporary Facilities: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.
 - 2. Provide temporary weather protection, during interval between selective demolition of existing construction on exterior surfaces, to prevent water leakage and damage to structure and interior areas.
 - 3. Comply with requirements specified in Division 01 Section "Temporary Facilities and Controls."
- C. Existing Utilities: Locate, identify, disconnect, and seal or cap off indicated utilities serving buildings and structures to be demolished.
 - 1. Owner will arrange to shut off indicated utilities when requested by Contractor.
 - 2. Arrange to shut off indicated utilities with utility companies.
 - 3. If removal, relocation, or abandonment of utility services will affect adjacent occupied buildings, then provide temporary utilities that bypass buildings and structures to be demolished and that maintain continuity of service to other buildings and structures.
 - 4. Cut off pipe or conduit a minimum of 24 inches below grade. Cap, valve, or plug and seal remaining portion of pipe or conduit after bypassing according to requirements of authorities having jurisdiction.

- D. Temporary Shoring: Provide and maintain interior and exterior shoring, bracing, or structural support to preserve stability and prevent unexpected movement or collapse of construction being demolished.
 - 1. Strengthen or add new supports when required during progress of demolition.

3.4 PROTECTION

- A. Existing Facilities: Protect adjacent walkways, loading docks, building entries, and other building facilities during demolition operations. Maintain exits from existing buildings.
- B. Existing Utilities: Maintain utility services to remain and protect from damage during demolition operations.
 - 1. Do not interrupt existing utilities serving adjacent occupied or operating facilities unless authorized in writing by Owner and authorities having jurisdiction.
 - 2. Provide temporary services during interruptions to existing utilities, as acceptable to Owner and authorities having jurisdiction.
 - a. Provide at least 72 hours' notice to occupants of affected buildings if shutdown of service is required during changeover.
- C. Temporary Protection: Erect temporary protection, such as walks, fences, railings, canopies, and covered passageways, where required by authorities having jurisdiction and as indicated. Comply with requirements in Division 01 Section "Temporary Facilities and Controls."
 - 1. Protect adjacent buildings and facilities from damage due to demolition activities.
 - 2. Protect existing site improvements, appurtenances, and landscaping to remain.
 - 3. Erect a plainly visible fence around drip line of individual trees or around perimeter drip line of groups of trees to remain.
 - 4. Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.
 - 5. Provide protection to ensure safe passage of people around building demolition area and to and from occupied portions of adjacent buildings and structures.
 - 6. Protect walls, windows, roofs, and other adjacent exterior construction that are to remain and that are exposed to building demolition operations.
 - 7. Erect and maintain dustproof partitions and temporary enclosures to limit dust, noise, and dirt migration to occupied portions of adjacent buildings.
- D. Remove temporary barriers and protections where hazards no longer exist. Where open excavations or other hazardous conditions remain, leave temporary barriers and protections in place.

3.5 DEMOLITION, GENERAL

- A. General: Demolish indicated existing building components and materials completely. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Do not use cutting torches until work area is cleared of flammable materials. Maintain portable fire-suppression devices during flame-cutting operations.
 - 2. Maintain fire watch after flame cutting operations.
 - 3. Maintain adequate ventilation when using cutting torches.
 - 4. Locate building demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

B. Removed and Stored and Reinstalled Items:

- 1. Pack or crate items as directed by the Owner. Identify contents of containers.
- 2. Store items as directed by the Owner.
- 3. Transport items to Owner's storage area on-site.
- 4. Protect items from damage during transport and storage.

C. Removed and Reinstalled Items:

- 1. Clean and repair items to functional condition adequate for intended reuse.
- 2. Reinstall items in locations indicated. Comply with installation requirements for new materials. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.
- D. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.
- E. Engineering Surveys: During demolition, perform surveys to detect hazards that may result from building demolition activities.
- F. Site Access and Temporary Controls: Conduct building demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Do not close or obstruct streets, walks, walkways, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
 - 2. Limit spread of dust and dirt. Comply with governing environmental-protection regulations.

3.6 DEMOLITION BY MECHANICAL MEANS

- A. Remove debris from building in a controlled manner.
- B. Existing Utilities: Demolish and remove existing indicated.
 - 1. Piping: Disconnect piping at unions, flanges, valves, or fittings.
 - 2. Wiring Ducts: Disassemble into unit lengths and remove plug-in and disconnecting devices.

3.7 REPAIRS

A. Promptly repair damage to adjacent buildings caused by demolition operations.

3.8 DISPOSAL OF DEMOLISHED MATERIALS

- A. General: Except for items or materials indicated to be reused, reinstalled, or otherwise indicated to remain Owner's property, remove demolished materials from Project site and legally dispose of them in an EPA-approved landfill.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Division 01 Section "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.
- C. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

3.9 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by building demolition operations. Return adjacent areas to condition existing before building demolition operations began.

END OF SECTION 024121

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete mixture.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement.
- D. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of form work.

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Material certificates.
- C. Material test reports.
- D. Floor surface flatness and levelness measurements.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- B. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code Reinforcing Steel."

- D. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- E. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
- F. Preinstallation Conference: Conduct conference at Project site.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.2 STEEL REINFORCEMENT

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
 - 1. Galvanized Reinforcing Bars: ASTM A 767/A 767M, Class I zinc coated after fabrication and bending.
 - 2. Epoxy-Coated Reinforcing Bars: ASTM A 775/A 775M, epoxy coated, with less than 2 percent damaged coating in each 12-inch bar length.
- C. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from asdrawn steel wire into flat sheets.
- D. Deformed-Steel Welded Wire Reinforcement: ASTM A 497/A 497M, flat sheet.
- E. Galvanized-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, plain, fabricated from galvanized-steel wire into flat sheets.
- F. Epoxy-Coated Welded Wire Reinforcement: ASTM A 884/A 884M, Class A coated, Type 1, plain steel.
- G. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type III, gray. Supplement with the following:
 - a. Fly Ash: ASTM C 618, Class F.
 - b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
- B. Normal-Weight Aggregates: ASTM C 33, graded.
 - 1. Maximum Coarse-Aggregate Size: 3/4 inch nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: ASTM C 94 and potable.

2.4 ADMIXTURES

A. Air-Entraining Admixture: ASTM C 260.

2.5 FIBER REINFORCEMENT

A. Synthetic Micro-Fiber: Monofilament polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III, 1/2 to 1-1/2 inches long.

2.6 CURING MATERIALS

- A. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- B. Water: Potable.

2.7 RELATED MATERIALS

A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.

2.8 CONCRETE MIXTURES

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
- B. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of Portland cement, which would otherwise be used, by not less than 40 percent.
- C. Admixtures: Use admixtures according to manufacturer's written instructions.

- 1. Use plasticizing admixture in concrete, as required, for placement and workability.
- 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
- 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.

D. Proportion normal-weight concrete mixture as follows:

- 1. Minimum Compressive Strength: 5000 psi at 28 days.
- 2. Maximum Water-Cementitious Materials Ratio: 0.40.
- 3. Slump Limit: 8 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch.
- 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inch nominal maximum aggregate size.
- 5. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
- 6. Synthetic Micro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd.

2.9 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.10 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain form work, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct form work so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Do not chamfer exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches and seal with manufacturer's recommended tape.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

3.6 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of form-work, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- C. Cold-Weather Placement: Comply with ACI 306.1.
- D. Hot-Weather Placement: Comply with ACI 301.

3.7 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to public view, to be covered with a coating or covering material applied directly to concrete.
- C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch in one direction.
 - 1. Apply scratch finish to surfaces indicated.
- C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces indicated.
- D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of

trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

- 1. Apply a trowel finish to surfaces indicated.
- E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thin-set method. While concrete is still plastic, slightly scarify surface with a fine broom.
 - 1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.
- F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

3.9 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

3.10 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.11 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

END OF SECTION 033000

SECTION 042200 - CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Concrete masonry units (CMU's).
- 2. Decorative concrete masonry units.
- 3. Pre-faced concrete masonry units.
- 4. Steel reinforcing bars.
- 5. Masonry-cell insulation.

1.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide cold-formed metal framing capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As follows:
 - a. Dead Loads: Weights of materials and construction
 - b. Wind Loads: ±5 psf all surfaces
 - c. Seismic Loads: Site Class: D, Ss = 0.076, S1 = 0.037, Seismic Design Category A.
 - d. All ties between new CMU walls and existing walls shall be designed to resist both lateral forces described in bullets b and c.
 - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 - a. Interior Non-Load-Bearing Wall Framing: Horizontal deflection of **1/360** of the wall height under a horizontal load of 5 psf or the seismic force whichever governs.

1.3 PRECONSTRUCTION TESTING

- A. Preconstruction Testing Service: Owner will engage a qualified independent testing agency to perform pre-construction testing indicated below. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
 - 1. Concrete Masonry Unit Test: For each type of unit required, according to ASTM C 140 for compressive strength.

- 2. Mortar Test (Property Specification): For each mix required, according to ASTM C 109 for compressive strength, ASTM C 1506 for water retention, and ASTM C 91 for air content.
- 3. Mortar Test (Property Specification): For each mix required, according to ASTM C 780 for compressive strength.
- 4. Grout Test (Compressive Strength): For each mix required, according to ASTM C 1019.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For reinforcing steel. Detail bending and placement of unit masonry reinforcing bars. Comply with ACI 315, "Details and Detailing of Concrete Reinforcement." Show elevations of reinforced walls.
 - 1. For the CMU ties indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- C. Samples: For each type and color of exposed masonry unit and colored mortar.

1.5 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For each type and size of product indicated. For masonry units include data on material properties material test reports substantiating compliance with requirements.
- B. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.
 - 1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C 109/C 109M for compressive strength, ASTM C 1506 for water retention, and ASTM C 91 for air content.
 - 2. Include test reports, according to ASTM C 1019, for grout mixes required to comply with compressive strength requirement.

1.6 QUALITY ASSURANCE

- A. Masonry Standard: Comply with ACI 530.1/ASCE 6/TMS 602 unless modified by requirements in the Contract Documents.
- B. Sample Panels: Build sample panels to verify selections made under sample submittals and to demonstrate aesthetic effects. Comply with requirements in Division 01 Section "Quality Requirements" for mockups.
 - 1. Build sample panels for typical exterior wall in sizes approximately 48 inches long by 36 inches.

1.7 PROJECT CONDITIONS

- A. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.
- B. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.1 MASONRY UNITS, GENERAL

- A. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated in the standard. Do not use units where such defects will be exposed in the completed Work.
- B. Fire-Resistance Ratings: Where indicated, provide units that comply with requirements for fire-resistance ratings indicated as determined by testing according to ASTM E 119, by equivalent masonry thickness, or by other means, as acceptable to authorities having jurisdiction.

2.2 CONCRETE MASONRY UNITS

- A. Regional Materials: CMUs shall be manufactured within 500 miles of Project site from aggregates and cement that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.
- B. Shapes: Provide shapes indicated and for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
- C. Integral Water Repellent: Provide units made with liquid polymeric, integral water repellent admixture that does not reduce flexural bond strength where indicated.
 - 1. Products: Subject to compliance with requirements, provide the following.
 - a. ACM Chemistries, Inc.; RainBloc.
 - b. BASF Aktiengesellschaft; Rheopel Plus.
 - c. Grace Construction Products, W. R. Grace & Co. Conn.; Dry-Block.

D. CMUs: ASTM C 90.

- 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
- 2. Density Classification: Normal weight unless otherwise indicated.
- E. Concrete Building Brick: ASTM C 55.

- 1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
- 2. Density Classification: Normal weight.
- F. Decorative CMUs: ASTM C 90.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. By architectural drawings.
 - 2. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
 - 3. Density Classification: Normal weight.
 - 4. Pattern and Texture:
 - a. Standard pattern, ground-face finish. Match Architect's samples.
 - b. Standard pattern, split-face finish. Match Architect's samples.
 - c. Standard pattern, split-ribbed finish. Match Architect's samples.
 - d. Scored vertically, standard finish. Match Architect's samples.
- G. Pre-faced CMUs: Lightweight hollow concrete units complying with ASTM C 90, with manufacturer's standard smooth resinous facing complying with ASTM C 744.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. By architectural drawings.
 - 2. Unit Compressive Strength: Provide units with minimum average net-area compressive strength of 2800 psi.
 - 3. Size: By architectural drawings.
 - 4. Colors and Patterns: By architectural drawings.

2.3 CONCRETE AND MASONRY LINTELS

- A. General: Provide one of the following:
- B. Concrete Lintels: ASTM C 1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than CMUs.
- C. Concrete Lintels: Precast or formed-in-place concrete lintels complying with requirements in Division 03 Section "Cast-in-Place Concrete," and with reinforcing bars indicated.
- D. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs with reinforcing bars placed as indicated and filled with coarse grout.

2.4 MORTAR AND GROUT MATERIALS

- A. Regional Materials: Aggregate for mortar and grout, cement, and lime shall be extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.
- B. Portland Cement: ASTM C 150, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.
- C. Hydrated Lime: ASTM C 207, Type S.
- D. Portland Cement-Lime Mix: Packaged blend of portland cement and hydrated lime containing no other ingredients.
- E. Masonry Cement: ASTM C 91.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capital Materials Corporation; Flamingo Color Masonry Cement.
 - b. Cemex S.A.B. de C.V.; Brikset Type N, Citadel Type S, Dixie Type S, Kosmortar Type N, Richmortar, Victor Plastic Cement.
 - c. Essroc, Italcementi Group; Brixment or Velvet.
 - d. Holcim (US) Inc.; Mortamix Masonry Cement, Rainbow Mortamix, Custom Buff Masonry Cement, White Mortamix Masonry Cement.
 - e. Lafarge North America Inc.; Magnolia Masonry Cement, Lafarge Masonry Cement, Trinity White Masonry Cement.
 - f. Lehigh Cement Company; Lehigh Masonry Cement, Lehigh White Masonry Cement.
 - g. National Cement Company, Inc.; Coosa Masonry Cement.
- F. Mortar Cement: ASTM C 1329.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lafarge North America Inc.; Lafarge Mortar Cement, Magnolia Superbond Mortar Cement.
- G. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C 979. Use only pigments with a record of satisfactory performance in masonry mortar.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Davis Colors; True Tone Mortar Colors.
 - b. Lanxess Corporation; Bayferrox Iron Oxide Pigments.
 - c. Solomon Colors, Inc.; SGS Mortar Colors.

- H. Colored Cement Product: Packaged blend made from portland cement and hydrated lime masonry cement or mortar cement and mortar pigments, all complying with specified requirements, and containing no other ingredients.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Colored Portland Cement-Lime Mix:
 - 1) Capital Materials Corporation; Riverton Portland Cement Lime Custom Color.
 - 2) Holcim (US) Inc.; Rainbow Mortamix Custom Color Cement/Lime.
 - 3) Lafarge North America Inc.; Eaglebond Portland & Lime.
 - 4) Lehigh Cement Company; Lehigh Custom Color Portland/Lime Cement.
 - b. Colored Masonry Cement:
 - 1) Capital Materials Corporation; Flamingo Color Masonry Cement.
 - 2) Cemex S.A.B. de C.V.; Richcolor Masonry Cement.
 - 3) Essroc, Italcementi Group; Brixment-in-Color.
 - 4) Holcim (US) Inc.; Rainbow Mortamix Custom Color Masonry Cement.
 - 5) Lafarge North America Inc.; U.S. Cement Custom Color Masonry Cement.
 - 6) Lehigh Cement Company; Lehigh Custom Color Masonry Cement.
 - 7) National Cement Company, Inc.; Coosa Masonry Cement.
- I. Aggregate for Mortar: ASTM C 144.
 - 1. For joints less than 1/4 inch thick, use aggregate graded with 100 percent passing the No. 16 sieve.
 - 2. White-Mortar Aggregates: Natural white sand or crushed white stone.
 - 3. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.
- J. Aggregate for Grout: ASTM C 404.
- K. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C 494/C 494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Euclid Chemical Company (The); Accelguard 80.
 - b. Grace Construction Products, W. R. Grace & Co. Conn.; Morset.
 - c. Sonneborn Products, BASF Aktiengesellschaft; Trimix-NCA.
- L. Water-Repellent Admixture: Liquid water-repellent mortar admixture intended for use with CMUs, containing integral water repellent by same manufacturer.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. ACM Chemistries, Inc.; RainBloc for Mortar.
- b. BASF Aktiengesellschaft; Rheopel Mortar Admixture.
- c. Grace Construction Products, W. R. Grace & Co. Conn.; Dry-Block Mortar Admixture.
- M. Water: Potable.

2.5 REINFORCEMENT

- A. Uncoated Steel Reinforcing Bars: ASTM A 615 or ASTM A 996, Grade 60.
- B. Masonry Joint Reinforcement, General: ASTM A 951.
 - 1. Interior Walls: Hot-dip galvanized, carbon steel.
 - 2. Exterior Walls: Hot-dip galvanized, carbon steel.
 - 3. Wire Size for Side Rods: 0.187-inch diameter.
 - 4. Wire Size for Cross Rods: 0.187-inch diameter.
 - 5. Wire Size for Veneer Ties: 0.187-inch diameter.
 - 6. Spacing of Cross Rods, Tabs, and Cross Ties: Not more than 16 inches o.c.
 - 7. Provide in lengths of not less than 10 feet, with prefabricated corner and tee units.

2.6 TIES AND ANCHORS

- A. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated.
 - 1. Hot-Dip Galvanized, Carbon-Steel Wire: ASTM A 82/A 82M; with ASTM A 153/A 153M, Class B-2 coating.
 - 2. Steel Sheet, Galvanized after Fabrication: ASTM A 1008/A 1008M, Commercial Steel, with ASTM A 153/A 153M, Class B coating.
 - 3. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch diameter, hot-dip galvanized steel wire.
 - 2. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch of masonry face, made from 0.187-inch diameter, hot-dip galvanized steel wire.
- C. Adjustable Anchors for Connecting to Concrete: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.
 - 1. Connector Section: Dovetail tabs for inserting into dovetail slots in concrete and attached to tie section; formed from 01.05-inch thick, steel sheet, galvanized after fabrication.
 - 2. Tie Section: Triangular-shaped wire tie, sized to extend within 1 inch of masonry face, made from 0.187-inch diameter, hot-dip galvanized steel wire.

- 3. Corrugated Metal Ties: Metal strips not less than 7/8 inch wide with corrugations having a wavelength of 0.3 to 0.5 inch and an amplitude of 0.06 to 0.10 inch made from 01.05-inch thick, steel sheet, galvanized after fabrication with dovetail tabs for inserting into dovetail slots in concrete and sized to extend to within 1 inch of masonry face.
- D. Partition Top anchors: 0.105-inch thick metal plate with 3/8-inch diameter metal rod 6 inches long welded to plate and with closed-end plastic tube fitted over rod that allows rod to move in and out of tube. Fabricate from steel, hot-dip galvanized after fabrication.
- E. Rigid Anchors: Fabricate from steel bars 1-1/2 inches wide by 1/4 inch thick by 24 inches long, with ends turned up 2 inches or with cross pins unless otherwise indicated.
 - 1. Corrosion Protection: Hot-dip galvanized to comply with ASTM A 153.
- F. Anchor Bolts: Headed or L-shaped steel bolts complying with ASTM A 307, Grade A; with ASTM A 563 hex nuts and, where indicated, flat washers; hot-dip galvanized to comply with ASTM A 153/A 153M, Class C; of dimensions indicated.

2.7 EMBEDDED FLASHING MATERIALS

- A. Metal Flashing: Provide metal flashing complying with SMACNA's "Architectural Sheet Metal Manual Division 07 Section "Sheet Metal Flashing and Trim" and as follows:
 - 1. Metal Drip Edge: Fabricate from stainless steel. Extend at least 3 inches into wall and 1/2 inch out from wall, with outer edge bent down 30 degrees and hemmed.
 - 2. Metal Sealant Stop: Fabricate from stainless steel. Extend at least 3 inches into wall and out to exterior face of wall. At exterior face of wall, bend metal back on itself for 3/4 inch and down into joint 1/4 inch to form a stop for retaining sealant backer rod.
- B. Flexible Flashing: Use one of the following unless otherwise indicated:
 - 1. Copper-Laminated Flashing: 7-oz./sq. ft. copper sheet bonded between 2 layers of glass-fiber cloth. Use only where flashing is fully concealed in masonry.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Advanced Building Products Inc.; Copper Sealtite 2000.
 - 2) Dayton Superior Corporation, Dur-O-Wal Division; Copper Fabric Thru-Wall Flashing.
 - 3) Hohmann & Barnard, Inc.; H & B C-Fab Flashing.
 - 4) Phoenix Building Products; Type FCC-Fabric Covered Copper.
 - 5) Sandell Manufacturing Co., Inc.; Copper Fabric Flashing.
 - 6) York Manufacturing, Inc.; Multi-Flash 500.
 - 2. Rubberized-Asphalt Flashing: Composite flashing product consisting of a pliable, adhesive rubberized-asphalt compound, bonded to a high-density, cross-laminated polyethylene film to produce an overall thickness of not less than 0.040 inch.

- a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Advanced Building Products Inc.; Peel-N-Seal.
 - 2) Carlisle Coatings & Waterproofing; CCW-705-TWF Thru-Wall Flashing.
 - 3) Dayton Superior Corporation, Dur-O-Wal Division; Dur-O-Barrier Thru-Wall Flashing.
 - 4) Fiberweb, Clark Hammerbeam Corp.; Aquaflash 500.
 - 5) Grace Construction Products, W. R. Grace & Co. Conn.; Perm-A-Barrier Wall Flashing.
 - 6) Heckmann Building Products Inc.; No. 82 Rubberized-Asphalt Thru-Wall Flashing.
 - 7) Hohmann & Barnard, Inc.; Textroflash.
 - 8) W. R. Meadows, Inc.; Air-Shield Thru-Wall Flashing.
 - 9) Polyguard Products, Inc.; Polyguard 400.
 - 10) Sandell Manufacturing Co., Inc.; Sando-Seal.
 - 11) Williams Products, Inc.; Everlastic MF-40.
- 3. Elastomeric Thermoplastic Flashing: Composite flashing product consisting of a polyester-reinforced ethylene interpolymer alloy.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) DuPont; Thru-Wall Flashing.
 - 2) Hohmann & Barnard, Inc.; Flex-Flash.
 - 3) Hyload, Inc.; Hyload Cloaked Flashing System.
 - 4) Mortar Net USA, Ltd.; Total Flash.
- 4. EPDM Flashing: Sheet flashing product made from ethylene-propylene-diene terpolymer, complying with ASTM D 4637, and 0.040 inch thick.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Carlisle Coatings & Waterproofing; Pre-Kleened EPDM Thru-Wall Flashing.
 - 2) Firestone Specialty Products; FlashGuard.
 - 3) Heckmann Building Products Inc.; No. 81 EPDM Thru-Wall Flashing.
 - 4) Hohmann & Barnard, Inc.; Epra-Max EPDM Thru-Wall Flashing.
 - 5) Sandell Manufacturing Co., Inc.; EPDM Flashing.
- C. Single-Wythe CMU Flashing System: System of CMU cell flashing pans and interlocking CMU web covers made from high-density polyethylene incorporating chemical stabilizers that prevent UV degradation. Cell flashing pans have integral weep spouts that are designed to be built into mortar bed joints and weep collected moisture to the exterior of CMU walls and that extend into the cell to prevent clogging with mortar.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. Mortar Net USA, Ltd.; Blok-Flash.
- D. Solder and Sealants for Sheet Metal Flashings: As specified in Division 07 Section "Sheet Metal Flashing and Trim."
- E. Adhesives, Primers, and Seam Tapes for Flashings: Flashing manufacturer's standard products or products recommended by flashing manufacturer for bonding flashing sheets to each other and to substrates.

2.8 MISCELLANEOUS MASONRY ACCESSORIES

- A. Compressible Filler: Premolded filler strips complying with ASTM D 1056, Grade 2A1; compressible up to 35 percent; formulated from neoprene, urethane or PVC.
- B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D 2000, Designation M2AA-805 or PVC, complying with ASTM D 2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.
- C. Bond-Breaker Strips: Asphalt-saturated, organic roofing felt complying with ASTM D 226, Type I (No. 15 asphalt felt).

2.9 MASONRY-CELL INSULATION

- A. Loose-Granular Fill Insulation: Perlite complying with ASTM C 549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).
- B. Molded-Polystyrene Insulation Units: Rigid, cellular thermal insulation formed by the expansion of polystyrene-resin beads or granules in a closed mold to comply with ASTM C 578, Type I. Provide specially shaped units designed for installing in cores of masonry units.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Concrete Block Insulating Systems; Korfil.
 - b. Shelter Enterprises Inc.; Omni Core.

2.10 MORTAR AND GROUT MIXES

- A. General: Do not use admixtures, including pigments, air-entraining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.
 - 1. Do not use calcium chloride in mortar or grout.
 - 2. Use Portland cement-lime, masonry cement or mortar cement mortar unless otherwise indicated.

- 3. For exterior masonry, use Portland cement-lime, masonry cement or mortar cement mortar unless otherwise indicated.
- 4. For reinforced masonry, use Portland cement-lime, masonry cement or mortar cement mortar unless otherwise indicated.
- 5. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.
- B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.
- C. Mortar for Unit Masonry: Comply with ASTM C 270, Proportion and Property Specifications. Provide the following types of mortar for applications stated unless another type is indicated.
 - 1. For masonry below grade or in contact with earth, use Type S.
 - 2. For reinforced masonry, use Type S.
 - 3. For mortar parge coats, use Type S.
 - 4. For exterior, above-grade, load-bearing and non-load-bearing walls and parapet walls; for interior load-bearing walls; for interior non-load-bearing partitions; and for other applications where another type is not indicated, use Type N.
 - 5. For interior non-load-bearing partitions, Type O may be used instead of Type N.
- D. Pigmented Mortar: Use colored cement product or select and proportion pigments with other ingredients to produce color required. Do not add pigments to colored cement products.
 - 1. Pigments shall not exceed 10 percent of portland cement by weight.
 - 2. Pigments shall not exceed 5 percent of masonry cement or mortar cement by weight.
 - 3. Application: Use pigmented mortar for exposed mortar joints with the following units:
 - a. Decorative CMUs.
 - b. Pre-faced CMUs.
- E. Colored-Aggregate Mortar: Produce required mortar color by using colored aggregates and natural color or white cement as necessary to produce required mortar color.
 - 1. Application: Use colored aggregate mortar for exposed mortar joints with the following units:
 - a. Decorative CMUs.
 - b. Pre-faced CMUs.
- F. Grout for Unit Masonry: Comply with ASTM C 476.
 - 1. Use grout of type indicated or, if not otherwise indicated, of type (fine or course) that will comply with Table 1.15.1 in ACI 530.1/ASCE 6/TMS 602 for dimensions of grout spaces and pour height.
 - 2. Proportion grout in accordance with ASTM C 476, Table 1 or paragraph 4.2.2 for specified 28-day compressive strength indicated, but not less than 2000 psi.
 - 3. Provide grout with a slump of 8 to 11 inches as measured according to ASTM C 143/C 143M.

PART 3 - EXECUTION

3.1 TOLERANCES

A. Dimensions and Locations of Elements:

- 1. For dimensions in cross section or elevation do not vary by more than plus 1/2 inch or minus 1/4 inch.
- 2. For location of elements in plan do not vary from that indicated by more than plus or minus 1/2 inch.
- 3. For location of elements in elevation do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

- 1. For bed joints and top surfaces of bearing walls do not vary from level by more than 1/4 inch in 10 feet, or 1/2 inch maximum.
- 2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet or 1/2 inch maximum.
- 3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2 inch maximum.
- 4. For conspicuous vertical lines, such as external corners, door jambs, reveals, and expansion and control joints, do not vary from plumb by more than 1/8 inch in 10 feet, 1/4 inch in 20 feet, or 1/2 inch maximum.
- 5. For lines and surfaces do not vary from straight by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet, or 1/2 inch maximum.

C. Joints:

- 1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch, with a maximum thickness limited to 1/2 inch.
- 2. For head and collar joints, do not vary from thickness indicated by more than plus 3/8 inch or minus 1/4 inch.
- 3. For exposed head joints, do not vary from thickness indicated by more than plus or minus 1/8 inch.

3.2 LAYING MASONRY WALLS

- A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.
- B. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

- C. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in running bond; do not use units with less than nominal 4-inch horizontal face dimensions at corners or jambs.
- D. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.
- E. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.
- F. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below and rod mortar or grout into core.
- G. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

3.3 MORTAR BEDDING AND JOINTING

- A. Lay hollow CMUs as follows:
 - 1. With face shells fully bedded in mortar and with head joints of depth equal to bed joints.
 - 2. With webs fully bedded in mortar in all courses of piers, columns, and pilasters.
 - 3. With webs fully bedded in mortar in grouted masonry, including starting course on footings.
 - 4. With entire units, including areas under cells, fully bedded in mortar at starting course on footings where cells are not grouted.
- B. Lay solid masonry units with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.
- C. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.
- D. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

3.4 MASONRY-CELL INSULATION

- A. Pour granular insulation into cavities to fill void spaces. Maintain inspection ports to show presence of insulation at extremities of each pour area. Close the ports after filling has been confirmed. Limit the fall of insulation to one story high, but not more than 20 feet.
- B. Install molded-polystyrene insulation units into masonry unit cells before laying units.

3.5 MASONRY JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.

- 1. Space reinforcement not more than 16 inches o.c.
- 2. Space reinforcement not more than 8 inches o.c. in foundation walls and parapet walls.
- 3. Provide reinforcement not more than 8 inches above and below wall openings and extending 12 inches beyond openings in addition to continuous reinforcement.
- B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.
- C. Provide continuity at wall intersections by using prefabricated T-shaped units.
- D. Provide continuity at corners by using prefabricated L-shaped units.

3.6 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

- A. Anchor masonry to structural steel and concrete where masonry abuts or faces structural steel or concrete to comply with the following:
 - 1. Provide an open space not less than 1 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
 - 2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
 - 3. Space anchors as indicated, but not more than 24 inches o.c. vertically and 36 inches o.c. horizontally.

3.7 FLASHING

- A. General: Install embedded flashing in masonry at lintels, ledges, other obstructions to downward flow of water in wall, and where indicated.
- B. Install flashing as follows unless otherwise indicated:
 - 1. Prepare masonry surfaces so they are smooth and free from projections that could puncture flashing. Where flashing is within mortar joint, place through-wall flashing on sloping bed of mortar and cover with mortar. Before covering with mortar, seal penetrations in flashing with adhesive, sealant, or tape as recommended by flashing manufacturer.
 - 2. At lintels, extend flashing a minimum of 6 inches into masonry at each end. At heads and sills, extend flashing 6 inches at ends and turn up not less than 2 inches to form end dams.
 - 3. Install metal drip edges beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall and adhere flexible flashing to top of metal drip edge.
 - 4. Install metal flashing termination beneath flexible flashing at exterior face of wall. Stop flexible flashing 1/2 inch back from outside face of wall and adhere flexible flashing to top of metal flashing termination.
- C. Install single-wythe CMU flashing system in bed joints of CMU walls where indicated to comply with manufacturer's written instructions. Install CMU cell pans with upturned edges located below face shells and webs of CMUs above and with weep spouts aligned with face of

wall. Install CMU web covers so that they cover upturned edges of CMU cell pans at CMU webs and extend from face shell to face shell.

3.8 REINFORCED UNIT MASONRY INSTALLATION

- A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 - 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie, and support forms to maintain position and shape during construction and curing of reinforced masonry.
 - 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.
- B. Placing Reinforcement: Comply with requirements in ACI 530.1/ASCE 6/TMS 602.
- C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 - 1. Comply with requirements in ACI 530.1/ASCE 6/TMS 602 for cleanouts and for grout placement, including minimum grout space and maximum pour height.
 - 2. Limit height of vertical grout pours to not more than 60 inches.

3.9 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas, as needed to perform tests and inspections. Retesting of materials that fail to meet specified requirements shall be done at Contractor's expense.
- B. Inspections: Level 1 special inspections according to the "International Building Code."
 - 1. Begin masonry construction only after inspectors have verified proportions of siteprepared mortar.
 - 2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
 - 3. Place grout only after inspectors have verified proportions of site-prepared grout.
- C. Testing Prior to Construction: One set of tests.
- D. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
- E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C 140 for compressive strength.
- F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C 780.

- G. Mortar Test (Property Specification): For each mix provided, according to ASTM C 780. Test mortar for mortar air content and compressive strength.
- H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C 1019.

3.10 PARGING

- A. Parge exterior faces of below-grade masonry walls, where indicated, in 2 uniform coats to a total thickness of 3/4 inch.
- B. Use a steel-trowel finish to produce a smooth, flat, dense surface. Form a wash at top of parging and a cove at bottom.
- C. Damp-cure parging for at least 24 hours and protect parging until cured.

3.11 REPAIRING, POINTING, AND CLEANING

- A. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
- B. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 - 1. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes.
 - 2. Clean concrete masonry by cleaning method indicated in NCMA TEK 8-2A applicable to type of stain on exposed surfaces.

3.12 MASONRY WASTE DISPOSAL

- A. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.
 - 1. Do not dispose of masonry waste as fill within 18 inches of finished grade.
- B. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042200

SECTION 051200 - STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes structural steel.
- B. Related Sections:
 - 1. Division 05 Section "Architecturally Exposed Structural Steel Framing" for additional requirements for architecturally exposed structural steel.

1.2 DEFINITIONS

A. Structural Steel: Elements of structural-steel frame, as classified by AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."

1.3 PERFORMANCE REQUIREMENTS

- A. Connections: Provide details of simple shear connections required by the Contract Documents to be selected or completed by structural-steel fabricator to withstand loads indicated and comply with other information and restrictions indicated.
 - 1. Select and complete connections using schematic details indicated and AISC 360.
 - 2. Use ASD data are given at service-load level.
- B. Moment Connections: Type FR, fully restrained.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication of structural-steel components.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified fabricator.
- B. Welding certificates.
- C. Mill test reports for structural steel, including chemical and physical properties.

D. Source quality-control reports.

1.6 QUALITY ASSURANCE

- A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.
- B. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category CSE.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1, "Structural Welding Code Steel."
- D. Comply with applicable provisions of the following specifications and documents:
 - 1. AISC 303.
 - 2. AISC 360.
 - 3. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- E. Preinstallation Conference: Conduct conference at Project site.

PART 2 - PRODUCTS

2.1 STRUCTURAL-STEEL MATERIALS

- A. W-Shapes: ASTM A 572, Grade 50.
- B. Channels, Angles -Shapes: ASTM A 572, Grade 50.
- C. Plate and Bar: ASTM A 572, Grade 50.
- D. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade B, structural tubing.
- E. Steel Pipe: ASTM A 53, Type E or S, Grade B.
- F. Welding Electrodes: Comply with AWS requirements.

2.2 BOLTS, CONNECTORS, AND ANCHORS

- A. High-Strength Bolts, Nuts, and Washers: ASTM A 325, Type 1, heavy-hex steel structural bolts; ASTM A 563, Grade C, heavy-hex carbon-steel nuts; and ASTM F 436, Type 1, hardened carbon-steel washers; all with plain finish.
 - 1. Direct-Tension Indicators: ASTM F 959, Type 325, compressible-washer type with plain finish.

- B. Shear Connectors: ASTM A 108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1, Type B.
- C. Unheaded Anchor Rods: ASTM F 1554, Grade 55, weldable.
 - 1. Configuration: Hooked.
 - 2. Finish: Plain.
- D. Headed Anchor Rods: ASTM F 1554, Grade 55, weldable, straight.
 - 1. Finish: Plain
 - 2. Threaded Rods: ASTM A 36.
- E. Clevises and Turnbuckles: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1035.

2.3 PRIMER

- A. Low-Emitting Materials: Paints and coatings shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. Primer: Comply with Division 09 painting Sections and Division 09 Section "High-Performance Coatings."
- C. Primer: SSPC-Paint 25, Type I, zinc ox ide, alkyd, linseed oil primer.
- D. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.

2.4 GROUT

- A. Metallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, metallic aggregate grout, mixed with water to consistency suitable for application and a 30-minute working time.
- B. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.5 FABRICATION

A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC's "Code of Standard Practice for Steel Buildings and Bridges" and AISC 360.

B. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1and manufacturer's written instructions.

2.6 SHOP CONNECTIONS

- A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

2.7 SHOP PRIMING

- A. Shop prime steel surfaces except the following:
 - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
 - 2. Surfaces to be field welded.
 - 3. Surfaces to be high-strength bolted with slip-critical connections.
 - 4. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
 - 5. Galvanized surfaces.
- B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 - 1. SSPC-SP 2, "Hand Tool Cleaning."
 - 2. SSPC-SP 3, "Power Tool Cleaning."
- C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

2.8 SOURCE QUALITY CONTROL

A. Testing Agency: Owner will engage an independent testing and inspecting agency to perform shop tests and inspections and prepare test reports.

- 1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
- B. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.
- C. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- D. Welded Connections: In addition to visual inspection, shop-welded connections will be tested and inspected according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:
 - 1. Liquid Penetrant Inspection: ASTM E 165.
 - 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 - 3. Ultrasonic Inspection: ASTM E 164.
 - 4. Radiographic Inspection: ASTM E 94.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify, with steel Erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ERECTION

- A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.
- B. Base Bearing and Leveling Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Weld plate washers to top of baseplate.
 - 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

3.3 FIELD CONNECTIONS

- A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1 and AWS D1.8 for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections.
- B. Bolted Connections: Bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."
- C. Welded Connections: Field welds will be visually inspected according to AWS D1.1/D1.1M.
 - 1. In addition to visual inspection, field welds will be tested and inspected according to AWS D1.1 and the following inspection procedures, at testing agency's option:
 - a. Liquid Penetrant Inspection: ASTM E 165.
 - b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 - c. Ultrasonic Inspection: ASTM E 164.
 - d. Radiographic Inspection: ASTM E 94.
- D. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

SECTION 054000 - COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Interior non-load-bearing wall framing.
 - 2. Ceiling joist framing.
 - 3. Architectural Soffit trusses.

1.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide cold-formed metal framing capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As follows:
 - a. Dead Loads: Weights of materials and construction
 - b. Live Loads: 20 psf vertical at horizontal surfaces
 - c. Roof Loads: N/A
 - d. Snow Loads: N/A
 - e. Wind Loads: ± 5 psf all surfaces
 - f. Seismic Loads: Site Class: D, Ss = 0.076, S1 = 0.037, Seismic Design Category A
 - g. MEP: 10 psf download
 - 2. Deflection Limits: Design framing systems to withstand design loads without deflections greater than the following:
 - a. Interior Non-Load-Bearing Wall Framing: Horizontal deflection of **1/360** of the wall height under a horizontal load of 5 psf.
 - b. Ceiling Joist Framing: Vertical deflection of 1/480 for live loads and 1/360 for total loads of the span.
 - c. Architectural Soffit Trusses: Vertical deflection of 1/360 of the span.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product and accessory indicated.
- B. Shop Drawings: Show layout, spacings, sizes, thicknesses, and types of cold-formed metal framing; fabrication; and fastening and anchorage details, including mechanical fasteners.

1. For cold-formed metal framing indicated to comply with design loads, include structural analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification data.
- B. Welding certificates.
- C. Product test reports.
- D. Research/evaluation reports.

1.5 QUALITY ASSURANCE

- A. Product Tests: Mill certificates or data from a qualified independent testing agency indicating steel sheet complies with requirements.
- B. Welding: Qualify procedures and personnel according to AWS D1.3, "Structural Welding Code--Sheet Steel."
- C. Fire-Test-Response Characteristics: Where indicated, provide cold-formed metal framing identical to that of assemblies tested for fire resistance per ASTM E 119 by a testing and inspecting agency acceptable to authorities having jurisdiction.
- D. AISI Specifications and Standards: Comply with AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members" and its "Standard for Cold-Formed Steel Framing General Provisions."
 - 1. Comply with AISI's "Standard for Cold-Formed Steel Framing Truss Design."
 - 2. Comply with AISI's "Standard for Cold-Formed Steel Framing Header Design."
- E. Comply with AISI's "Standard for Cold-Formed Steel Framing Prescriptive Method for One and Two Family Dwellings."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Steel Sheet: ASTM A 1003, Structural Grade, Type H, metallic coated, of grade and coating weight as follows:
 - 1. Grade: As required by structural performance.
 - 2. Coating: G90 or equivalent

2.2 INTERIOR NON-LOAD-BEARING WALL FRAMING

- A. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0677 inch
 - 2. Flange Width: 2-1/2 inches.
 - 3. Section Properties: As required by strength and deflection calculations.
- B. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with unstiffened flanges, and same minimum base-metal thickness as steel studs.
- C. Vertical Deflection Clips: Manufacturer's standard [bypass] [head] clips, capable of accommodating upward and downward vertical displacement of primary structure through positive mechanical attachment to stud web.
- D. Single Deflection Track: Manufacturer's single, deep-leg, U-shaped steel track; un-punched, with unstiffened flanges, of web depth to contain studs while allowing free vertical movement, with flanges designed to support horizontal and lateral loads.
- E. Double Deflection Tracks: Manufacturer's double, deep-leg, U-shaped steel tracks, consisting of nested inner and outer tracks; un-punched, with unstiffened flanges.

2.3 CEILING JOIST FRAMING

- A. Steel Joists: Manufacturer's standard C-shaped steel joists, of web depths indicated, unpunched, with stiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: 0.0677 inch
 - 2. Flange Width: 2-1/2 inches.
 - 3. Section Properties: As required by strength and deflection calculations.
- B. Steel Joist Track: Manufacturer's standard U-shaped steel joist track, of web depths indicated, un-punched, with unstiffened flanges, and as follows:
 - 1. Minimum Base-Metal Thickness: Matching steel joists.
 - 2. Flange Width: 2-1/2 inches, minimum.

2.4 ARCHITECTURAL SOFFIT TRUSSES

A. Roof Truss Members: Manufacturer's standard C-shaped steel sections, of web depths indicated, un-punched, with stiffened flanges.

2.5 FRAMING ACCESSORIES

A. Fabricate steel-framing accessories from steel sheet, ASTM A 1003/A 1003M, Structural Grade, Type H, metallic coated, of same grade and coating weight used for framing members, unless otherwise indicated.

- B. Steel Shapes and Clips: ASTM A 36/A 36M, zinc coated by hot-dip process according to ASTM A 123/A 123M.
- C. Expansion Anchors: Fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 5 times design load, as determined by testing per ASTM E 488 conducted by a qualified independent testing agency.
- D. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 10 times design load, as determined by testing per ASTM E 1190 conducted by a qualified independent testing agency.
- E. Mechanical Fasteners: ASTM C 1513, corrosion-resistant-coated, self-drilling, self-tapping steel drill screws.
 - 1. Head Type: Low-profile head beneath sheathing, manufacturer's standard elsewhere.

2.6 MISCELLANEOUS MATERIALS

- A. Galvanizing Repair Paint: SSPC-Paint 20 or DOD-P-21035, ASTM A 780.
- B. Cement Grout: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.
- C. Shims: Load bearing, high-density multimonomer plastic, nonleaching.
- D. Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch thick, selected from manufacturer's standard widths to match width of bottom track or rim track members.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Install load bearing shims or grout between the underside of wall bottom track or rim track and the top of foundation wall or slab at stud or joist locations to ensure a uniform bearing surface on supporting concrete or masonry construction.
- B. Install sealer gaskets to isolate the underside of wall bottom track or rim track and the top of foundation wall or slab at stud or joist locations.

3.2 INSTALLATION, GENERAL

A. Install cold-formed metal framing according to AISI's "Standard for Cold-Formed Steel Framing - General Provisions" and to manufacturer's written instructions unless more stringent requirements are indicated.

- B. Install cold-formed metal framing and accessories plumb, square, and true to line, and with connections securely fastened.
- C. Install framing members in one-piece lengths.
- D. Install temporary bracing and supports to secure framing and support loads comparable in intensity to those for which structure was designed. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.
- E. Do not bridge building expansion and control joints with cold-formed metal framing. Independently frame both sides of joints.
- F. Install insulation, specified in Division 07 Section "Thermal Insulation," in built-up exterior framing members, such as headers, sills, boxed joists, and multiple studs at openings, that are inaccessible on completion of framing work.
- G. Fasten hole reinforcing plate over web penetrations that exceed size of manufacturer's standard punched openings.
- H. Erection Tolerances: Install cold-formed metal framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet and as follows:
 - 1. Space individual framing members no more than plus or minus 1/8 inch from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.3 INTERIOR NON-LOAD-BEARING WALL INSTALLATION

- A. Install continuous tracks sized to match studs. Align tracks accurately and securely anchor to supporting structure as indicated.
- B. Fasten both flanges of studs to top and bottom track, unless otherwise indicated. Space studs as follows:
 - 1. Stud Spacing: 16 inches.
- C. Set studs plumb, except as needed for diagonal bracing or required for nonplumb walls or warped surfaces and similar requirements.
- D. Isolate non-load-bearing steel framing from building structure to prevent transfer of vertical loads while providing lateral support.
 - 1. Install single deflection tracks and anchor to building structure.
 - 2. Install double deflection tracks and anchor outer track to building structure.
 - 3. Connect vertical deflection clips to bypassing and infill studs and anchor to primary building structure.
- E. Install horizontal bridging in wall studs, spaced in rows indicated on Shop Drawings but not more than 48 inches apart. Fasten at each stud intersection.

- Top Bridging for Single Deflection Track: Install row of horizontal bridging within 12 inches of single deflection track. Install a combination of flat, taut, steel sheet straps of width and thickness indicated and stud or stud-track solid blocking of width and thickness matching studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
 - a. Install solid blocking at 96-inch centers.
- 2. Bridging: Cold-rolled steel channel, welded or mechanically fastened to webs of punched studs.
- 3. Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and stud-track solid blocking of width and thickness to match studs. Fasten flat straps to stud flanges and secure solid blocking to stud webs or flanges.
- 4. Bridging: Proprietary bridging bars installed according to manufacturer's written instructions.
- F. Install miscellaneous framing and connections, including stud kickers, web stiffeners, clip angles, continuous angles, anchors, fasteners, and stud girts, to provide a complete and stable curtain-wall-framing system.

3.4 JOIST INSTALLATION

- A. Install perimeter joist track sized to match joists. Align and securely anchor or fasten track to supporting structure at corners, ends, and spacings indicated on Shop Drawings.
- B. Install joists bearing on supporting frame, level, straight, and plumb; adjust to final position, brace, and reinforce. Fasten joists to both flanges of joist track.
 - 1. Install joists over supporting frame with a minimum end bearing of 1-1/2 inches.
 - 2. Reinforce ends and bearing points of joists with web stiffeners, end clips, joist hangers, steel clip angles, or steel-stud sections as indicated on Shop Drawings.
- C. Space joists not more than 2 inches from abutting walls, and as follows:
 - 1. Joist Spacing: 12 inches U.N.O.
- D. Frame openings with built-up joist headers consisting of joist and joist track, nesting joists, or another combination of connected joists if indicated.
- E. Install joist reinforcement at interior supports with single, short length of joist section located directly over interior support, with lapped joists of equal length to joist reinforcement, or as indicated on Shop Drawings.
 - 1. Install web stiffeners to transfer axial loads of walls above.
- F. Install bridging at intervals indicated on Shop Drawings. Fasten bridging at each joist intersection as follows:
 - 1. Bridging: Joist-track solid blocking of width and thickness indicated, secured to joist webs.

- 2. Bridging: Combination of flat, taut, steel sheet straps of width and thickness indicated and joist-track solid blocking of width and thickness indicated. Fasten flat straps to bottom flange of joists and secure solid blocking to joist webs.
- G. Secure joists to load-bearing interior walls to prevent lateral movement of bottom flange.
- H. Install miscellaneous joist framing and connections, including web stiffeners, closure pieces, clip angles, continuous angles, hold-down angles, anchors, and fasteners, to provide a complete and stable joist-framing assembly.

3.5 TRUSS INSTALLATION

- A. Install, bridge, and brace trusses according to Shop Drawings and requirements in this Section.
- B. Truss Spacing: 16 inches.
- C. Do not alter, cut, or remove framing members or connections of trusses.
- D. Erect trusses with plane of truss webs plumb and parallel to each other, align, and accurately position at spacings indicated.
- E. Erect trusses without damaging framing members or connections.
- F. Align webs of bottom chords and load-bearing studs or continuously reinforce track to transfer loads to structure. Anchor trusses securely at all bearing points.
- G. Install continuous bridging and permanently brace trusses as indicated on Shop Drawings and designed according to LGSEA's Technical Note 551e, "Design Guide for Permanent Bracing of Cold-Formed Steel Trusses."

3.6 FIELD QUALITY CONTROL

- A. Testing: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Field and shop welds will be subject to testing and inspecting.
- C. Testing agency will report test results promptly and in writing to Contractor and Architect.
- D. Remove and replace work where test results indicate that it does not comply with specified requirements.
- E. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.7 REPAIRS AND PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed metal framing with galvanized repair paint according to ASTM A 780 and manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer that ensure that cold-formed metal framing is without damage or deterioration at time of Substantial Completion.

SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel framing and supports for mechanical and electrical equipment.
- 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.

1.2 SUBMITTALS

- A. Product Data: For manufactured items specified.
- B. Shop Drawings: Detail fabrication and erection of each metal fabrication indicated. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items.

1.3 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1, "Structural Welding Code--Steel."
 - 2. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

1.4 PROJECT CONDITIONS

A. Field Measurements: Where metal fabrications are indicated to fit walls and other construction, verify dimensions by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 METALS, GENERAL

A. Metal Surfaces, General: For metal fabrications exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

2.2 FERROUS METALS

- A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- B. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.

2.3 PAINT

- A. Manufacturers Specified:
 - 1. The Sherwin-Williams Company
- B. Other Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. PPG Paints
 - 2. Benjamin Moore
- C. Shop Priming: Shop prime metal fabrications.
 - 1. Paint System: Pro Industrial Pro-Cryl Universal Primer

2.4 FASTENERS

- A. General: Provide Type 304 or 316 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633, Class Fe/Zn 5, where built into exterior walls. Select fasteners for type, grade, and class required.
- B. Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A; with hex nuts, ASTM A 563; and, where indicated, flat washers.
- C. Anchor Bolts: ASTM F 1554, Grade 36.
- D. Machine Screws: ASME B18.6.3.
- E. Lag Bolts: ASME B18.2.1.
- F. Plain Washers: Round, carbon steel, ASME B18.22.1.
- G. Expansion Anchors: Anchor bolt and sleeve assembly of material indicated below with capability to sustain, without failure, a load equal to six times the load imposed when installed in unit masonry and equal to four times the load imposed when installed in concrete, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.
 - 1. Material: Carbon-steel components zinc-plated to comply with ASTM B 633, Class Fe/Zn 5.

2.5 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in shop to greatest extent possible to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Shear and punch metals cleanly and accurately. Remove burrs.
- C. Ease exposed edges to a radius of approximately 1/32 inch, unless otherwise indicated. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- E. Provide for anchorage of type indicated; coordinate with supporting structure. Fabricate and space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
- F. Cut, reinforce, drill, and tap metal fabrications as indicated to receive fasteners and similar items.
- G. Allow for thermal movement resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening up of joints, overstressing of components, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 degrees F, ambient; 180 degrees F, material surfaces.
- H. Form exposed work true to line and level with accurate angles and surfaces and straight sharp edges.

2.6 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel supports that are not a part of structural-steel framework as necessary to complete the Work.
- B. Fabricate units from structural-steel shapes, plates, and bars of welded construction, unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction retained by framing and supports. Cut, drill, and tap units to receive hardware, hangers, and similar items.

2.7 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Finish metal fabrications after assembly.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Fastening to In-Place Construction: Provide anchorage devices and fasteners where necessary for securing metal fabrications to in-place construction. Include threaded fasteners for concrete and masonry inserts, toggle bolts, through-bolts, lag bolts, wood screws, and other connectors.
- B. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- C. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- D. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings, if any.

SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Wood blocking and nailers.

1.2 SUBMITTALS

- A. Product Data: For the following.
 - 1. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 2. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.
 - 3. Include copies of warranties from chemical treatment manufacturers for each type of treatment.
- B. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. Provide dressed lumber, S4S, unless otherwise indicated.

2.2 FIRE-RETARDANT-TREATED MATERIALS

- A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.
- B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.
 - 1. Use treatment that does not promote corrosion of metal fasteners.
 - 2. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity.
- C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.
- D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.
- E. Application: Treat items indicated on Drawings, and the following:
 - 1. Concealed blocking.

2.3 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction including, but not limited to the following:
 - 1. Blocking.
 - 2. Nailers.
- B. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- C. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

2.4 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry to other construction; scribe and cope as needed for accurate fit. Locate furring, nailers, blocking, and similar supports to comply with requirements for attaching other construction.
- B. Install fire-retardant treated plywood backing panels with classification marking of testing agency exposed to view.
- C. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. NES NER-272 for power-driven fasteners.
 - 2. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code.

3.2 WOOD BLOCKING AND NAILER INSTALLATION

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.
- C. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

SECTION 064117 – VANITY CABINETS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cabinets.

1.2 COORDINATION

A. Coordinate sizes and locations of framing, blocking, reinforcements and other related units of Work specified in other Sections to support loads imposed by installed and fully loaded cabinets.

1.3 SUBMITTALS

- A. Product Data: For products indicated.
- B. Shop Drawings: For cabinet construction indicated.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Show framing specified in other Sections.

1.4 FIELD CONDITIONS

- A. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.
 - 1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed/concealed by construction, and indicate measurements on Shop Drawings.
- B. Established Dimensions: Where cabinets are indicated to fit to other construction, establish dimensions for areas where cabinets are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Plastic-Laminate-Clad Countertops: Refer to Section 123623 Plastic-Laminate-Clad Countertops.
- B. Solid Surface Countertops: Refer to Section 123661 Solid Surface Countertops.
- C. Steel Framing: Refer to Section 055000 Metal Fabrications.
 - 1. Sizes and Configuration: As indicated on the Drawings.
- D. Marine Grade Plywood: APA B-B Marine Grade
 - 1. Thickness: As indicated on the Drawings.

2.2 MISCELLANEOUS MATERIALS

- A. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrousmetal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.
- B. Z Brackets: Aluminum; predrilled; size as required for applications indicated.
- C. Stainless Steel Fasteners: Screws and washers; Type 316 stainless steel; mill finish.

2.3 FABRICATION

- A. Fabricate cabinets to dimensions, profiles, and details indicated.
- B. Complete fabrication to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Assemble cabinets and complete fabrication at Project site to extent that it was not completed in the shop.
- B. Anchor cabinet work securely.
- C. Install cabinet work level, plumb, and true in line to a tolerance of 1/8 inch in 96 inchesusing concealed shims.

3.2 ADJUSTING AND CLEANING

- A. Repair damaged and defective work. Where not possible to repair, replace damaged work.
- B. Clean exposed and semi-exposed surfaces.

SECTION 072100 - BUILDING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Insulation.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for each product.

1.3 QUALITY ASSURANCE

- A. Single-Source Responsibility for Insulation Products: Obtain each type of building insulation from a single source with resources to provide products complying with requirements indicated without delaying the Work.
- B. Fire Performance Characteristics: Insulation materials shall be identical to those whose fire performance characteristics, as listed for each material or assembly of which insulation is a part, have been determined by testing, per methods indicated, by a testing agency acceptable to authorities having jurisdiction.
 - 1. Surface Burning Characteristics: ASTM E-84
 - 2. Combustion Characteristics: ASTM E-136

1.4 DELIVERY, STORAGE, AND HANDLING

A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Acceptable Manufacturers: Subject to compliance with requirements, products that may be incorporated in the Work include, but are not limited to, the following:
 - 1. Sound Attenuation Blanket Insulation:
 - a. CertainTeed Corporation
 - b. JohnsManville
 - c. Knauf Fiber Glass GmbH
 - d. Owens-Corning Fiberglas Corporation

2.2 INSULATION

- A. Sound Attenuation Blanket Insulation: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 - 1. Thickness: As indicated.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to insulation or that interfere with insulation attachment.

3.2 INSTALLATION OF INSULATION - GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications indicated.
- B. Install insulation that is undamaged, dry, and unsoiled and that has not been left exposed to ice, rain, or snow at any time.
- C. Extend insulation to envelop entire area to be insulated. Cut and fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.
- D. Provide sizes to fit applications indicated and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units to produce thickness indicated unless multiple layers are otherwise shown or required to make up total thickness.
- E. Install insulation baffles in accordance with manufacturer's instructions and recommendations.

3.3 INSTALLATION OF INSULATION FOR FRAMED CONSTRUCTION

- A. Apply insulation units to substrates by method indicated, complying with manufacturer's written instructions. If no specific method is indicated, bond units to substrate with adhesive or use mechanical anchorage to provide permanent placement and support of units.
- B. Install insulation in cavities formed by framing members according to the following requirements:
 - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 - 3. Maintain 3-inch clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
- C. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation.

3.4 PROTECTION

A. Protect installed insulation and vapor retarders from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sealants.

1.2 SUBMITTALS

A. Product Data: For each joint-sealant product indicated.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 PRODUCTS AND MANUFACTURERS

- A. Joint-Sealant: One-part silicone sanitary sealant.
 - 1. Application: Interior joints in vertical and horizontal non-traffic surfaces sanitary sealant.
 - 2. Joint Locations: At plumbing fixtures in toilets and janitor closets, and horizontal and vertical joints of dissimilar materials in toilets and other wet areas.
 - 3. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - a. 786; Dow Corning Corp.
 - b. 898; Pecora Corp.
 - c. 600; Tremco, Inc.
- B. Joint-Sealant: One-part latex sealant.
 - 1. Application: Interior joints in vertical and horizontal non-traffic surfaces.
 - 2. Joint Locations: Horizontal and vertical joints around door frames, and joints between dissimilar materials.

- 3. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - a. AC-20; Pecora Corp.
 - b. Sonolac; BASF Building Systems
 - c. Tremco Acrylic Latex 834; Tremco, Inc.

2.3 JOINT-SEALANT BACKING

- A. Backer Rod (Joint Fillers, Compressible Filler): Cylindrical, flexible sealant backings composed bi-cellular material per Type B, ASTM C 1330 and ASTM C 717 for use as gasket or sealing material, for use with cold-applied sealants.
 - 1. Physical Properties:
 - a. Density: 1.8 lb/ft3 to 2.5 lb/ft3, average, per ASTM D 1622.
 - b. Outgassing (Number of Bubbles): Less than 1, per ASTM C 1253.
 - c. Compression Recovery: Greater than 95 percent minimum, per ASTM D 5249.
 - d. Compression Deflection: 1.2 psi, per ASTM D 5249.
 - e. Tensile Strength: 43.4 psi, per ASTM D 3575.
 - f. Water Absorption: Less than 0.03 g/cc, per ASTM C 1016 Procedure B.
 - g. Form: Round foam rod.

2.4 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.
- C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- C. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- D. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile unless otherwise indicated.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Steel doors.
 - 2. Steel door frames.

1.2 DEFINITIONS

A. Steel Sheet Thickness: Thickness dimensions, including those referenced in ANSI A250.8, are minimums as defined in referenced ASTM standards for both uncoated steel sheet and the uncoated base metal of metallic-coated steel sheets.

1.3 SUBMITTALS

- A. Product Data: For doors and frames indicated, include door designation, type, level and model, material description, core description, construction details and finishes.
- B. Door Schedule: Use same reference designations indicated on Drawings in preparing schedule for doors and frames.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain steel doors and frames through one source from a single manufacturer.
- B. Steel Door and Frame Standard: Comply with requirements contained in SDI 100 Recommended Specifications for Standard Steel Doors and Frames unless more stringent requirements are indicated.

C. Preparation/Field Verification

- 1. Verify doorframes are in proper location and have been properly anchored in accordance with Specifications and SDI 105 Recommended Erection Instruction for Steel Frames.
- 2. Verify that frames comply with indicated requirements for type, size, location and swing characteristics. Verify that frames have been installed with plumb jambs and level heads.
- 3. Verify that Shop Drawings have been successfully submitted, reviewed and returned.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver doors and frames cardboard-wrapped or crated to provide protection during transit and job storage.
- B. Doors shall be individually wrapped, protected and packaged as standard of manufacturer.
- C. Each door shall be marked on top and bottom rail with same opening number used on Shop Drawings.
- D. Inspect doors and frames on delivery for damage, and notify shipper and supplier if damage is found. Minor damages may be repaired provided refinished items match new work and are acceptable to Architect. Remove and replace damaged items that cannot be repaired as directed.
- E. Store doors and frames at building site under cover. Place units on minimum 4-inch-high wood blocking. Avoid using nonvented plastic or canvas shelters that could create a humidity chamber. If door packaging becomes wet, remove cartons immediately. Provide minimum 1/4-inch spaces between stacked doors to permit air circulation.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure to meet performance requirements.
 - b. Structural failures including excessive deflection.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Warranty Period: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Steel Doors and Frames:
 - a. Amweld Building Products, Inc.
 - b. Ceco Door Products
 - c. Curries Company
 - d. Steelcraft

2.2 MATERIALS

- A. Hot-Rolled Steel Sheets: ASTM A 569/A 569M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- B. Cold-Rolled Steel Sheets: ASTM A 366, Commercial Steel (CS), or ASTM A 620, Drawing Steel (DS), Type B; stretcher-leveled standard of flatness.

2.3 STANDARD STEEL DOORS

- A. General: Provide doors of design indicated, not less than thickness indicated; fabricated with smooth surfaces, without visible joints or seams on exposed faces, unless otherwise indicated. Comply with ANSI A250.8.
 - 1. Design: As indicated.
 - 2. Thickness: As indicated.
 - 3. Vertical Edges for Single-Acting Doors: Beveled edge.
 - a. Beveled Edge: 1/8 inch in 2 inches.
 - 4. Vertical Edges for Double-Acting Doors: Round vertical edges with 2-1/8-inch radius.
 - 5. Top and Bottom Edges: Closed with flush or inverted 0.042-inch-thick end closures or channels of same material as face sheets.
 - 6. Tolerances: Comply with SDI 117, "Manufacturing Tolerances for Standard Steel Doors and Frames."

2.4 INTERIOR DOORS

- A. General: Provide doors of sizes, thickness, and designs indicated.
- B. Interior Doors: Provide doors complying with requirements indicated below by referencing ANSI 250.8 for level and model and ANSI A250.4 for physical-endurance level:
 - 1. Minimum SDI Level and Physical Performance: Level 2 and Physical Performance Level B (Heavy Duty), Model 1 (Full Flush).

2.5 FRAMES

- A. General: ANSI A250.8 and with details indicated for type and profile.
 - 1. Frame Gauge: 16 gauge minimum for all door frames.

2.6 ACCESSORIES

A. Door Silencers: Except on weather-stripped frames, fabricate stops to receive three silencers on strike jambs of single-door frames and two silencers on heads of double-door frames.

- B. Supports and Anchors: Fabricated from not less than 0.042-inch-thick, electrolytic zinc-coated or metallic-coated steel sheet.
 - 1. Wall Anchors in Masonry Construction: 0.177-inch-diameter, steel wire complying with ASTM A 510 may be used in place of steel sheet.
- C. Inserts, Bolts, and Fasteners: Manufacturer's standard units.
- D. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.
- E. Ceiling Struts: Minimum 1/4-inch-thick by 1-inch-wide steel.
- F. Grout Guards: Formed from same material as frames, not less than 0.016 inchthick.
- G. Bituminous Coating: Cold-applied asphalt mastic, two coats minimum 30-mildry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.7 FABRICATION

- A. General: Fabricate steel door and frame units to comply with ANSI A250.8 and to be rigid, neat in appearance, and free from defects including warp and buckle. Where practical, fit and assemble units in manufacturer's plant. Clearly identify work that cannot be permanently factory assembled before shipment, to assure proper assembly at Project site.
- B. Interior Door Faces: Fabricate exposed faces of doors, including stiles and rails of nonflush units, from the following material:
 - 1. Face sheets shall be minimum 18 gauge (0.042 in) cold-rolled steel sheets conforming to ASTM A366/A 366M, Commercial Steel (CS) or ASTM A620, Drawing Steel (DS), Type B.
- C. Core Construction: Manufacturer's factory installed core materials that produce a door complying with SDI standards:
 - 1. Interior Non-Fire Rated Doors: Manufacturer's standard kraft-paper honeycomb core; weld points shall not be visible on door faces.
- D. Clearances for Non-Fire-Rated Doors: Not more than 1/8 inch at jambs and heads, except not more than 1/4 inch between pairs of doors. Not more than 3/4 inch at bottom.
- E. Single Acting, Door-Edge Profile: Beveled edge.
- F. Tolerances: Comply with SDI 117, "Manufacturing Tolerances for Standard Steel Doors and Frames."
- G. Fabricate concealed stiffeners, reinforcement, edge channels, louvers, and moldings from either cold- or hot-rolled steel sheet.

- H. Exposed Fasteners: Unless otherwise indicated, provide countersunk flat or oval heads for exposed screws and bolts.
- I. Hardware Preparation: Prepare doors and frames to receive mortised and concealed hardware according to final door hardware schedule and templates provided by hardware supplier. Comply with applicable requirements in ANSI A250.6 and ANSI A115 Series specifications for door and frame preparation for hardware.
- J. Frame Construction: Fabricate frames to shape shown.
 - 1. Frames shall be welded construction type and have mitered or butted corners with welded and finished frame faces (seamless). The remaining elements of the frames shall be provided with temporary spreader bars for shipping and handling purposes.
 - 2. Interior frames shall be provided with a minimum of three anchors per jamb suitable for the adjoining wall construction. Anchors shall be minimum 18-gauge steel or minimum 7-gauge wire. Frames over 7'-6" shall be provided with additional wall anchors as required.
 - 3. In addition, frames shall be provided with minimum 18-gauge base anchor. For existing masonry wall conditions that will not accept base anchor, an additional jamb anchor shall be provided.
 - 4. Frames shall be furnished in manufacturer's standard factory-applied coat of rust-inhibiting primer complying with ANSI A250.10 for acceptance criteria.

K. Hardware Preparation

- 1. Provide minimum hardware reinforcing gauges as required in ANSI A250.6.
- 2. Doors and frames shall be reinforced, drilled and tapped to receive mortised hinges, locks, latches, flush bolts, etc, as required in ANSI A115 and ANSI A250.6.
- 3. Doors shall be reinforced for specified surface-mounted hardware. Drilling and tapping may be completed at the job site by the installers.
- 4. Hardware shall be located in accordance with locations prescribed in ANSI A250.8/SDI 100.

2.8 FINISHES

- A. Factory Finish: Factory-applied coat of rust-inhibiting primer complying with ANSI A250.10 for acceptance criteria.
 - 1. Coat all surfaces including tops and bottoms of doors.

B. Field Finishing:

1. Doors and Frames: Refer to Section 099123, Interior Painting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
- C. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Prior to installation, adjust and securely brace welded hollow metal frames for squareness, alignment, twist, and plumbness to the following tolerances:
 - 1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - 2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - 3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - 4. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.
- C. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install steel doors, frames, and accessories according to Shop Drawings, manufacturer's data, and as specified.

- B. Hollow Metal Frames: Install hollow metal frames of size and profile indicated. Comply with ANSI/SDI A250.11.
 - 1. Set frames accurately in position, plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 - a. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 - b. Install frames with removable glazing stops located on secure side of opening.
 - c. Install door silencers in frames before grouting.
 - d. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 - e. Check plumbness, squareness, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 - f. Field apply bituminous coating to backs of frames that will be filled with grout.
 - 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 - a. Floor anchors may be set with powder-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
 - 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation behind frames.
 - 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
 - 5. Concrete Walls: Solidly fill space between frames and concrete with grout. Take precautions, including bracing frames, to ensure that frames are not deformed or damaged by grout forces.
 - 6. Ceiling Struts: Extend struts vertically from top of frame at each jamb to overhead structural supports or substrates above frame unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction. Provide adjustable wedged or bolted anchorage to frame jamb members.
 - 7. Installation Tolerances: Adjust hollow metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

- C. Hollow Metal Doors: Fit hollow metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - 1. Non-Fire-Rated Standard Steel Doors:
 - a. Jambs and Head: 1/8 inch plus or minus 1/16 inch.
 - b. Between Edges of Pairs of Doors: 1/8 inch plus or minus 1/16 inch.
 - c. Between Bottom of Door and Top of Threshold: Maximum 3/8 inch.
 - d. Between Bottom of Door and Top of Finish Floor (No Threshold): Maximum 3/4 inch

3.4 PROTECTION DURING CONSTRUCTION

- A. Steel doors shall be protected at all times during construction. After installation, take appropriate measures to protect doors from abuse.
- B. Replace doors and frames that are damaged or do not comply with requirements. Doors and frames may be repaired or refinished if work complies with requirements and shows no evidence of repair or refinishing.

3.5 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow metal work immediately after installation.
- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

END OF SECTION 081113

SECTION 087100 – DOOR HARDWARE

PART 1 – GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Standard Builders Hardware
- 2. Electrified Hardware
- 3. Smoke Gasketing
- 4. Templates
- 5. Hardware Schedule
- 6. Keying System

1.3 REFERENCES:

- A. Reference and Standards: Where cited and except as modified by Project Specifications, applicable standards of the following Organizations apply:
 - 1. American National Standards Institute (ANSI)
 - 2. Builders Hardware Manufacturers Association (BHMA)
 - 3. Door Hardware Institute (DHI)
 - 4. National Fire Protection Association (NFPA)
 - 5. Steel Door Institute (SDI)
 - 6. Underwriters Laboratories (UL)
 - 7. ICC/ANSI Accessibility Standard A117.1-2009
 - 8. Florida Building Code 2010

1.4 SYSTEM DESCRIPTION:

- A. Performance Requirements:
 - 1. Provide hardware for fire-rated openings in compliance with NFPA 80, 1999 or current edition.
 - 2. Provide hardware tested and listed by Underwriters Laboratories or other approved testing agency.
 - 3. Provide hardware for fire-rated openings conforming to UL10C positive pressure fire testing.

1.5 SUBMITTALS:

A. Make submittals in accord with Division 0.

- B. Hardware Schedule: Submit six copies of a typed vertical style hardware schedule on 8-1/2 x 11 sheets. Schedule openings by door number and locations. Indicate door and frame material, dimensions, hand, degree of opening, label condition and special information. Hardware items shall include product description and number, finish, hand, size, keying, template and special requirements. The scheduling sequence and format shall be as recommended by DHI.
- C. Samples: Upon Architect's request, submit samples showing function, finish, and design of proposed hardware items. Samples remain suppliers property and will be returned to him prior to project completion.
- D. Samples and Templates: Furnish to manufacturer of wood and metal doors and frames as required for proper hardware reinforcement and preparation of their work. If required, furnish physical hardware to the door and frame manufacturer for application.
- E. Catalog Cuts: Submit two sets of each type of hardware item use
- F. Contract Close-Out Submittal:
 - 1. Provide the following material in a 3-ring binder clearly tabbed and organized:
 - a. Final hardware schedule
 - b. Wiring diagrams including detailed point-to-point wiring and power requirements
 - c. Catalog Cuts
 - d. Installation Instructions
 - e. Operating and adjustment instructions
 - f. Illustrated parts list for locks, exit devices, closers and auto operators
 - g. Warrantees

1.6 QUALITY ASSURANCE:

- A. Qualifications:
 - 1. Contractor is responsible for:
 - a. Proper application and fit of door and specialty hardware in locations as indicated on drawings or as specified.
 - b. Items not specifically mentioned, but necessary to complete work are to be furnished matching in quality and finish of specified items in similar locations.
 - c. Coordinate dimensions between hardware items.
 - d. Furnish and install only hardware items listed on approved door hardware submittal.

- 2. Contractor's selection of hardware supplier:
 - a. Select recognized builders hardware supplier who has been furnishing hardware in area of project for a period not less than five years.
 - b. Recognized supplier to have on staff an Architectural Hardware Consultant (AHC) certified by the Door and Hardware Institute. Provide a copy of the AHC certification with submittals.
 - c. Hardware supplier's AHC to be available at all reasonable times during course of work to meet personally with Owner, Architect or Contractor for hardware consultation.
- B. Source Limitations: Obtain each type and variety of door hardware from a single manufacturer, unless otherwise indicated.
- C. Pre Installation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Management and Coordination." Review methods and procedures related to electrified door hardware including, but not limited to, the following:
 - 1. Inspect and discuss electrical roughing-in and other preparatory work performed by other trades.
 - 2. Review sequence of operation for each type of electrified door hardware.
 - 3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 4. Review required testing procedures.
- D. Post Installation Inspection: At time of substantial completion direct Door Hardware Supplier to coordinate with Manufacturer's representatives of locks, exit devices, door closers and automatic operators to perform a required complete installation inspection
 - 1. Inspect installation for correct application and operation in accordance with manufacturers written installation instructions.
 - 2. Inspect and verify that provided and recommended screws and fasteners are used.
 - 3. Manufacturer's representatives shall prepare a written report of all installation discrepancies found during this inspection and recommend a repair or replacement solution. Report shall be forwarded to a designated Architect's representative.

1.7 DELIVERY, STORAGE AND HANDLING:

- A. Delivery: Deliver items in manufacturer's original package. Each item individually packaged and carefully marked for intended opening and use. Each item complete with necessary screws, bolts, keys, instructions, and where necessary, installation templates.
- Storage: Protect materials on the job and during installation. Provide a secure, locked, dry storage area or room in the building.
 Store off the floor on temporary shelving.

C. Handling: Handle items in a manner to prevent damage. Marred, defaced, damaged, and defective items will be rejected.

1.8 WARRANTY:

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of operators and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: One year from date of Substantial Completion, except as Follows:
 - a. Exit Devices: 3 years from date of Substantial Completion.
 - b. Manual Closers: 10 years from date of Substantial Completion.
 - c. Door Closers with Electric Components 2 years from date of Substantial Completion.

1.9 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware

PART 2 – PRODUCTS

2.1 MANUFACTURERS:

- A. Catalog numbers of Manufacturers listed in Column 1 have been used to establish quality required. Manufacturers listed in Columns 2 & 3 are approved substitutes.
- B. It is the intent that approved door hardware be provided for every door on the project. Doors inadvertently omitted from the schedule shall be provided with hardware equal to doors of similar function.

<u>ITEM</u>	<u>1</u>	<u>2</u>	<u>3</u>
Hinges	Hager	Ives	McKinney
Locks	Best	No Substitut	te-User Standard
Cylinder IC Cores	Best	No Substitut	te-User Standard
Stops	Ives	Hager	Rockwood
Overhead Stops	GJ	Rixson	ABH

C. Designations: Following abbreviations to identify list manufacturers.

ABH Architectural Builders Hardware, Elk Grove Village, IL

Best Lock, Indianapolis, IN

GJ Glynn-Johnson Corp., Indianapolis, IN Hager C. Hager & Sons, St. Louis, MO

IvesIves, Indianapolis, INMcKinneyMcKinney, Scranton, PARixsonRixson Corp., Charlotte, NCRockwoodRockwood Mfg., Rockwood, PA

2.2 MATERIALS:

A. SCREWS & FASTENERS:

- Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.
 - a. Steel Machine Screws: For the following fire-rated applications:
 - 1. Mortise hinges to doors.
 - 2. Strike plates to frames.
 - 3. Closers to doors and frames.
 - b. Steel thru Bolts: Not allowed.

B. Hinges:

- 1. Interior door hinges: steel, plated .134 minimum thickness except as noted. Provide heavy weight .180 minimum thickness on doors wider than 3'0. Exterior door hinges: heavy weight .180 minimum thickness. Hinge size 4-1/2 x 4-1/2 unless otherwise noted in this schedule.
- 2 Provide quantities as follows unless otherwise noted in the schedule:

Door Height: Number of Hinges

Up to 60" 2 Hinges Over 60" and not over 90" 3 Hinges Over 90" and not over 120" 4 Hinges

C. Locks and Latches:

1. Locks and latches: Heavy duty bored type, in accord with ANSI / BHMA standard A-156.2, Series 4000, Grade 1.

- 2. Where required by applicable codes or the Authority Having Jurisdiction provide knurled levers on doors leading to a hazardous area. Hazardous Area means a space or an area which may be dangerous or cause injury to the public if a person accidentally entered into such an area. Examples include but are not limited to: loading docks, boiler or heater rooms, electrical rooms, telephone equipment rooms or elevator equipment rooms.
- 3. Provide functions and lever design as shown in the hardware sets

D Overhead Stops / Holders:

1. Satin stainless steel, ANSI / BHMA Grade 1.

2.3 FINISHES:

	US SYMBOL	ANSI SYMBOL	DESCRIPTION
Hinges, Interior	US26D	626	Satin Chrome
Locks	US26D	626	Satin Chrome
O.H. Holders	US32D	630	Satin Stainless Steel
Stops	US26D	626	Satin Chrome

2.4 KEYS AND KEYING:

- A. Cylinders: Best, patented, high security, interchangeable core.
- B. Provide #1 bitted. User will combinate.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Verify doors and frames are ready to receive work and dimensions are as indicated on shop drawings or as instructed by manufacturers.
- B. Verify power supply is available to electrically operated devices.
- C. Beginning of installation means acceptance of existing conditions.

3.2 PREPARATION

- A. Steel Doors and Frames: Comply with DHI A115 Series.
 - 1. Surface-Applied Door Hardware: Drill and tap doors and frames according to ANSI A250.6.

3.3 INSTALLATION:

A. General:

1. Install each hardware item in accordance with each manufacturer's instructions and recommendations.

- 2. Install no hardware until substrate finishes are complete.
- 3. Wherever cutting and fitting is required to install hardware onto or into surfaces, which are later to be painted or otherwise finished, install each item completely then remove and stored during application of finishes; Reinstall upon completion of finishing operations.
- 4. Set items level, plumb and true to line and location.
- 5. Adjust and reinforce attachment substrate as necessary for a secure installation.
- 6. Drill and countersink items not factory prepared for fasteners.
- 7. Space fasteners and anchors per manufacturer's instructions and in accordance with industry standards.
- 8. Do not install hardware on doors, which have been improperly prepared.
- 9. Attach wall mounted hardware to concealed wall blocking. Do not install wall mounted hardware where wall blocking has not been installed and arrange for blocking to be installed before proceeding.

B. Fire-Rated Openings:

- 1. In addition to previous requirements, conform to NFPA 80 covering installations of fire door assemblies.
- 2. Refer to instructions from door and frame manufacturer's regarding special hardware installation requirements, including function holes, undercutting and minimum clearances between hardware cutouts.
- C. Installation Templates, Instruction Sheets and Schedules: Retain copies of templates, instruction sheets, schedules, installation details and similar data regarding hardware, maintenance and servicing. See Part 1 under Contract Closeout Submittals for assembly and distribution of data.
- D. Mounting Heights: Heights given are centerline heights up from finish floor unless stated otherwise: Heights given "Number to Number" indicate one height within limits given. Where heights of items are not listed, install in accordance with recommendations of DHI.

10 to 13 inches from floor 1. **Bottom Hinge** Top Hinge 2. 7-1/2 to 11-3/4 inches from head Intermediate Hinge Equally spaced 3. Lock Lever 38 to 40-5/16 inches 4. 5. Push Bar 46 to 48 inches 42 inches Pull

E. Installation Requirements: In addition to mounting heights specified above, install hardware as follows:

1. Hinges:

- a. Hang doors within following tolerances: 1/8" maximum between door and frame, and 1/8" maximum between meeting edges of pairs of doors.
- b. Provide under door clearance at fire assemblies per NFPA 80.
- c. Where shimming is necessary for proper door / frame installation, use only metal shims.
- d. Install electric hinges or pivots as center hinge or second hinge from bottom where doors have 2 pairs of hinges..
- 2. Locks: Install only curved lip strikes and dust box behind each strike.

3. Door Stops:

- a. Install stops to permit maximum degree of door swing allowed by job conditions.
- b. Locate floor stops so as not to create a tripping hazard, and to catch door at a point 6 inches in from latch edge, but in no case further than 1/3 door width measured from latch edge.
- c. Wall stops intended for knobs and levers are to be located centered on spindle.

3.3 FIELD QUALITY CONTROL:

A. Tests:

- 1. Electric Closers: Test voltages at each door and note voltage at each. Arrange for and correct power supply where operating voltages are less than 23 volts or greater than 25 volts.
- 2. Magnetic Release Door Holders: Test each magnetic release after installation and note holding force. Magnetic holders, which do not have a 25-pound minimum holding force are to have voltage checked at each holder, and condition corrected.

B. Manufacturer's Field Service:

- 1. Closer: After air handling system has been balanced arrange for closer to be finally adjusted by person trained by closer manufacturer or closer manufacturer's representative.
 - a. Adjust closer to take 3 seconds minimum for door to swing from a 70 degree position to 3" from latching position.
 - b. Adjust closer not to exceed 5 lbs. opening force. Exception: Fire doors as required to close & latch

3.4 ADJUSTING:

A. Adjusting & Cleaning:

- 1. Adjust and check each item of hardware and each door to insure proper operation and function of each unit.
- 2. Lubricate moving parts with graphite-type lubricant unless otherwise recommended by manufacturer.
- 3. Replace hardware, which cannot be lubricated and adjusted to operate freely and smoothly.

4. Final Adjustment:

- a. Whenever hardware installation is made more than 1 month prior to acceptance of work, make final adjustment and check of hardware during week immediately prior to acceptance, unless otherwise directed by Architect.
- b. Clean and re-lubricate operation items as necessary to restore proper functioning and finish of hardware and doors.
- c. Make final adjustment of locksets and closers to compensate for operation of heating and ventilating systems under supervision of manufacturer's representative.

3.5 PROTECTION AND CLEANING:

A. Installed Hardware: Protect door hardware against damage.

B. Installed Doors:

- 1. Do not prop doors open using any item wedged between hinge jamb and door.
- 2. Use only rubber stops, cardboard or rope.
- 3. Do not use unprotected wood wedges under wood doors.
- 4. Do not use bare wire or other unprotected means of securing doors in open position, which may mar door or hardware.
- C. Job Acceptance: Prior to acceptance of job, clean hardware surfaces on both interior and exterior doors of mortar, plaster, paint caulking and other contaminants. Replace hardware damaged after installation where finish cannot be restored after cleaning.

3.7 HARDWARE SCHEDULE:

A. Provide and install hardware conforming to project specification in sets according to the following schedule:

HDWE SET 01

Each Assembly to have:

_	Quantity	Description	Model Number	Finish N	<u> Afgr</u>
	4 EA	HINGES	AB 700 4.5 X 4.5	652 H	łAG
	1 EA	STOREROOM LOCK	9K-7-D-14D	626 B	BES
	1 EA	IC CORE	1CM731-#1 BITTED	626 B	BES
	1 EA	WALL STOP	404	630 R	ROC

HDWE SET 02

Each Assembly to have:

Quantity	Description	Model Number	Finish	Mfgr
4 EA	HINGES	AB700 4.5 X 4.5	652	HAG
1 EA	STOREROOM LOCK	9K-7-D-14D	626	BES
1 EA	IC CORE	1CM731-#1 BITTED	626	BES
1 EA	OVERHEAD STOP	GJ450	630	GLY

END OF SECTION 087100

SECTION 088300 - MIRRORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Decorative mirrors.

1.2 SUBMITTALS

- A. Product Data: For mirrors.
- B. Warranty: Sample of warranty.

PART 2 - PRODUCTS

2.1 DECORATIVE MIRRORS

- A. Code: F-3 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the Basis of Design products listed or an Architect approved equal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Install mirrors as indicated and in accordance with manufacturer's instructions and recommendations.

END OF SECTION 088300

SECTION 090190 - REPAINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes repainting as follows:
 - 1. Removing existing paint where required for repainting.
 - 2. Patching substrates.
 - 3. Repainting.

1.2 SEQUENCING AND SCHEDULING

- A. Perform repainting in the following sequence, which includes work specified in this and other Sections:
 - 1. Dismantle existing surface-mounted objects and hardware except items indicated to remain in place. Tag items with location identification and protect.
 - 2. Verify that temporary protections have been installed.
 - 3. Examine condition of surfaces to be painted.
 - 4. Remove existing paint to the degree required for each substrate and surface condition of existing paint.
 - 5. Apply new paint system.
 - 6. Reinstall dismantled surface-mounted objects and hardware unless otherwise indicated.

1.3 SUBMITTALS

- A. Product Data: For each paint system specified.
 - 1. Material List: Provide an inclusive list of required coating materials. Indicate each material and cross-reference specific coating, finish system, and application. Identify each material by manufacturer's catalog number and general classification.
 - 2. Manufacturer's Information: Provide manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material proposed for use.
- B. Samples for Verification: Of each color and material to be applied, with texture to simulate actual conditions, on representative Samples of the actual substrate.
 - 1. Provide stepped Samples, defining each separate coat, including block fillers and primers. Use representative colors when preparing Samples for review. Resubmit until required sheen, color, and texture are achieved.
 - 2. Provide a list of materials and applications for each coat of each sample. Label each sample for location and application.

3. On actual wall surfaces and other building components, duplicate painted finishes of prepared samples. On at least 100 square feet of surface, as directed by the Architect, provide full-coat finish samples until required sheen level, color and texture is obtained; simulate finished lighting conditions for review of in-place work.

1.4 OUALITY ASSURANCE

- A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers bearing manufacturer's name and label, and the following information:
 - 1. Product name or title of material.
 - 2. Product description (generic classification or binder type).
 - 3. Manufacturer's stock number and date of manufacture.
 - 4. Contents by volume, for pigment and vehicle constituents.
 - 5. Thinning instructions.
 - 6. Application instructions.
 - 7. Color name and number.
 - 8. VOC content.
- B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free of foreign materials and residue.
 - 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste daily. Take necessary measures to ensure that workers and work areas are protected from fire and health hazards resulting from handling, mixing, and application.

1.6 PROJECT CONDITIONS

- A. Apply water-based paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 50 and 90 degrees F.
- B. Apply solvent-thinned paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 45 and 95 degrees F.
- C. Do not apply paint when the relative humidity exceeds 85 percent; or at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
 - 1. Painting may continue during inclement weather if surfaces and areas to be painted are enclosed and heated within temperature limits specified by manufacturer during application and drying periods.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 1 gallon of each material and color applied.

PART 2 - PRODUCTS

2.1 PREPARATORY CLEANING MATERIALS

A. Abrasives for Ferrous Metal Cleaning: Aluminum oxide paper, emery paper, fine steel wool, steel scrapers, and steel-wire brushes of various sizes.

2.2 PAINT MATERIALS, GENERAL

- A. Material Compatibility: Provide block fillers, primers, undercoats, and finish-coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
- B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified. Paint-material containers not displaying manufacturer's product identification will not be acceptable.
- C. Transition Coat: Paint manufacturer's recommended coating for use where a residual existing coating is incompatible with the paint system.
- D. Colors: Refer to the Code Schedules on the Drawings.

2.3 PATCHING MATERIALS

- A. Metal-Patching Compound: Two-part, polyester-resin, metal-patching compound; knife-grade formulation as recommended in writing by manufacturer for type of metal repair indicated, tooling time required for the detail of work, and site conditions. Compound shall be produced for filling metal that has deteriorated from corrosion. Filler shall be capable of filling deep holes and spreading to feather edge.
- B. Cementitious Patching Compounds: Cementitious patching compounds and repair materials specifically manufactured for filling cementitious substrates and for sanding or tooling prior to repainting; formulation as recommended in writing by manufacturer for type of cementitious substrate indicated, the detail of work, and site conditions.
- C. Gypsum-Plaster Patching Compound: Finish coat plaster and bonding compound according to ASTM C 842 and manufacturer's written instructions.

PART 3 - EXECUTION

3.1 PROTECTION

- A. Comply with each manufacturer's written instructions for protecting building and other surfaces against damage from exposure to its products. Prevent chemical solutions from coming into contact with people, motor vehicles, landscaping, buildings, and other surfaces that could be harmed by such contact.
 - 1. Cover adjacent surfaces with materials that are proven to resist chemical solutions being used unless the solutions will not damage adjacent surfaces. Use protective materials that are UV resistant and waterproof. Apply masking agents to comply with manufacturer's written instructions. Do not apply liquid masking agent to painted or porous surfaces. When no longer needed, promptly remove masking to prevent adhesive staining.
 - 2. Do not apply chemical solutions during winds of sufficient force to spread them to unprotected surfaces.
 - 3. Dispose of runoff from operations by legal means and in a manner that prevents soil erosion, undermining of paving and foundations, damage to landscaping, and water penetration into building interiors.

3.2 REPAINTING, GENERAL

- A. Repainting Appearance Standard: Completed work is to have a uniform appearance as viewed by Architect from building interior at 5 feet away from painted surface.
- B. Execution of the Work: In repainting surfaces, disturb them as minimally as possible and as follows:
 - 1. Remove failed coatings and corrosion and repaint.
 - 2. Verify that substrate surface conditions are suitable for repainting.
 - 3. Allow other trades to repair items in place before repainting.

- C. Mechanical Abrasion: Where mechanical abrasion is needed for the work, use gentle methods, such as scraping and lightly hand sanding, that will not abrade softer substrates, reducing clarity of detail.
- D. Heat Processes: Do not use torches, heat guns, or heat plates.

3.3 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of painting work. Comply with paint manufacturer's written instructions for inspection.
 - 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 - 2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.
- B. Maximum Moisture Content of Substrates: Do not begin application of coatings unless moisture content of exposed surface is below the maximum value recommended in writing by paint manufacturer.
- C. Alkalinity: Do not begin application of coatings unless surface alkalinity is within range recommended in writing by paint manufacturer. Conduct alkali testing with litmus paper on exposed plaster, cementitious, and masonry surfaces.
- D. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
 - 1. If existing surfaces cannot be prepared to an acceptable condition for proper finishing by using specified surface-preparation methods, notify Architect in writing.
- E. Begin coating application only after unsatisfactory conditions have been corrected and surfaces are dry.
 - 1. Beginning coating application constitutes Contractor's acceptance of substrates and conditions.

3.4 PREPARATORY CLEANING

A. General: Comply with paint system manufacturer's instructions and recommendations for surface preparation prior to the application of coatings. Use the gentlest, appropriate method necessary to clean surfaces in preparation for painting. Clean all surfaces, corners, contours, and interstices.

3.5 PAINT REMOVAL

A. General: Remove paint where required for application of new paint coating system. Where cleaning methods have been attempted and further removal of the paint is required because of incompatible or unsatisfactory surfaces for repainting, remove paint to extent required by conditions.

3.6 SUBSTRATE REPAIR

A. General: Repair substrate surface defects that are inconsistent with the surface appearance of adjacent materials and finishes.

B. Cementitious Material Substrate:

1. General: Repair defects including dents and chips all holes and cracks by filling with cementitious patching compound and sanding smooth. Remove protruding fasteners.

C. Gypsum-Board Substrates:

- 1. Repair defects including dents and chips and all holes and cracks by filling with gypsumplaster patching compound and sanding smooth. Remove protruding fasteners.
- 2. Rout out surface cracks to remove loose, unsound material; fill with patching compound and sand smooth.

D. Metal Substrate:

- 1. Preparation: Treat repair locations by wire-brushing and solvent cleaning. Use chemical or mechanical rust removal method to clean off rust.
- 2. Defects in Metal Surfaces: Repair non-load-bearing defects in existing metal surfaces, including dents and gouges and all holes and cracks by filling with metal-patching compound and sanding smooth. Remove burrs and protruding fasteners.
- 3. Priming: Prime metal surfaces immediately after repair to prevent flash rusting. Stripe paint corners, crevices, bolts, welds, and sharp edges. Apply two coats to surfaces that are inaccessible after completion of the Work.

3.7 SURFACE-PREPARATION

- A. General: Before painting, prepare surfaces for painting according to applicable requirements by the paint manufacturer for substrates indicated.
 - 1. Examine surfaces to evaluate each surface condition according to paragraphs below.
 - 2. Where the existing degree of soiling prevents examination, pre-clean surface and allow it to dry before making an evaluation.
 - 3. Repair substrate defects as specified.

3.8 PAINT APPLICATION, GENERAL

- A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.
- B. Prepare surfaces to be painted according with manufacturer's written instructions for each substrate condition.
- C. Apply a transition coat over incompatible existing coatings.
- D. Metal Substrate: Stripe paint corners, crevices, bolts, welds, and sharp edges before applying full coat. Apply two coats to surfaces that are inaccessible after completion of the Work. Tint stripe coat different than the main coating and apply with brush.
- E. Blending Painted Surfaces: When painting new substrates patched into existing surfaces or touching up missing or damaged finishes, apply coating system specified for the specific substrate. Apply final finish coat over entire surface from edge to edge and corner to corner.

3.9 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.10 INTERIOR REPAINTING SCHEDULE

- A. Gypsum Drywall Walls and Access Panels:
 - 1. Code: P-1 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Promar 200 Latex Wall Primer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.

B. Concrete Floor Coating:

- 1. Code P-3:
 - a. Product and Manufacturer: Refer to the Interior Paint Code Schedule on the Drawings.
 - 1) Floor System: Foremost Anti-Slip Coating (Delta)
- C. Ferrous Metal: Includes steel doors and frames.
 - 1. Code: P-4 Paint System, Application and Finish: Alkyd/Latex; two finish coats over prime coat. Re-prime pre-primed surfaces; prime coat damaged surfaces.
 - a. Primer: Pro Industrial Pro-Cryl Universal Primer (S-W)
 - b. Finish Coats: Pro Industrial Water Based Alkyd Urethane Enamel (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.
- D. Gypsum Drywall Ceilings:
 - 1. Code: P-5 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Promar 200 Latex Wall Primer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.
- E. Split-Faced Concrete Masonry Units:
 - 1. Code: P-6 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Loxon Block Surfacer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.

END OF SECTION 090190

SECTION 092216 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Non-load-bearing steel framing systems for interior gypsum board assemblies.

1.2 SUBMITTALS

A. Product Data: For steel framing.

PART 2 - PRODUCTS

2.1 FRAMING SYSTEMS

- A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.
 - 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.
 - 2. Protective Coating: Comply with ASTM C645; roll-formed from hot-dipped galvanized steel; complying with ASTM A1003 and ASTM A653 or equivalent corrosion resistant coating. A40 galvannealed products are not acceptable.
- B. Steel Studs and Runners: ASTM C 645.
 - 1. Non-structural Studs: Cold-formed galvanized steel C-studs drywall studs.
- C. Cold-Rolled Channel Bridging and Bracing: Steel, 0.0538-inch minimum base-metal thickness, with minimum 1/2-inch-wide flanges.

2.2 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards.
 - 1. Fasteners for Metal Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

- A. Installation Standard: ASTM C 754.
 - 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
- B. Install framing system components according to spacing indicated, but not greater than spacing required by referenced installation standards for assembly types.
- C. Install studs so flanges within framing system point in same direction.

END OF SECTION 092216

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior gypsum board.

1.2 SUBMITTALS

A. Product Data: For gypsum board.

1.3 STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against damage from weather, condensation, direct sunlight, construction traffic, and other causes. Stack panels flat to prevent sagging.

1.4 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written recommendations, whichever are more stringent.
- B. Do not install interior products until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, those that are moisture damaged, and those that are mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 INTERIOR GYPSUM BOARD

- A. General: Complying with ASTM C 36 or ASTM C 1396, as applicable to type of gypsum board indicated and whichever is more stringent.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. G-P Gypsum.
 - b. Lafarge North America Inc.
 - c. National Gypsum Company.
 - d. USG Corporation.
- B. Gypsum Board, Type X: ASTM C 1396
 - 1. Thickness: As indicated.
 - 2. Long Edges: Tapered.
- C. Moisture Resistant Backer Board, Type X: ASTM C 1396 with moisture-resistant core and paper surfaces.
 - 1. Thickness: As indicated.
 - 2. Long Edges: Tapered.
- D. Moisture Resistant Gypsum Board, Type X: ASTM C 1396 with moisture-resistant core and paper surfaces.
 - 1. Thickness: As indicated.
 - 2. Long Edges: Tapered.

2.2 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Paper-faced galvanized steel sheet.
 - 2. Shapes: As indicated.

2.3 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475.
- B. Joint Tape:
 - 1. Interior Gypsum Wallboard: Paper.
- C. Joint Compound for Interior Gypsum Wallboard: For each coat use formulation that is compatible with other compounds applied on previous or for successive coats.

2.4 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written recommendations.
- B. Steel Drill Screws: ASTM C 1002, unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 - 2. For fastening backer board, use screws of type and size recommended by panel manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames and framing, for compliance with requirements and other conditions affecting performance.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS

- A. General: Comply with ASTM C 840.
- B. Examine panels before installation. Reject panels that are wet or moisture damaged.

3.3 INSTALLING TRIM ACCESSORIES

A. General: Attach trim according to manufacturer's written instructions.

3.4 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Prefill open joints and damaged surface areas.
- C. Apply joint tape over gypsum board joints, except those with trim having flanges not intended for tape.

- D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 - 1. Level 3: Ceiling plenum areas and concealed areas.
 - 2. Level 4: All other locations.

3.5 PROTECTION

- A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- B. Remove and replace panels that are wet or moisture damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.

END OF SECTION 092900

SECTION 093013 - TILING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Tile.
 - 2. Waterproofing and crack suppression membrane.
 - 3. Transition strips.
 - 4. Trim caps.

1.2 SUBMITTALS

- A. Product Data: For products indicated.
- B. Samples for Verification:
 - 1. Full-size units of each type and composition of tile and for each color and finish required.

1.3 QUALITY ASSURANCE

- A. Source Limitations for Tile: Obtain all tile of same type and color or finish from one source or producer.
 - 1. Obtain tile from same production run and of consistent quality in appearance and physical properties for each contiguous area.
- B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from a single manufacturer and each aggregate from one source or producer.
- C. Preinstallation Conference: Conduct conference at Project site.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirement in ANSI A137.1 for labeling sealed tile packages.
- B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.
- C. Store aggregates where grading and other required characteristics can be maintained and contamination avoided.

D. Handle tile that has temporary protective coating on exposed surfaces to prevent coated surfaces from contacting backs or edges of other units. If coating does contact bonding surfaces of tile, remove coating from bonding surfaces before setting tile.

1.5 PROJECT CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

1.6 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Tile and Trim Units: Furnish quantity of full-size units equal to 5 percent of amount installed, for each type, composition, color, pattern, and size indicated.
 - 2. Grout: Furnish quantity of grout equal to 5 percent of amount installed for each color and type indicated.
- B. All extra materials shall be in original manufacturers' containers, sealed, marked with stock number, color number, tile name, etc. Deliver to Owner with a transmittal sheet indicating each item and quantity.

PART 2 - PRODUCTS

2.1 PRODUCTS, GENERAL

- A. ANSI Ceramic Tile Standard: Provide tile that complies with ANSI A137.1, "Specifications for Ceramic Tile," for types, compositions, and other characteristics indicated.
 - 1. Provide tile complying with Standard grade requirements, unless otherwise indicated.
 - 2. For facial dimensions of tile, comply with requirements relating to tile sizes specified in Part 1 "Definitions" Article.
- B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI standards referenced in "Setting and Grouting Materials" Article.

2.2 TILE

- A. Code: CT-1 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

- B. Code: CT-2 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- C. Code: CT-3 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- D. Code: CT-4 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- E. Code: CT-5 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- F. Code: CT-6 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- G. Code: CT-7 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- H. Code: CT-8 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- I. Code: B-1 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- J. Code: B-2 Product and Manufacturer Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.3 WATERPROOFING AND CRACK SUPPRESSION MEMBRANE

- A. Products and Manufacturers Basis of Design:
 - 1. Mapelastic AquaDefense; Mapei, Corporation

- B. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 1. Bonsal America, an Oldcastle company

2.4 SETTING AND GROUTING MATERIALS

- A. Mortar for Wall, Base and Floor Tile: ANSI A118.4F, ANSI A118.11, ANSI A118.15F.
 - 1. Code: CT-1, CT-2, B-1, B-2
 - a. Product and Manufacturer Basis of Design: Ultralite Mortar C2TES1P1;
 MAPEI Corporation
 - b. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 2. Code: CT-3, CT-4, CT-5, CT-6
 - a. Product and Manufacturer Basis of Design: Ultraflex LFT C2TES1P1; MAPEI Corporation
 - b. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 3. Code: CT-7, CT-8
 - a. Product and Manufacturer Basis of Design: Adesilex P10 C2TE; MAPEI Corporation
 - b. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- B. Epoxy Grout: ANSI A118.3.
 - 1. Product and Manufacturer Basis of Design: Ultraflex LFT C2TES1P1; MAPEI Corporation
 - a. Kerapoxy IEG CQ; MAPEI Corporation
 - 1) Colors: Refer to the Code Schedule.
 - b. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.5 SEALANTS

- A. Product and Manufacturer Basis of Design: Mapesil T; MAPEI Corporation
 - 1. Colors: To be selected by the Architect from manufacturer's full line.

B. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.6 TRANSITION STRIPS

- A. Code: ACC-1, ACC-4, ACC-5, ACC-6, ACC-7, ACC-8
 - 1. Products and Manufacturers Basis of Design: Refer to the Code Schedules on the Drawings for Basis of Design.
 - a. Provide height as required to coordinate with tile selection and setting system indicated.
 - 2. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.7 TRIM CAPS

- A. Code: ACC-3
 - 1. Products and Manufacturers Basis of Design: Refer to the Code Schedules on the Drawings for Basis of Design.
 - 2. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.8 SURFACE JOINT PROFILES

- A. Code: ACC-9
 - 1. Products and Manufacturers Basis of Design: Refer to the Code Schedules on the Drawings for Basis of Design.
 - 2. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.9 MISCELLANEOUS MATERIALS

- A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.
- B. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.

2.10 MIXING MORTARS AND GROUT

- A. Mix mortars and grouts to comply with referenced standards and mortar and grout manufacturers' written instructions.
- B. Add materials, water, and additives in accurate proportions.
- C. Obtain and use type of mixing equipment, mixer speeds, mixing containers, mixing time, and other procedures to produce mortars and grouts of uniform quality with optimum performance characteristics for installations indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of installed tile.
 - 1. Verify that substrates for setting tile are firm; dry; clean; free of oil, waxy films, and curing compounds; and within flatness tolerances required by referenced ANSI A108 Series of tile installation standards for installations indicated.
 - 2. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed before installing tile.
 - 3. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove coatings, including curing compounds and other substances that contain soap, wax, oil, or silicone, that are incompatible with tile-setting materials.
- B. Provide concrete substrates for tile floors installed with thin-set mortar that comply with flatness tolerances specified in referenced ANSI A108 Series of tile installation standards.
 - 1. Fill cracks, holes, and depressions with trowelable leveling and patching compound according to tile-setting material manufacturer's written instructions. Use product specifically recommended by tile-setting material manufacturer.
 - 2. Remove protrusions, bumps, and ridges by sanding or grinding.
- C. Blending: For tile exhibiting color variations within ranges selected during Sample submittals, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.

- D. For all thin-set tile applications prepare substrates to receive waterproofing and fracture membrane materials in accordance with manufacturer's instructions and recommendations.
- E. Field-Applied Temporary Protective Coating: Where recommended by the tile manufacturer or as needed to prevent grout from staining or adhering to exposed tile surfaces, precoat them with continuous film of temporary protective coating, taking care not to coat unexposed tile surfaces.

3.3 INSTALLATION, GENERAL

- A. Workmanship and Visual Appearance: All tile shall be installed with zero-lippage, with straight and even joints, and smooth and flat. The intent is that all tile installations are to be installed using the best of techniques. Any tile that does not meet or exceed the requirements indicated shall be removed and replaced in accordance with specified requirements.
- B. ANSI Tile Installation Standards: Comply with parts of ANSI A108 Series "Specifications for Installation of Ceramic Tile" that apply to types of setting and grouting materials and to methods indicated.
- C. TCA Installation Guidelines: TCA's "Handbook for Ceramic Tile Installation." Comply with TCA installation methods for applications indicated.
- D. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions, unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.
- E. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.
- F. Jointing Pattern: As indicated on the Drawings. Align joints when adjoining tiles on floor, base, walls, and trim are same size. Lay out tile work and center tile fields in both directions in each space or on each wall area. Adjust to minimize tile cutting. Provide uniform joint widths, unless otherwise indicated.
- G. Expansion Joints: Locate expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
 - 1. Locate joints in tile surfaces directly above joints in concrete substrates.
 - 2. Prepare joints and apply sealants to comply with requirements in Division 7 Section "Joint Sealants."
- H. Grout: Grout tile in accordance with manufacturer's instructions and recommendations.

3.4 WATERPROOFING AND CRACK ISOLATION MEMBRANE INSTALLATION

- A. Provide for all floor tile installations.
- B. Install waterproofing to comply with manufacturer's written instructions to produce membrane of uniform thickness and bonded securely to substrate.
- C. Do not install tile or setting materials until membrane has cured and been tested to determine that it is watertight.

3.5 TILE INSTALLATION

- A. General: Install tile to comply with TCNA installation methods and ANSI Series of tile installation standards for applications indicated.
 - Wall Tile: TCNA W243-15
 Floor Tile: TCNA F113-15
- B. Joint Widths: Refer to the Code Schedules.

3.6 CLEANING AND PROTECTING

- A. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
 - 1. Remove latex-portland cement grout residue from tile as soon as possible.
 - 2. Clean grout smears and haze from tile according to tile and grout manufacturer's written instructions, but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
 - 3. Remove temporary protective coating by method recommended by coating manufacturer that is acceptable to tile and grout manufacturer. Trap and remove coating to prevent it from clogging drains.
- B. When recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors. Protect installed tile work during construction period to prevent staining, damage, and wear.
- C. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.
- D. Before final inspection, remove protective coverings and rinse clean tile surfaces.

SECTION 095113 – CEILING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Ceilings systems.

1.2 SUBMITTALS

- A. Product Data: For products indicated.
- B. Samples for Verification:
 - 1. Acoustical Ceilings: Set of 12-inch-square Samples of each type, color, pattern, and texture
 - 2. Exposed Suspension System Members, Moldings, and Trim: Set of 12-inch-long samples of finish and color.

1.3 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
 - 2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: Provide acoustical panel ceilings that comply with the following requirements:
 - 1. Surface-Burning Characteristics: Provide acoustical panels with the following surface-burning characteristics complying with ASTM E 1264 for Class A materials as determined by testing identical products per ASTM E 84:
 - a. Smoke-Developed Index: 450 or less.

1.5 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 CEILING PANELS

- A. Code ACT-1 Product and Manufacturer Basis of Design: Refer to the Ceiling Code Schedule on the Drawings.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- B. Code ACT-2 Product and Manufacturer Basis of Design: Refer to the Ceiling Code Schedule on the Drawings.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.2 SUSPENSION SYSTEMS, GENERAL

- A. Products and Manufacturers Basis of Design: Refer to the Ceiling Code Schedule on the Drawings.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - a. Ceilings Plus
 - b. USG Corporation
 - c. Armstrong World Industries, Inc.
- B. Metal Suspension System Standard: Provide manufacturer's standard direct-hung metal suspension systems of types, structural classifications, and finishes indicated that comply with applicable requirements in ASTM C 653.
 - 1. Structural Classification: Intermediate-duty system.
- C. Attachment Devices: Size for five times the design load indicated in ASTM C 635, Table 1, "Direct Hung," unless otherwise indicated.
- D. Wire Hangers, Braces, and Ties:
 - 1. Zinc-Coated Carbon-Steel Wire: ASTM A 641, Class 1 zinc coating, soft temper.
 - 2. Size: Select wire diameter so its stress at three times hanger design load (ASTM C 635, Table 1, "Direct Hung") will be less than yield stress of wire, but provide not less than 0.106-inch-diameter wire.

2.3 TRIM

A. Roll-Formed Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that fit acoustical panel edge details and suspension systems indicated; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension system runners.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. General: Install acoustical panel ceilings to comply with ASTM C 636 per manufacturer's written instructions and CISCA's "Ceiling Systems Handbook."
- B. Suspend ceiling hangers from building's structural members and as follows:
 - 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
 - 2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 - 3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.
 - 4. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
 - 5. Do not attach hangers to steel roof deck. Attach hangers to structural members.
 - 6. Space hangers not more than 48 inches on center along each member supported directly from hangers, unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
- C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.
 - 1. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
 - 2. Do not use exposed fasteners, including pop rivets, on moldings and trim.
- D. Install suspension system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

- E. Install acoustical panels with undamaged edges and fit accurately into suspension system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.
 - 1. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension system runners and moldings.
 - 2. For reveal-edged panels on suspension system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
 - 3. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.

3.2 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

SECTION 099123 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Painting of exposed interior items and surfaces.
- 2. Surface preparation, priming, and finish coats specified in this Section are in addition to shop priming and surface treatment specified in other Sections.
- B. Paint exposed surfaces, except where the paint schedules indicate that a surface or material is not to be painted or is to remain natural. If the paint schedules do not specifically mention an item or a surface, paint the item or surface the same as similar adjacent materials or surfaces whether or not schedules indicate colors. If the schedules do not indicate color or finish, the Architect will select from standard colors and finishes available. Painting includes field painting of exposed bare and covered pipes and ducts (including color coding), hangers, exposed steel and iron work, and primed metal surfaces of mechanical and electrical equipment installed and application of paint coats to all finish coated mechanical and electrical equipment except as otherwise indicated.
- C. Do not paint prefinished items, concealed surfaces, finished metal surfaces, operating parts, and labels
- D. Do not paint over Underwriters Laboratories (UL), Factory Mutual (FM), or other code-required labels or equipment name, identification, performance rating, or nomenclature plates.

1.2 SUBMITTALS

- A. Product Data: For each paint system specified.
 - 1. Material List: Provide an inclusive list of required coating materials. Indicate each material and cross-reference specific coating, finish system, and application. Identify each material by manufacturer's catalog number and general classification.
 - 2. Manufacturer's Information: Provide manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material proposed for use.
- B. Samples for Verification: Of each color and material to be applied, with texture to simulate actual conditions, on representative Samples of the actual substrate.
 - 1. Provide stepped Samples, defining each separate coat, including block fillers and primers. Use representative colors when preparing Samples for review. Resubmit until required sheen, color, and texture are achieved.
 - 2. Provide a list of materials and applications for each coat of each sample. Label each sample for location and application.

3. On actual wall surfaces and other building components, duplicate painted finishes of prepared samples. On at least 100 square feet of surface, as directed by the Architect, provide full-coat finish samples until required sheen level, color and texture is obtained; simulate finished lighting conditions for review of in-place work.

1.3 QUALITY ASSURANCE

- A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 - a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 - b. Other Items: Architect will designate items or areas required.
 - 2. Final approval of color selections will be based on mockups.
 - a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver materials to the Project Site in manufacturer's original, unopened packages and containers bearing manufacturer's name and label, and the following information:
 - 1. Product name or title of material.
 - 2. Product description (generic classification or binder type).
 - 3. Manufacturer's stock number and date of manufacture.
 - 4. Contents by volume, for pigment and vehicle constituents.
 - 5. Thinning instructions.
 - 6. Application instructions.
 - 7. Color name and number.
 - 8. VOC content.
- B. Store materials not in use in tightly covered containers in a well-ventilated area at a minimum ambient temperature of 45 deg F. Maintain containers used in storage in a clean condition, free of foreign materials and residue.
 - 1. Protect from freezing. Keep storage area neat and orderly. Remove oily rags and waste daily. Take necessary measures to ensure that workers and work areas are protected from fire and health hazards resulting from handling, mixing, and application.

1.5 PROJECT CONDITIONS

- A. Apply water-based paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 50 and 90 degrees F.
- B. Apply solvent-thinned paints only when the temperature of surfaces to be painted and surrounding air temperatures are between 45 and 95 degrees F.
- C. Do not apply paint when the relative humidity exceeds 85 percent; or at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.
 - 1. Painting may continue during inclement weather if surfaces and areas to be painted are enclosed and heated within temperature limits specified by manufacturer during application and drying periods.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 1 gallon of each material and color applied.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer Specified: The Sherwin-Williams Company (S-W)
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- B. Manufacturer Specified: Delta Foremost Chemical Corp. (Delta)
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.2 PAINT MATERIALS, GENERAL

- A. Material Compatibility: Provide block fillers, primers, undercoats, and finish-coat materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
- B. Material Quality: Provide manufacturer's best-quality paint material of the various coating types specified. Paint-material containers not displaying manufacturer's product identification will not be acceptable.
- C. Colors: Refer to the Interior Paint Code Schedule on the Drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with the Applicator present, under which painting will be performed for compliance with paint application requirements.
 - 1. Do not begin to apply paint until unsatisfactory conditions have been corrected and surfaces receiving paint are thoroughly dry.
 - 2. Start of painting will be construed as the Applicator's acceptance of surfaces and conditions within a particular area.
- B. Coordination of Work: Review other Sections in which primers are provided to ensure compatibility of the total system for various substrates. On request, furnish information on characteristics of finish materials to ensure use of compatible primers.
 - 1. Notify the Architect about anticipated problems using the materials specified over substrates primed by others.

3.2 PREPARATION

- A. General: Remove hardware and hardware accessories, plates, machined surfaces, lighting fixtures, and similar items already installed that are not to be painted. If removal is impractical or impossible because of the size or weight of the item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations in each space or area, reinstall items removed using workers skilled in the trades involved.
- B. Cleaning: Before applying paint or other surface treatments, clean the substrates of substances that could impair the bond of the various coatings. Remove oil and grease before cleaning.
 - 1. Schedule cleaning and painting so dust and other contaminants from the cleaning process will not fall on wet, newly painted surfaces.
- C. Surface Preparation: Clean and prepare surfaces to be painted according to manufacturer's written instructions for each particular substrate condition and as specified.
- D. Materials Preparation: Mix and prepare paint materials according to manufacturer's written instructions.
- E. Tinting: Tint each undercoat a lighter shade to simplify identification of each coat when multiple coats of the same material are applied. Tint undercoats to match the color of the finish coat, but provide sufficient differences in shade of undercoats to distinguish each separate coat.

3.3 APPLICATION

A. General: Apply paint according to manufacturer's written instructions. Use applicators and techniques best suited for substrate and type of material being applied.

3.4 CLEANING

- A. Cleanup: At the end of each workday, remove empty cans, rags, rubbish, and other discarded paint materials from the site.
 - 1. After completing painting, clean glass and paint-spattered surfaces. Remove spattered paint by washing and scraping. Be careful not to scratch or damage adjacent finished surfaces.

3.5 PROTECTION

- A. Protect work of other trades, whether being painted or not, against damage by painting. Correct damage by cleaning, repairing or replacing, and repainting, as approved by Architect.
- B. Provide "Wet Paint" signs to protect newly painted finishes. Remove temporary protective wrappings provided by others to protect their work after completing painting operations.
 - 1. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces. Comply with procedures specified in PDCA P1.

3.6 INTERIOR PAINT SCHEDULE

- A. Gypsum Drywall Walls and Access Panels:
 - 1. Code: P-1 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Promar 200 Latex Wall Primer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.

B. Pre-Cast Concrete:

- 1. Code: P-2 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Not required.
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.

C. Concrete Floor Coating:

- 1. Code P-3:
 - a. Product and Manufacturer: Refer to the Interior Paint Code Schedule on the Drawings.
 - 1) Floor System: Foremost Anti-Slip Coating (Delta)

- D. Ferrous Metal: Includes steel doors and frames.
 - 1. Code: P-4 Paint System, Application and Finish: Alkyd/Latex; two finish coats over prime coat. Re-prime pre-primed surfaces; prime coat damaged surfaces.
 - a. Primer: Pro Industrial Pro-Cryl Universal Primer (S-W)
 - b. Finish Coats: Pro Industrial Water Based Alkyd Urethane Enamel (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.
- E. Gypsum Drywall Ceilings:
 - 1. Code: P-5 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Promar 200 Latex Wall Primer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.
- F. Split-Faced Concrete Masonry Units:
 - 1. Code: P-6 Paint System, Application and Finish: Epoxy; two Finish Coats over Primer.
 - a. Primer: Loxon Block Surfacer (S-W)
 - b. Finish Coats: Water Based Catalyzed Epoxy B-70 Series (S-W)
 - c. Sheen Level: Refer to the Interior Paint Code Schedule on the Drawings.

SECTION 101415 – PLAQUE SIGNS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Wall-mounted plaque signs.

1.2 PERFORMANCE REQUIREMENTS

A. Provide wall-mounted plaque signs.

1.3 DEFINITIONS

A. ADA and ABA Accessibility Guidelines: U.S. Architectural & Transportation Barriers Compliance Board's "Americans with Disabilities Act" (ADA) Accessibility Guidelines for Buildings and Facilities; and "Architectural Barriers Act" (ABA) Accessibility Guidelines."

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated in drawings.
- B. Shop Drawings: Show fabrication and installation details for plaque signs.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Provide message schedule, location plans and scaled layouts for every unique sign face indicated in drawings.
- C. Samples for Verification: For each of the following:
 - 1. Provide at least two color samples for every color, minimum 4" square, on the same material to be used for full size fabrication, including finish.
 - 2. Provide one full size sample for each sign type.
- D. Message Schedule: Use same designations indicated on Drawings. Verify all messages.
- E. Qualification data: For fabricator and installer.
- F. Maintenance Data: For all signs; to be included in maintenance manuals.
- G. Warranty: Manufacturer's warranty.

1.5 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with applicable provisions in ADA and ABA Accessibility Guidelines and ICC (International Code Council) A1171.1.
- B. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate products similar to those required for this Project and whose products have a record of successful inservice performance.
- C. Installer Qualifications: Manufacturer of products or an entity that employs installers and supervisors who are trained and approved by manufacturer.

1.6 COORDINATION

A. Coordinate installation of signs on architectural elements by others.

1.7 WARRANTY

- A. Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of plaque signs that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Deterioration of material finishes beyond normal weathering.
 - b. Deterioration of text and symbols beyond normal weathering.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SIGNS – TYPES 1, 2, 4 and 5

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Don Bell Signs, Daytona, FL
 - 2. NW Sign Industries, Orlando, FL
 - 3. Creative Sign Designs, Longwood, FL
 - 4. Quality Sign Company, Jacksonville, FL
 - 5. Sign King, Longwood, FL
 - 6. Design Communications LTD, Orlando, FL
 - 7. Burton Signworks, Inc., Mount Airy, North Carolina

- B. Message Panels: Provide smooth sign panel surfaces constructed to remain flat under installed conditions within a tolerance of plus or minus 1/16 inch measured diagonally from corner to corner.
 - 1. Type 1: Restroom ID signs shall comply with Florida Accessibility Code, Chapter 7: Communication Elements and Features, Section 703 Signs.
 - 2. Type 2: Janitor, Storage and Utility Room ID signs shall comply with Florida Accessibility Code, Chapter 7: Communication Elements and Features, Section 703 Signs.
 - 3. Type 4: Baby Change Stall ID signs shall comply with Florida Accessibility Code, Chapter 7: Communication Elements and Features, Section 703 Signs.
 - 4. Type 5: Baby Change Notification signs shall comply with Florida Accessibility Code, Chapter 7: Communication Elements and Features, Section 703 Signs.

C. Message Panel Materials:

- 1. 1/8" thick photo-chemically etched polymer with raised letters, numbers, Braille, and design motif where indicated for Sign Types 1,2,4 and 5,
- 2. Edge Condition: Square.
- 3. Where backer is required it shall be ¼" acrylic, painted.
- 4. Mount using VHB tape and Silicone adhesive as appropriate to wall surfaces.

2.2 SIGNS – TYPE 3

- A. Type 3: Aluminum, 12" x 18" sign, with blue background with white letters. The new Sign type shall match the existing sign type currently being used at the Convention Center.
 - 1. Manufacturer Specified: United Trophy Manufacturing, Inc., Orlando, Florida
 - a. Other Products and Manufacturers: Contractor shall provide the product listed or an approved equal.
 - 2. Mounting Hole Location: To be identified by the Architect.
 - 3. Mounting: Fasten to substrate using non-corrosive, tamper resistant screws; screw head color to match adjacent surface.

2.3 FABRICATION

A. General: Provide wall-mounted signs of various sizes and configurations indicated on the drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine finished signs and architectural conditions with Installer present for compliance with requirements for installation tolerances and other conditions affecting performance of work, especially when signs are installed on architectural canopies and platforms with other trades present.
- B. Verify that architectural conditions are suitable prior to installation to avoid damage by other trades after installation has been completed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Notify other trades sufficiently in advance to avoid conflicts, cooperate with other trades in setting such work.
- B. Locate signs and accessories where indicated, using mounting methods of types described and complying with manufacturer's written instructions.
 - 1. Install signs level, plumb, and at heights indicated, with sign surfaces free of distortion and other defects in appearance.
 - 2. Coordinate installations as directed by the Architect.

3.3 CLEANING AND PROTECTION

A. After installation, clean sign surfaces according to manufacturer's written instructions. Protect signs from damage until acceptance by Owner.

3.4 CLEAN-UP

A. Remove from time to time, as directed, all rubbish and debris resulting from the Work and upon completion of the Work remove all unused materials, equipment and similar construction-related items, and perform such final cleaning services as may be necessary to leave the completed Work in a condition acceptable to the Architect.

SECTION 102113.17 - TOILET PARTITIONS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Restroom partitions.

1.2 SUBMITTALS

- A. Product Data: For products indicated.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for toilet compartments.
- B. Shop Drawings: For toilet compartments and urinal screens.
 - 1. Include plans, elevations, sections, details, and attachment details.
 - 2. Show locations of cutouts for compartment-mounted toilet accessories.
 - 3. Show locations of centerlines of toilet fixtures.
 - 4. Show locations of floor drains.
 - 5. Show ceiling grid and ceiling-mounted items.
- C. Samples for Initial Selection: For each type of toilet compartment material indicated.
 - 1. Include Samples of hardware and accessories involving material and color selection.
- D. Samples for Verification: For the following products, in manufacturer's standard sizes unless otherwise indicated:
 - 1. Partition color and finish required for toilet compartments, prepared on 6-inch- square Samples of same thickness and material indicated for Work.
 - 2. Urinal screen material, 6-inch- square Samples of same thickness and material indicated for Work.
- E. Maintenance Data: For toilet compartments to include in maintenance manuals.

1.3 PROJECT CONDITIONS

A. Field Measurements: Verify actual locations of toilet fixtures, walls, columns, ceilings, and other construction contiguous with toilet compartments by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 TOILET COMPARTMENTS AND URINAL SCREENS

- A. Product and Manufacturer Basis of Design:
 - 1. Code: ACC-2: DuraLine Series; Bobrick Washroom Equipment, Inc.
 - a. Mounting: As indicated on the Drawings.
 - b. Color: Refer to the Accessories Code Schedule on the Drawings.
- B. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- C. Toilet-Enclosure Style: As indicated.
- D. Shoes (Caps): Type 304 stainless steel; satin finish.
- E. Brackets (Fittings): Type 304 stainless steel angle brackets (satin finish) with tamper-proof fasteners.

2.2 PERFORMANCE REQUIREMENTS

- A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 30 or less.
 - 2. Smoke-Developed Index: 60 or less.
- B. Regulatory Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for toilet compartments designated as accessible.

2.3 HARDWARE AND ACCESSORIES

- A. Hardware and Accessories: Stainless steel (satin finish), heavy-duty operating hardware and accessories.
 - 1. Hinges: Manufacturer's minimum 0.062-inch- thick stainless-steel paired, self-closing type that can be adjusted to hold doors open at any angle up to 90 degrees, allowing emergency access by lifting door. Mount with through-bolts.
 - 2. Latch and Keeper: Manufacturer's heavy-duty surface-mounted cast-stainless-steel indicator type latch unit designed to resist damage due to slamming, with combination rubber-faced door strike and keeper, and with provision for emergency access. Provide units that comply with regulatory requirements for accessibility at compartments designated as accessible. Mount with through-bolts.
 - 3. Clothes Hook: Manufacturer's heavy-duty combination cast-stainless-steel hook and rubber-tipped bumper, sized to prevent in-swinging door from hitting compartment-mounted accessories. Mount with through-bolts.

- 4. Door Bumper: Manufacturer's heavy-duty rubber-tipped cast-stainless-steel bumper at out-swinging doors. Mount with through-bolts.
- 5. Door Pull: Manufacturer's heavy-duty cast-stainless-steel pull at out-swinging doors that complies with regulatory requirements for accessibility. Provide units on both sides of doors at compartments designated as accessible. Mount with through-bolts.
- B. Finish: Dark rubbed bronze. Provide for all exposed hardware including fasteners.
- C. Anchorages and Fasteners: Manufacturer's standard exposed fasteners of stainless steel, finished to match the items they are securing, with theft-resistant-type heads. Provide sex-type bolts for through-bolt applications. For concealed anchors, use stainless-steel, hot-dip galvanized-steel, or other rust-resistant, protective-coated steel compatible with related materials.

2.4 MATERIALS

- A. Aluminum Extrusions: ASTM B 221.
- B. Stainless-Steel Sheet: ASTM A 666, Type 304, stretcher-leveled standard of flatness.

2.5 FABRICATION

- A. Fabrication, General: Fabricate toilet compartment components to sizes indicated. Coordinate requirements and provide cutouts for through-partition toilet accessories where required for attachment of toilet accessories.
- B. Ceiling-Hung Units: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment nuts at pilasters for connection to structural support above finished ceiling. Provide assemblies that support pilasters from structure without transmitting load to finished ceiling. Provide sleeves (caps) at tops of pilasters to conceal anchorage.
- C. Floor-Anchored Units: Provide manufacturer's standard corrosion-resistant anchoring assemblies with leveling adjustment nuts at pilasters for structural connection to floor. Provide shoes at pilasters to conceal anchorage.
- D. Door Size and Swings: Unless otherwise indicated, provide 24-inch- wide in-swinging doors for standard toilet compartments and 36-inch- wide out-swinging doors with a minimum 32-inch-wide clear opening for compartments designated as accessible.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for fastening, support, alignment, operating clearances, and other conditions affecting performance of the Work.
 - 1. Confirm location and adequacy of blocking and supports required for installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions. Install units rigid, straight, level, and plumb. Secure units in position with manufacturer's recommended anchoring devices.
 - 1. Maximum Clearances:
 - a. Pilasters and Panels: 1/2 inch.
 - b. Panels and Walls: 1 inch.
 - c. Align brackets at pilasters with brackets at walls.
 - 2. Brackets: Secure panels to walls and to pilasters with brackets.
 - a. Locate bracket fasteners so holes for wall anchors occur in masonry or tile joints.
 - b. Align brackets at pilasters with brackets at walls.
- B. Ceiling-Hung Units: Secure pilasters to supporting structure and level, plumb, and tighten. Hang doors and adjust so bottoms of doors are level with bottoms of pilasters when doors are in closed position.
- C. Floor-Anchored Units: Set pilasters with anchors penetrating not less than 2 inches (51 mm) into structural floor unless otherwise indicated in manufacturer's written instructions. Level, plumb, and tighten pilasters. Hang doors and adjust so tops of doors are level with tops of pilasters when doors are in closed position.
- D. Urinal Screens: Attach as indicated. Set units level and plumb, rigid, and secured to resist lateral impact.

3.3 ADJUSTING

A. Hardware Adjustment: Adjust and lubricate hardware according to hardware manufacturer's written instructions for proper operation. Set hinges on in-swinging doors to hold doors open approximately 30 degrees from closed position when unlatched. Set hinges on out-swinging doors to return doors to fully closed position.

END OF SECTION 102113.17

SECTION 102223 – BARRICADES/TEMPORARY WALLS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Barricades/temporary walls.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 SUBMITTALS

- A. Product Data: For products indicated.
- B. Shop Drawings: For demountable partitions.
 - 1. Include plans, elevations, sections, and attachment details at floors, columns, permanent partitions, and ceilings; and method of erection and disassembly.
- C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from the installers of the items involved:
 - 1. Suspended-ceiling components and dimensioned ceiling-grid layout.
 - 2. Locations of fixed door and window mullions.
 - 3. Overhead bracing, seismic restraints, and related structural members.
 - 4. Ductwork above ceiling.

PART 2 - PRODUCTS

2.1 BARRICADES/TEMPORARY WALLS

- A. Product and Manufacturer Basis of Design:
 - 1. Mallforms; Top Deck Systems, Inc., Clinton Twp., MI.
 - a. Framing: 6060-T5 alloy/temper square aluminum extrusions with radius corners 4 grooves 6.5 mm wide.
 - 1) Finish: Clear satin anodized.

- b. Panels: 6 mm thick solid PVC.
 - 1) Fire Resistance: Fire rating Class A.
 - 2) Color: White.
- c. Accessories:
 - 1) Aluminum U-channel; mill finish.
 - 2) Aluminum L brackets and hinges.
 - 3) Plastic end caps.
- d. Doors: Manufacturer's standard doors for wall system indicated.
- e. Door Operation: Swinging.
- f. Door Hardware: Provide padlock door handle.
- B. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.

2.2 FABRICATION

A. General: Fabricate demountable walls for installation with concealed fastening devices and pressure-fit members that will not damage ceiling or floor coverings. Fabricate systems for installation with continuous seals at floor, ceiling, and other locations where partitions abut fixed construction.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine components before installation. Reject components that are damaged, deformed or unmatched.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install components in accordance with manufacturer's instructions and recommendations.
 - 1. Install components rigid, level, plumb, and aligned. Install seals at connections with floors, ceilings, fixed walls, and abutting surfaces.

3.3 ADJUSTING

- A. Inspect installation, correct misalignments, and tighten loose connections.
- B. Doors: Adjust doors to operate smoothly and easily, without binding or warping. Adjust hardware to function smoothly, and lubricate as recommended by manufacturer.
- C. Remove and replace defaced or damaged components that cannot be satisfactorily repaired.

SECTION 102800 - TOILET ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Toilet accessories.

1.2 SUBMITTALS

- A. Product Data: Include construction details, material descriptions and thicknesses, dimensions, profiles, fastening and mounting methods, and finishes for each accessory specified.
- B. Setting Drawings: For installing anchoring devices.

1.3 QUALITY ASSURANCE

- A. Source Limitations: Provide products of same manufacturer for each type of accessory unit and for units exposed to view in same areas, unless otherwise approved by Architect.
- B. Mockups: Build mockups to verify installation requirements, demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockups for the following:
 - a. Premium Restroom: Provide mock-up of one Mirror and Soap Dispenser including a minimum of 6-inches of surrounding tile and grout.
 - b. Standard Restroom: Provide one mock-up of Mirror and Soap Dispenser including a minimum of 6-inches of surrounding tile and grout.
 - 2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.4 COORDINATION

- A. Coordinate accessory locations with other work to prevent interference with clearances required for access by disabled persons, proper installation, adjustment, operation, cleaning, and servicing of accessories.
- B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.5 WARRANTY

- A. Manufacturer's Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, visible silver spoilage defects.
 - 1. Warranty Period: Minimum 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TOILET ACCESSORIES

- A. Products and Manufacturers Basis of Design:
 - 1. American Specialties Inc. (ASI)
 - 2. Tork, SCA AfH Professional Hygiene (TORK)
 - 3. Excel Dryer
 - 4. Electric Mirror, Inc. (EMI)
 - 5. The Dial Corporation (DIAL)
- B. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
- C. Toilet Accessories:
 - 1. Item: A Grab Bar 36"
 - a. Model and Manufacturer: 3800 Type 01 with snap flange; ASI
 - 2. Item: B Grab Bar 42"
 - a. Model and Manufacturer: 3800 Type 01 with snap flange; ASI.
 - 3. Item: A-1 Grab Bar 24"
 - a. Model and Manufacturer: 3800 Type 01 with snap flange; ASI.
 - 4. Item: B-1 Grab Bar 48"
 - a. Model and Manufacturer: 3800 Type 01 with snap flange; ASI.
 - 5. Item: C Waste Receptacle Surface-Mounted
 - a. Model and Manufacturer: ASI 0458-9; ASI
 - 6. Item: C-1 Waste Receptacle with H1 System Recessed Frame
 - a. Model and Manufacturer: 309051 use with Filler Panel 3096040 for Tork Elevation Matic Hand Towel Roll Dispenser 5511281 (Item R-1 below); TORK

- 7. Item: C-2 Surface-Mounted Waste Receptacle
 - a. Model and Manufacturer: 0826; ASI
- 8. Item: D Hand Dryer
 - a. Model and Manufacturer: Xlerator Series; Excel Dryer
 - 1) Model: XL-SB
 - 2) Cover Type: Stainless steel.
 - 3) Finish: Brushed stainless steel.
 - 4) Options:
 - a) Provide with Noise Reduction Nozzle.
 - b) Provide with HEPA filtration.
- 9. Item: D-1– Hand Dryer
 - a. Model and Manufacturer: Xlerator XL-SB (Rough-In Only); Excel Dryer
- 10. Item: E Lighted Mirror
 - a. Model and Manufacturer: Efinity EFI 21.00 x 36.00 Lighted Mirror; Electric Mirror Inc. (EMI)
 - 1) Power Requirements: 120-277 VAC
 - 2) Lamping: 2 x T5 Circline, 55W
- 11. Item: F-1 Framed Mirror 24" x 36"
 - a. Model and Manufacturer 620; ASI
- 12. Item: F-2 Framed Mirror 24" x 36"
 - a. Model and Manufacturer: 620; ASI
- 13. Item: F-3 Framed Mirror 24" x 60"
 - a. Model and Manufacturer: 620; ASI
- 14. Item: F-4 Framed Mirror 18" x 36"
 - a. Model and Manufacturer: 620; ASI
- 15. Item: G Folding Utility Shelf
 - a. Model and Manufacturer: 0698; ASI

- 16. Item: H Jumbo Roll SMToilet Tissue Dispenser
 - a. Model and Manufacturer: 5555290 black, surface-mounted jumbo roll mini twin dispenser; TORK
- 17. Item: I Sanitary Napkin Disposal
 - a. Model and Manufacturer: 0852; ASI
- 18. Item: J Not Used
- 19. Item: K Sanitary Napkin Dispenser Surface-Mounted
 - a. Model and Manufacturer: 0864; ASI
- 20. Item: K-1 Sanitary Napkin Dispenser Recessed
 - a. Model and Manufacturer: 94684; ASI
- 21. Item: L Baby Changing Station
 - a. Model and Manufacturer: 9013-9; ASI
- 22. Item: M Faucet
 - a. Model and Manufacturer: EAF-100-P-ISM-1C; Sloan
- 23. Item: N Soap Dispenser
 - a. Model and Manufacturer: SDS; DIAL
- 24. Item: O Janitor's Storage Closet (Custom Designed)
 - a. Model and Manufacturer: As indicated on the Schedule.
- 25. Item: P Double Robe Hook
 - a. Model and Manufacturer: 7345; ASI
- 26. Item: Q Not Used
- 27. Item: R Roll Hand Towel Dispenser
 - a. Model and Manufacturer: Elevation Matic Hand Towel Roll Dispenser, black, 5510282 (manual); TORK
- 28. Item: R-1 Roll Hand Towel Dispenser with Sensor
 - a. Model and Manufacturer: Elevation Matic Hand Towel Roll Dispenser, black, 5511281 (automatic) with 3096HWK direct wire conversion kit; TORK

- 29. Item: S Seat Cover Dispenser
 - a. Model and Manufacturer: 9477-SM; ASI

2.2 MATERIALS

- A. Stainless Steel: ASTM A 666, Type 304, with No. 4 finish (satin), in 0.0312-inch minimum nominal thickness, unless otherwise indicated.
- B. Steel Sheet: ASTM A 1008, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.
- C. Galvanized-Steel Sheet: ASTM A 653, with G60 hot-dip zinc coating.
- D. Galvanized-Steel Mounting Devices: ASTM A 153/A 153M, hot-dip galvanized after fabrication.
- E. Fasteners: Screws, bolts, and other devices of same material as accessory unit, tamper and theft resistant when exposed, and of galvanized steel when concealed.
- F. Mirrors: ASTM C 1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.3 FABRICATION

A. General: Names or labels are not permitted on exposed faces of accessories. On interior surface not exposed to view or on back surface of each accessory, provide printed, waterproof label or stamped nameplate indicating manufacturer's name and product model number.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.
- B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F 446.

3.2 ADJUSTING AND CLEANING

- A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.
- B. Remove temporary labels and protective coatings.
- C. Clean and polish exposed surfaces according to manufacturer's written recommendations.

SECTION 123623 - PLASTIC-LAMINATE-CLAD COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plastic-laminate countertops.

1.2 SUBMITTALS

- A. Product Data: For countertop materials.
- B. Shop Drawings: Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
- C. Samples for Verification: For the following.
 - 1. Countertop material, 6 inches square.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver countertops until painting and similar operations that could damage countertops have been completed in installation areas. If countertops must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.4 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
- B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE COUNTERTOPS

- A. Code PL-1 Product and Manufacture Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 2. Edge Profiles: As indicated.
- B. High-Pressure Decorative Laminate: NEMA LD 3, Grade HGS.
- C. Edge Treatment: Same as laminate cladding on horizontal surfaces.
- D. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.2 MISCELLANEOUS MATERIALS

- A. Adhesives: Fabricator's option. Do not use adhesives that contain urea formaldehyde.
- B. Countertop Substrate:
 - 1. Marine Grade Plywood: APA B-B Marine Grade
 - a. Thickness: As indicated on the Drawings.

2.3 FABRICATION

- A. Fabrication: Fabricate tops in one piece unless otherwise indicated. Fabricate countertops to dimensions, profiles, and details indicated.
- B. Shop cut openings to maximum extent possible to receive plumbing fixtures and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings.
- C. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installing countertops, examine shop-fabricated work for completion and complete work as required.

3.2 INSTALLATION

- A. Install countertops level to a tolerance of 1/8 inch in 8 feet.
- B. Fasten tops securely to substrates. Pre-drill holes for screws as recommended by manufacturer. Align adjacent surfaces. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects; where not possible to repair, replace entirely.
- B. Clean countertops on exposed and semi exposed surfaces.

SECTION 123661- COUNTERTOPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Countertops.

1.2 SUBMITTALS

- A. Product Data: For countertop materials.
- B. Shop Drawings: Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
- C. Samples for Verification: For the following.
 - 1. Countertop material, 6 inches square.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver countertops until painting and similar operations that could damage countertops have been completed in installation areas. If countertops must be stored in other than installation areas, store only in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.4 FIELD CONDITIONS

- A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.
- B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 VANITIES AND APRONS

- A. Code SS-1 Product and Manufacture Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 2. Edge Profiles: As indicated.
- B. Code SS-2 Product and Manufacture Basis of Design: Refer to the Code Schedule.
 - 1. Other Products and Manufacturers: Contractor shall provide the products listed or an approved equal.
 - 2. Edge Profiles: As indicated.

2.2 MISCELLANEOUS MATERIALS

- A. Adhesives: Fabricator's option. Do not use adhesives that contain urea formaldehyde.
- B. Countertop Substrate:
 - 1. Marine Grade Plywood: APA B-B Marine Grade
 - a. Thickness: As indicated on the Drawings.

2.3 FABRICATION

- A. Fabrication: Fabricate tops in one piece unless otherwise indicated. Fabricate countertops to dimensions, profiles, and details indicated.
- B. Shop cut openings to maximum extent possible to receive plumbing fixtures and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings.
- C. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installing countertops, examine shop-fabricated work for completion and complete work as required.

3.2 INSTALLATION

- A. Install countertops level to a tolerance of 1/8 inch in 8 feet.
- B. Fasten tops securely to substrates. Pre-drill holes for screws as recommended by manufacturer. Align adjacent surfaces. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

3.3 ADJUSTING AND CLEANING

- A. Repair damaged and defective countertops, where possible, to eliminate functional and visual defects; where not possible to repair, replace entirely.
- B. Clean countertops on exposed and semi exposed surfaces.

END OF SECTION 123661

SECTION 210500 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Fire-suppression equipment and piping demolition.
 - 3. Equipment installation requirements common to equipment sections.
 - 4. Painting and finishing.
 - 5. Supports and anchorages.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.4 SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

1.7 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for fire-suppression installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for fire-suppression items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 21 piping Sections for special joining materials not listed below.

- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. Refer to architectural plans for additional installation requirements.
- E. Install inspector test drains and auxiliary drains lines to empty into the site storm sewer system. Route discharge piping underground to connect to nearby storm inlet.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Install piping to permit valve servicing.
- H. Install piping at indicated slopes.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.

- K. Install piping to allow application of insulation.
- L. Select system components with pressure rating equal to or greater than system operating pressure.
- M. Verify final equipment locations for roughing-in.
- N. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.3 PAINTING

- A. Painting of fire-suppression systems, equipment, and components is specified in Division 09 Sections "Interior Painting" and "Exterior Painting."
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

ERECTION OF METAL SUPPORTS AND ANCHORAGES

- C. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- D. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.
- E. Field Welding: Comply with AWS D1.1.

END OF SECTION 210500

SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipes, fittings, and specialties.
- 2. Fire-protection valves.
- 3. Sprinklers.
- 4. Alarm devices.
- 5. Pressure gages.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Sprinkler system design shall be approved by authorities having jurisdiction.

1.6 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Qualification Data: For qualified Installer.
- D. Welding certificates.
- E. Fire-hydrant flow test report.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- G. Field quality-control reports.
- H. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports signed and sealed by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Standard Weight, Galvanized- and Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.
- C. Thinwall Galvanized- and Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.
- D. Schedule 10, Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.
- E. Galvanized- and Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- F. Galvanized, Steel Couplings: ASTM A 865, threaded.
- G. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- H. Malleable- or Ductile-Iron Unions: UL 860.
- I. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
- J. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- K. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements:
 - a. Anvil International, Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - 2. Pressure Rating: 175 psig minimum.
 - 3. Galvanized, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick.
 - 1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
 - 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed or FM approved.
 - 2. Minimum Pressure Rating for Standard-Pressure Piping: 175 psig.
- B. Bronze Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements:
 - a. Fivalco Inc.
 - b. Global Safety Products, Inc.
 - c. Milwaukee Valve Company.
 - 2. Standard: UL 1091.
 - 3. Pressure Rating: 175 psig.
 - 4. Body Material: Bronze.
 - 5. End Connections: Threaded.

C. Check Valves:

- 1. Manufacturers: Subject to compliance with requirements:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 312.
- 3. Pressure Rating: 300 psig.
- 4. Type: Swing check.
- 5. Body Material: Cast iron.
- 6. End Connections: Flanged or grooved.

D. Bronze OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Milwaukee Valve Company.

- c. NIBCO INC.
- 2. Standard: UL 262.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

E. Indicating-Type Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. NIBCO INC.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig minimum.
- 4. Valves NPS 2 and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.
- 5. Valves NPS 2-1/2 and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.
- 6. Valve Operation: Integral electrical, 115-V ac, prewired, single-circuit, supervisory switch indicating device.

F. Indicator Posts:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Cast Iron Pipe Company; Waterous Company Subsidiary.
 - b. American Valve, Inc.
 - c. Clow Valve Company; a division of McWane, Inc.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Kennedy Valve; a division of McWane, Inc.
 - f. Mueller Co.: Water Products Division.
 - g. NIBCO INC.
 - h. Tyco Fire & Building Products LP.
- 2. Standard: UL 789.
- 3. Type: Horizontal for wall mounting.
- 4. Body Material: Cast iron with extension rod and locking device.
- 5. Operation: Hand wheel.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating: 175 psig minimum.

B. Ball Valves:

- 1. Manufacturers: Subject to compliance with requirements:
 - a. Milwaukee Valve Company.
 - b. Potter Roemer.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.

2.6 Flexible, Sprinkler Hose Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. FlexHead Industries, Inc.
 - b. Viking
- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175 psig minimum.
- 5. Size: Same as connected piping, for sprinkler.

2.7 SPRINKLERS

- A. Manufacturers: Subject to compliance with requirements:
 - 1. Reliable Automatic Sprinkler Co., Inc.
 - 2. Tyco Fire & Building Products LP.
 - 3. Victaulic Company.
 - 4. Viking Corporation.
- B. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
- C. Sprinkler Finishes:
 - 1. Chrome plated.
 - 2. Bronze.
 - 3. Painted.
- D. Special Coatings:
 - 1. Wax.
 - 2. Lead.
 - 3. Corrosion-resistant paint.
- E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
- F. Sprinkler Guards:
 - 1. Manufacturers: Subject to compliance with requirements:

- a. Reliable Automatic Sprinkler Co., Inc.
- b. Tyco Fire & Building Products LP.
- c. Victaulic Company.
- d. Viking Corporation.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.8 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Flow Indicators:
 - 1. Manufacturers: Subject to compliance with requirements:
 - a. Potter Electric Signal Company.
 - b. System Sensor; a Honeywell company.
 - c. Viking Corporation.
 - 2. Standard: UL 346.
 - 3. Water-Flow Detector: Electrically supervised.
 - 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
 - 5. Type: Paddle operated.
 - 6. Pressure Rating: 250 psig.
 - 7. Design Installation: Horizontal or vertical.
- C. Valve Supervisory Switches:
 - 1. Manufacturers: Subject to compliance with requirements:
 - a. Kennedy Valve; a division of McWane, Inc.
 - b. Potter Electric Signal Company.
 - c. System Sensor; a Honeywell company.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled valve is in other than fully open position.

2.9 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements:
 - 1. AMETEK; U.S. Gauge Division.
 - 2. Ashcroft, Inc.
 - 3. Brecco Corporation.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0 to 250 psig minimum.

- E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.
- F. Air System Piping Gage: Include "AIR" or "AIR/WATER" label on dial face.

2.10 GROUT

- A. Standard: ASTM C 1107, Grade B, posthardening and volume adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink, and recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Division 21 Section "Facility Fire-Suppression Water-Service Piping."
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Division 21 Section "Facility Fire-Suppression Water-Service Piping."
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

- C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- G. Install sprinkler piping with drains for complete system drainage. Install inspector test drains and auxiliary drains lines to empty into the site storm sewer system. Route discharge piping underground to connect to nearby storm inlet.
- H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- J. Install alarm devices in piping systems.
- K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- M. Pressurize and check preaction sprinkler system piping and air-pressure maintenance devices.
- N. Fill sprinkler system piping with water.

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- I. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 - 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
- C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.9 PIPING SCHEDULE

- A. Sprinkler specialty fittings may be used, downstream of control vales, instead of specified fittings.
- B. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- C. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

- 4. Schedule 10, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.10 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Recessed sprinklers or Concealed sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 - 3. Upright and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 211313

SECTION 220500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Piping materials and installation instructions common to most piping systems.
- 2. Dielectric fittings.
- 3. Mechanical sleeve seals.
- 4. Sleeves.
- 5. Escutcheons.
- 6. Grout.
- 7. Equipment installation requirements common to equipment sections.
- 8. Concrete bases.
- 9. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than plumbing and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and plumbing equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 GENERAL REQUIREMENTS

- A. Carefully examine General Conditions, other specification sections, and other drawings (in addition to DIVISION 22), in order to be fully acquainted with their effect on plumbing work. Additions to the contract cost will not be allowed due to failure to inspect existing conditions.
- B. Do all work in compliance with 2010 Florida Building Code, and the Codes adopted therein, 2010 Florida Fire Prevention Code. Obtain and pay for any and all required permits, inspections, certificates of inspections and approval, and the like, and deliver such certificates to the Architect/Engineer.

- C. Cooperate and coordinate with all other trades. Perform work in such manner and at such times as not to delay work of other trades. Complete all work as soon as the condition of the structure and installations of equipment will permit. Patch, in a satisfactory manner and by the proper craft, any work damaged by plumbing workmen.
- D. Furnish, perform, or otherwise provide all labor (including, but not limited to, all planning, purchasing, transporting, rigging, hoisting, storing, installing, testing, chasing, channeling, cutting, trenching, excavating and backfilling), coordination, field verification, equipment installation, support, and safety, supplies, and materials necessary for the correct installation of complete and functional plumbing systems (as described or implied by these specifications and the applicable drawings).
- E. Any valve, fitting, or fixture coming in contact with potable water must have a weighted average lead content of less than 0.25%.

1.4 DRAWINGS:

- A. Indicate only diagrammatically the extent, general character, and approximate location of work. Where work is indicated, but with minor details omitted, furnish and install it complete and so as to perform its intended functions.
- B. DIVISION 22 work called for under any section of the project specifications, shall be considered as included in this work unless specifically excluded by inclusion in some other branch of the work. This shall include roughing-in for connections and equipment as called for or inferred. This would include cold water, hot water and sanitary connection required for all water closets, urinals, lavatories, showers, sinks, water coolers, bubblers, water heaters, boilers, hose bibs, hydrants, storm drain, refrigerators, dishwashers, mechanical condensate, etc as required for a functional installation, whether shown on the drawings or not. Check all drawings and specifications for the project and shall be responsible for the installation of all DIVISION 22 work.
- C. Take finish dimensions at the job site in preference to scale dimensions. Do not scale drawings where specific details and dimensions for DIVISION 22 work are not shown on the drawings, take measurements and make layouts as required for the proper installation of the work and coordination with all drawings and coordination with all other work on the project. In case of any discrepancies between the drawings and the specifications that have not been clarified by addendum prior to bidding, it shall be assumed by the signing of the contract that the higher cost (if any difference in costs) is included in the contract price, and perform the work in accordance with the drawings or with the specifications, as determined and approved by the Architect/ Engineer, and no additional costs shall be allowed to the base contract price.
- D. Carefully check the drawings and specifications of all trades and divisions before installing any of the work. Contractor shall in all cases consider the work of all other trades, and shall coordinate his work with them so that the best arrangements of all equipment, piping, conduit, ducts, rough-in, etc., can be obtained. The avoidance of any beams, joist or bracing that is an obstruction to piping, shall be included in the bid. This includes the reroute of piping or dimension revisions required to obtain the intended function of the plumbing work. No cost will be paid by the owner for these modifications that can be identified by reviewing all sets of drawings prior to bid.

E. Obtain manufacturer's data on all equipment, the dimensions of which may affect plumbing work. Use this data to coordinate proper service connections, entry locations, etc., and to ensure minimum clearances are maintained.

1.5 QUALIFICATIONS OF CONTRACTOR:

- A. Contractor performing any part of this scope of work shall be a Florida State Certified Plumbing Contractor (Type CFC)
- B. Provide field superintendent who has had a minimum of four (4) years previous successful experience on projects of comparable size and complexity. Superintendent shall be on the site at all times during construction.

1.6 SITE VISIT/CONDITIONS

- A. Visit the site of this contract and thoroughly familiarize with all existing field conditions and the proposed work as described or implied by the contract documents. During the course of this site visit, verify every aspect of the proposed work and the existing field conditions in the areas of construction which might affect this work. No compensation or reimbursement for additional expenses incurred due to failure or neglect to make a thorough investigation of the contract documents and the existing site conditions will be permitted.
- B. Install all equipment so that all Code required and Manufacturer required or recommended servicing clearances are maintained. Coordinate the proper arrangement and installation of all equipment within any designated space. If it is determined that a departure from the Contract Documents is necessary, submit to the A/E, for approval, detailed drawings of the proposed changes prior to bid.
- C. Submission of a proposal will be construed as evidence that such examination has been made and later claims for labor, equipment or materials required because of difficulties encountered will not be recognized.
- D. Existing conditions and utilities indicated are taken from existing construction documents, surveys, and field investigations. Unforeseen conditions probably exist and existing conditions shown on drawings may differ from the actual existing installation with the result being that new work may not be field located exactly as shown on the drawings. Field verify dimensions of all site conditions prior to bidding and include any deviations in the contract. Notify A/E if deviations are found.
- E. All existing plumbing is not shown. Become familiar with all existing conditions prior to bidding, and include in the bid the removal of all plumbing fixtures, equipment and piping etc. that is not being reused, back to its originating point.
- F. Locate all existing utilities and protect them from damage. Pay for repair or replacement of utilities or other property damaged by operations in conjunction with the completion of this work.

G. Work is in connection with existing buildings which must remain in operation while work is being performed. Work shall be in accord with the schedule required by the Contract. Schedule work for a minimum shut down to Owner. Notify Owner 72 hours in advance of any shut-down of existing systems. Perform work during non-operating hours unless otherwise accepted by Owner. Protect existing buildings and equipment during construction.

1.7 SUBMITTALS

A. Welding certificates.

1.8 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.
- S. All plumbing equipment are subject to the requirements of specification section 01 8111 Sustainable Construction Requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 3. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

- 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
- 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
- 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.8 GROUTING

- A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 220500

SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Thermometers.
- 2. Gages.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Palmer Wahl Instruments Inc.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Die-cast aluminum, 7 inches long.
- C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 BIMETALLIC-ACTUATED DIAL THERMOMETERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 2. Noshok, Inc.
 - 3. Trerice, H. O. Co.
 - 4. Weiss Instruments, Inc.
 - 5. WIKA Instrument Corporation.
- B. Description: Direct-mounting, bimetallic-actuated dial thermometers complying with ASME B40.3.
- C. Case: Dry type, stainless steel with 3-inch diameter.
- D. Element: Bimetal coil.
- E. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- F. Pointer: Red metal.
- G. Window: Glass.
- H. Ring: Stainless steel.
- I. Connector: Adjustable angle type.
- J. Stem: Metal, for thermowell installation and of length to suit installation.
- K. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 THERMOWELLS

- A. Manufacturers: Same as manufacturer of thermometer being used.
- B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.4 PRESSURE GAGES

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - d. Weiss Instruments, Inc.

- B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Liquid-filled type, cast aluminum, 4-1/2-inch diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
 - 4. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
 - 6. Pointer: Red metal.
 - 7. Window: Glass.
 - 8. Ring: Stainless steel.
 - 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
 - 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
 - 11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

- 1. Valves: NPS 1/4 brass or stainless-steel needle type.
- 2. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

- A. Install liquid-in-glass thermometers in the outlet of each domestic, hot-water storage tank.
- B. Install dry case-type, bimetallic-actuated dial thermometers at suction and discharge of each pump.
- C. Provide the following temperature ranges for thermometers:
 - 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions.
 - 2. Domestic Cold Water: 0 to 100 deg F, with 2-degree scale divisions.

3.2 GAGE APPLICATIONS

- A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.
- B. Install liquid-filled-case-type pressure gages at suction and discharge of each pump.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install thermowells with socket extending a minimum of 2 inches into fluid and in vertical position in piping tees where thermometers are indicated.

- C. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- D. Install needle-valve and snubber fitting in piping for each pressure gage.
- E. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
- F. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION 220519

SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Bronze ball valves.
- 2. Bronze angle valves.
- 3. Bronze swing check valves.
- 4. Bronze globe valves.

B. Related Sections:

- 1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
- 2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.2 SUBMITTALS

A. Product Data: For each type of valve indicated.

1.3 QUALITY ASSURANCE

- A. ASME Compliance: ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- B. NSF Compliance: NSF 61 for valve materials for potable-water service.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Any valve, fitting, or fixture coming in contact with potable water must have a weighted average lead content of less than 0.25%.
- C. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- D. Valve Sizes: Same as upstream piping unless otherwise indicated.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:

- 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
- F. Valve-End Connections:
 - 1. Solder Joint: With sockets according to ASME B16.18.
 - 2. Threaded: With threads according to ASME B1.20.1
 - 3. Grooved: With grooves according to AWWA C606.
 - 4. Press Fitting End: With connection according to CSA No. 1-02.

2.2 BRONZE ANGLE VALVES

- A. Lead Free, Class 150, Bronze Angle Valves with Nonmetallic Disc:
 - 1. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Powell Valves.

2. Description:

- a. Standard: MSS SP-80, Type 2.
- b. CWP Rating: 300 psig (2070 kPa).
- c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
- d. Ends: Threaded.
- e. Stem: Bronze.
- f. Disc: PTFE or TFE.
- g. Packing: Asbestos free.
- h. Handwheel: Bronze.

2.3 BRONZE BALL VALVES

- A. Lead Free, Two-Piece, Full-Port, Bronze Ball Valves with Stainless Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Hammond Valve.
 - d. Legend Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

- 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Grooved or Press Fitting.
 - g. Seats: PTFE or TFE or RPTFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.

2.4 BRONZE SWING CHECK VALVES

- A. Lead Free, Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. Nibco Inc.
 - f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Press Fitting.
 - f. Disc: Bronze.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. All shutoff valves installed on domestic water piping in building interiors for pipe sizes less than 3" shall be full flow ball valves for pipe. The use of gate valves is prohibited.
- C. Locate valves for reasonable access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe.
- E. Install valves in position to allow full stem movement.

3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly.
 - 2. Throttling Service: Ball valves and butterfly valves.
 - 3. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or with spring.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded or press fitting ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or grooved ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged or grooved ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded or press fitting ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or grooved ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged or grooved ends.

3.3 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Angle Valves: Class 125, bronze disc.
 - 3. Ball Valves: Two piece, full port, brass or bronze with brass bronze trim.
 - 4. Bronze Swing Check Valves: Class 125, bronze disc.
 - 5. Bronze Globe Valves: Class 125, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 and Larger: May be provided with grooved or flanged ends.
 - 2. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM NBR seat.
 - 3. Iron Swing Check Valves: Class 125, metal seats.
 - 4. Iron Swing Check Valves with Closure Control: Class 125, lever and weight.
 - 5. Iron Globe Valves: Class 125.

END OF SECTION 220523

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Steel pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Thermal-hanger shield inserts.
- 5. Fastener systems.
- 6. Equipment supports.
- B. See Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
- C. See Division 22 Section "Expansion Fittings and Loops for Plumbing Piping" for pipe guides and anchors.

1.2 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.

- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. B-Line Systems, Inc.; a division of Cooper Industries.
 - 3. Globe Pipe Hanger Products, Inc.
 - 4. Grinnell Corp.
 - 5. National Pipe Hanger Corporation.
 - 6. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers:

- 1. B-Line Systems, Inc.; a division of Cooper Industries.
- 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
- 3. GS Metals Corp.
- 4. Power-Strut Div.; Tyco International, Ltd.
- 5. Tolco Inc.
- 6. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.

B. Manufacturers:

- 1. Carpenter & Paterson, Inc.
- 2. ERICO/Michigan Hanger Co.
- 3. PHS Industries, Inc.
- 4. Pipe Shields, Inc.
- 5. Rilco Manufacturing Company, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 - 7. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
 - 8. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.

- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.
- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 220529

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Warning signs and labels.
- 3. Pipe labels.
- 4. Stencils.
- 5. Valve tags.
- 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

- 1. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.

- 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 6. Fasteners: Stainless-steel rivets or self-tapping screws.
- 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain or beaded chain or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."
- B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

- C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- D. Pipe Label Color Schedule:
 - 1. Low-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 2. High-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 3. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.
 - 4. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Safety black.
 - b. Letter Color: White.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round.
 - b. Hot Water: 1-1/2 inches, round.
 - c. Low-Pressure Compressed Air: 1-1/2 inches, round.
 - d. High-Pressure Compressed Air: 1-1/2 inches, round.
 - 2. Valve-Tag Colors:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - c. Low-Pressure Compressed Air: Natural.
 - d. High-Pressure Compressed Air: Natural.

3. Letter Colors:

- a. Cold Water: White.
- b. Hot Water: White.
- c. Low-Pressure Compressed Air: White.
- d. High-Pressure Compressed Air: White.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553

SECTION 220700 - PLUMBING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Hot water supply and return systems.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. When fire-performance characteristics are important requirements, verify surface-burning characteristics of insulation materials by an independent testing agency and require test report submittals.
- C. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

- D. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.
 - 1. Piping Mockups:
 - a. One 10-foot section of NPS 2 straight pipe.
 - b. One each of a 90-degree threaded, welded, and flanged elbow.
 - c. One each of a threaded, welded, and flanged tee fitting.
 - d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 - e. Four support hangers including hanger shield and insert.
 - f. One threaded strainer and one flanged strainer with removable portion of insulation.
 - g. One threaded reducer and one welded reducer.
 - h. One pressure temperature tap.
 - i. One mechanical coupling.
 - 2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
 - 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 4. Obtain Architect's approval of mockups before starting insulation application.
 - 5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 7. Demolish and remove mockups when directed.
- E. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Pittsburgh Corning Corporation; Foamglas.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

- G. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Thermokote V.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
- b. Eagle Bridges Marathon Industries; 225.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
- d. Mon-Eco Industries, Inc.; 22-25.
- 2. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-20.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
- 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
- 3. Service Temperature Range: 0 to 180 deg F.
- 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
- 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.
- E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-10.
 - b. Eagle Bridges Marathon Industries; 550.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 46-50.
 - d. Mon-Eco Industries, Inc.; 55-50.
 - e. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: 60 percent by volume and 66 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.6 SEALANTS

A. Joint Sealants:

- 1. Joint Sealants for Cellular-Glass and Phenolic Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Permanently flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 100 to plus 300 deg F.
- 5. Color: White or gray.
- 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
- b. Eagle Bridges Marathon Industries; 405.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
- d. Mon-Eco Industries, Inc.; 44-05.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.9 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.

- b. RPR Products, Inc.; Insul-Mate Strapping and Seals.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: 0.062-inch soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. C & F Wire.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.

- 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- B. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- C. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.

2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Hot water supply and return systems:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Cellular Glass: 1-1/2 inches thick.
 - b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

END OF SECTION 220700

SECTION 221116.0 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Under-building slab and aboveground domestic water pipes, tubes, fittings, and specialties inside the building.
- 2. Specialty valves.
- 3. Flexible connectors.
- 4. Water meters furnished by utility company for installation by Contractor.
- 5. Water meters.
- 6. Escutcheons.
- 7. Sleeves and sleeve seals.
- B. Related Section: Division 22 Section "Facility Water Distribution Piping" for water-service piping and water meters outside the building from source to the point where water-service piping enters the building.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control reports.

1.3 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 61 for potable domestic water piping and components.

1.4 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Owner no fewer than 5 days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61.
- C. Any valve, fitting, or fixture coming in contact with potable water must have a weighted average lead content of less than 0.25%.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper.
- B. Manufacturers: Subject to compliance with requirements, provide piping products and fittings by one of the following:
 - 1. Mueller Industries
 - 2. Wieland Copper Products LLC
 - 3. Cerro Flow Products LLC

C. Fittings

- 1. Cast-Copper Solder-Joint Fittings: ASME B16.18, pressure fittings.
- 2. Wrought-Copper Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- 3. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- 4. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- 5. Copper Pressure-Seal-Joint Fittings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) NIBCO INC.
 - 2) Viega; Plumbing and Heating Systems.
 - b. NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber O-ring seal in each end.
 - c. NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber O-ring seal in each end.

2.3 STAINLESS-STEEL PIPING

- A. Potable-water piping and components shall comply with NSF 61.
- B. Stainless-Steel Pipe: ASTM A 312/A 312M, Schedule 10 and Schedule 40.
- C. Stainless-Steel Pipe Fittings: ASTM A 815/A 815M.
- D. Manufacturers: Subject to compliance with requirements, provide piping products and fittings by one of the following:

- 1. Felker Brothers
- 2. Plymouth Tube Co.
- 3. American Stainless & Supply

E. Appurtenances for Grooved-End, Stainless-Steel Pipe:

- 1. Fittings for Grooved-End, Stainless-Steel Pipe: Stainless-steel casting with dimensions matching stainless-steel pipe.
- 2. Mechanical Couplings for Grooved-End, Stainless-Steel Pipe:
 - a. AWWA C606 for stainless-steel-pipe dimensions.
 - b. Stainless-steel housing sections.
 - c. Stainless-steel bolts and nuts.
 - d. EPDM-rubber gaskets suitable for hot and cold water.
 - e. Minimum Pressure Rating:
 - 1) NPS 8 and Smaller: 600 psig.

2.4 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free, unless otherwise indicated; full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
- D. Joint connections for joining domestic water pipe shall be lead free. When used, 95/5 solder and flux shall not have a lead content exceeding 0.2%. Threaded connections shall be made with non-lead bearing compounds.

2.5 SPECIALTY VALVES

- A. Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty metal valves.
- B. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves, drain valves, backflow preventers, and vacuum breakers.

2.6 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials or ferrous material body with separating nonconductive insulating material suitable for system fluid, pressure, and temperature.
- B. Dielectric Unions:
 - 1. Description:

- a. Standard: ASSE 1079.
- b. Pressure Rating: 150 psig at 180 deg F.
- c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

- 1. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.
 - c. Pressure Rating: 150 psig.
 - d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Kits:

- Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig.
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

E. Dielectric Couplings:

- 1. Description:
 - a. Galvanized-steel coupling.
 - b. Pressure Rating: 300 psig at 225 deg F.
 - c. End Connections: Female threaded.
 - d. Lining: Inert and noncorrosive, thermoplastic.

F. Dielectric Nipples:

- 1. Description:
 - a. Standard: IAPMO PS 66.
 - b. Electroplated steel nipple complying with ASTM F 1545.
 - c. Pressure Rating: 300 psig at 225 deg F.
 - d. End Connections: Male threaded or grooved.
 - e. Lining: Inert and noncorrosive, propylene.

2.7 FLEXIBLE CONNECTORS

- A. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

2.8 ESCUTCHEONS

- A. General: Manufactured ceiling, floor, and wall escutcheons and floor plates.
- B. One Piece, Cast Brass: Polished, chrome-plated finish with setscrews.

- C. One Piece, Deep Pattern: Deep-drawn, box-shaped brass with chrome-plated finish.
- D. One Piece, Stamped Steel: Chrome-plated finish with setscrew.
- E. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

2.9 SLEEVES

- A. Cast-Iron Wall Pipes: Fabricated of cast iron, and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc-coated, with plain ends.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with setscrews.

2.10 SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, used to fill annular space between pipe and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.11 GROUT

- A. Standard: ASTM C 1107, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages and Division 22 Section "Domestic Water Piping Specialties" for drain valves and strainers.
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for pressure-reducing valves.
- G. Install domestic water piping level without pitch and plumb.
- H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- L. Install piping adjacent to equipment and specialties to allow service and maintenance.
- M. Install piping to permit valve servicing.
- N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than system pressure rating used in applications below unless otherwise indicated.
- O. Install piping free of sags and bends.
- P. Install fittings for changes in direction and branch connections.

- Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- R. Install pressure gages on suction and discharge piping from each plumbing pump and packaged booster pump. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for pressure gages.
- S. Install thermostats in hot-water circulation piping. Comply with requirements in Division 22 Section "Domestic Water Pumps" for thermostats.
- T. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements in Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.
- U. Install sleeves for piping penetrations of walls and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install escutcheons for piping penetrations of walls and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Pressure-Sealed Joints: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- F. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.
- G. Joint Construction for Grooved-End Steel Piping: Make joints according to AWWA C606. Roll groove ends of pipe as specified. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections over gasket with keys seated in piping grooves. Install and tighten housing bolts.

- H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- I. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping" for valve installations.
- B. Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, and on each water supply to plumbing fixtures that do not have supply stops. Use full port ball valves for piping NPS 4 and smaller.
- C. Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping. Drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."
 - 1. Hose-End Drain Valves: At low points in water mains, risers, and branches.
 - 2. Stop-and-Waste Drain Valves: Instead of hose-end drain valves where indicated.
- D. Install balancing valve in each hot-water circulation return branch and discharge side of each pump and circulator. Set balancing valves partly open to restrict but not stop flow. Use ball valves for piping NPS 2 and smaller and butterfly valves for piping NPS 2-1/2 and larger. Comply with requirements in Division 22 Section "Domestic Water Piping Specialties" for balancing valves.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. NPS 2 and Larger: Sleeve-type coupling.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2] and Smaller: Use dielectric couplings.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 to NPS 6: Use dielectric flange kits.

3.6 FLEXIBLE CONNECTOR INSTALLATION

- A. Install flexible connectors in suction and discharge piping connections to each domestic water pump and in suction and discharge manifold connections to each domestic water booster pump.
- B. Install stainless-steel-hose flexible connectors in steel domestic water piping.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support products and installation.
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - 3. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.8 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment and machines to allow service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.

- 3. Plumbing Fixtures: Cold- and hot-water supply piping in sizes indicated, but not smaller than required by plumbing code. Comply with requirements in Division 22 plumbing fixture Sections for connection sizes.
- 4. Equipment: Cold- and hot-water supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.9 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors.
- B. Escutcheons for New Piping:
 - 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 - 5. Bare Piping in Equipment Rooms: One piece, cast brass.
 - 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.10 SLEEVE INSTALLATION

- A. General Requirements: Install sleeves for pipes and tubes passing through penetrations in floors, partitions, roofs, and walls.
- B. Sleeves are not required for core-drilled holes.
- C. Cut sleeves to length for mounting flush with both surfaces unless otherwise indicated.
- D. Install sleeves in slabs and exterior walls as they are built.
- E. For interior wall penetrations, seal annular space between sleeve and pipe or pipe insulation using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- F. For exterior wall penetrations above grade, seal annular space between sleeve and pipe using joint sealants appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants" for joint sealants.
- G. For exterior wall penetrations below grade, seal annular space between sleeve and pipe using sleeve seals specified in this Section.
- H. Seal space outside of sleeves in concrete slabs and walls with grout.
- I. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation unless otherwise indicated.

- J. Install sleeve materials according to the following applications:
 - 1. Sleeves for Piping Passing through Concrete Floor Slabs: Steel pipe.
 - 2. Sleeves for Piping Passing through Concrete Floor Slabs of Mechanical Equipment Areas or Other Wet Areas: Steel pipe.
 - a. Extend sleeves 2 inches above finished floor level.
 - b. For pipes penetrating floors with membrane waterproofing, extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Comply with requirements in Division 07 Section "Sheet Metal Flashing and Trim" for flashing.
 - 3. Sleeves for Piping Passing through Concrete Roof Slabs: Steel pipe.
 - 4. Sleeves for Piping Passing through Exterior Concrete Walls:
 - a. Steel pipe sleeves for pipes smaller than NPS 6.
 - b. Cast-iron wall pipe sleeves for pipes NPS 6 and larger.
 - c. Install sleeves that are large enough to provide 1-inch annular clear space between sleeve and pipe or pipe insulation when sleeve seals are used.
- K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestop materials and installations.

3.11 SLEEVE SEAL INSTALLATION

- A. Install sleeve seals in sleeves in exterior concrete walls at water-service piping entries into building.
- B. Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble sleeve seal components and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.12 IDENTIFICATION

- A. Identify system components. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment" for identification materials and installation.
- B. Label pressure piping with system operating pressure.

3.13 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

- 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
- 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.14 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.15 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.16 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast copper solder-joint fittings; and brazed joints.

- 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
- D. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast copper solder-joint fittings; and brazed ioints.
 - 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
 - 3. Stainless-steel Schedule 10 pipe, grooved-joint fittings, and grooved joints.
- E. Aboveground domestic water piping, NPS 5 and NPS 6, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast copper solder-joint fittings; and brazed joints.
 - 2. Stainless-steel Schedule 10 pipe, grooved-joint fittings, and grooved joints.

3.17 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use full port ball valves for piping NPS 4 and smaller.
 - 2. Throttling Duty: Use globe valves for piping NPS 2 and smaller.
 - 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
 - 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116

SECTION 221119.0 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following domestic water piping specialties:
 - 1. Vacuum breakers.
 - 2. Balancing valves.
 - 3. Temperature-actuated water mixing valves.
 - 4. Hose bibbs.
 - 5. Wall hydrants.
 - 6. Drain valves.
 - 7. Water hammer arresters.
 - 8. Trap-seal primer valves.
- B. See Division 22 Section "Domestic Water Piping" for water meters.
- C. See Division 22 Section "Drinking Fountains and Water Coolers" for water filters for water coolers.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig, unless otherwise indicated.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.
- C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. NSF Compliance:

- 1. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic domestic water piping components.
- 2. Comply with NSF 61, "Drinking Water System Components Health Effects; Sections 1 through 9."

PART 2 - PRODUCTS

2.1 PRODUCT PERFORMANCE

A. General: Any valve, fitting, or fixture coming in contact with potable water must have a weighted average lead content of less than 0.25%.

2.2 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; SPX Valves & Controls.
 - c. Watts Industries, Inc.; Water Products Div.
 - d. Zurn Plumbing Products Group; Wilkins Div.
 - 2. Standard: ASSE 1001.
 - 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: Threaded.
 - 6. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Arrowhead Brass Products, Inc.
 - b. Conbraco Industries, Inc.
 - c. Legend Valve.
 - d. Watts Industries, Inc.; Water Products Div.
 - e. Woodford Manufacturing Company.
 - f. Zurn Plumbing Products Group; Light Commercial Operation.
- 2. Standard: ASSE 1001.
- 3. Body: Bronze, nonremovable, with manual drain.
- 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 5. Finish: Rough bronze.

2.3 BALANCING VALVES

- A. Memory-Stop Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Crane Co.; Crane Valve Group; Stockham Div.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
 - 3. Pressure Rating: 400-psig minimum CWP.

- 4. Size: NPS 2 or smaller.
- 5. Body: Copper alloy.
- 6. Port: Standard or full port.
- 7. Ball: Chrome-plated brass.
- 8. Seats and Seals: Replaceable.
- 9. End Connections: Solder joint or threaded.
- 10. Handle: Vinyl-covered steel with memory-setting device.

2.4 TEMPERATURE-ACTUATED WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Leonard Valve Company.
 - c. Symmons Industries, Inc.
 - d. Taco, Inc.
 - e. Watts Industries, Inc.; Water Products Div.
 - f. Zurn Plumbing Products Group; Wilkins Div.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 125 psig.
- 4. Type: Thermostatically controlled water mixing valve.
- 5. Material: Bronze body with corrosion-resistant interior components.
- 6. Connections: Threaded union inlets and outlet.
- 7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Tempered-Water Setting: 110°
- 9. Valve Finish: Rough bronze.

B. Primary, Thermostatic, Water Mixing Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Leonard Valve Company.
 - b. Symmons Industries, Inc.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 125 psig.
- 4. Type: Exposed-mounting, thermostatically controlled water mixing valve.
- 5. Material: Bronze body with corrosion-resistant interior components.
- 6. Connections: Threaded union inlets and outlet.
- 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Valve Pressure Rating: 125 psig minimum, unless otherwise indicated.
- 9. Valve Finish: Rough bronze.
- 10. Piping Finish: Copper.
- 11. Stainless steel, for recesses mounting and with hinged, stainless-steel door.

2.5 HOSE BIBBS

- A. Hose Bibbs (mechanical room only):
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 3/4 threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig.
 - 7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 - 9. Finish for Service Areas: Rough bronze.
 - 10. Finish for Finished Rooms: Chrome or nickel plated.
 - 11. Operation for Equipment Rooms: Wheel handle.
 - 12. Operation for Service Areas: Wheel handle.
 - 13. Operation for Finished Rooms: Wheel handle.
 - 14. Include operating key with each operating-key hose bibb.
 - 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.6 WALL HYDRANTS

- A. Moderate-Climate Wall Hydrants:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Josam Company.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Tyler Pipe; Wade Div.
 - d. Watts Drainage Products.
 - e. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 - f. Zurn Industries, LLC; Plumbing Products Group; Light Commercial Products.
 - g. Zurn Industries, LLC; Plumbing Products Group; Specification Drainage Products.
 - 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
 - 3. Pressure Rating: 125 psig.
 - 4. Operation: Loose key.
 - 5. Inlet: NPS 3/4 or NPS 1.
 - 6. Outlet:
 - a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
 - b. Garden-hose thread complying with ASME B1.20.7.
 - 7. Box: Deep, flush mounted with cover.
 - 8. Box and Cover Finish: Polished nickel bronze.
 - 9. Outlet:

- a. Concealed, with integral vacuum breaker or nonremovable hose-connection vacuum breaker complying with ASSE 1011 or backflow preventer complying with ASSE 1052.
- b. Garden-hose thread complying with ASME B1.20.7.
- 10. Nozzle and Wall-Plate Finish: Polished nickel bronze.
- 11. Operating Keys(s): One with each wall hydrant.

2.7 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

- 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
- 2. Pressure Rating: 400-psig minimum CWP.
- 3. Size: NPS 3/4.
- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.8 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. PPP Inc.
 - d. Sioux Chief Manufacturing Company, Inc.
 - e. Watts Drainage Products Inc.
- 2. Standard: ASSE 1010 or PDI-WH 201.
- 3. Type: Copper tube with piston.
- 4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.

2.9 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

- 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
- 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
- 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 4. Screen: Stainless steel with round perforations unless otherwise indicated.
- 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.020 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
- 6. Drain: Factory-installed, hose-end drain valve.

B. Icemaker Outlet Boxes:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Acorn Engineering Company.
 - b. IPS Corporation.
 - c. LSP Products Group, Inc.
 - d. Oatey.
- 2. Mounting: Recessed.
- 3. Material and Finish: Enameled-steel or epoxy-painted-steel box and faceplate.
- 4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
- 5. Supply Shutoff Fitting: NPS 1/2 globe, or ball valve and NPS 1/2 copper, water tubing.

C. Supply-Type, Trap-Seal Primer Device:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Precision Plumbing Products, Inc.
 - b. Sioux Chief Manufacturing Company, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
- 2. Standard: ASSE 1018.
- 3. Pressure Rating: 125 psig minimum.
- 4. Body: Bronze.
- 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
- 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
- 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

D. Drainage-Type, Trap-Seal Primer Device:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - a. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
- 2. Standard: ASSE 1044, lavatory P-trap with NPS 3/8 minimum, trap makeup connection.
- 3. Size: NPS 1-1/4 minimum.
- 4. Material: Chrome-plated, cast brass.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backflow prevention protected lines to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system if applicable.

- 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- 3. Do not install bypass piping around backflow preventers.
- C. Install balancing valves in locations where they can be adjusted.
- D. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install thermometers and water regulators.
- E. Install Y-pattern strainers for water on supply side of each solenoid valve and pump.
- F. Install water hammer arresters in water piping according to PDI-WH 201.
- G. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.
- H. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- I. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.
- J. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Intermediate atmospheric-vent backflow preventers.
 - 2. Reduced-pressure-principle backflow preventers.
 - 3. Double-check backflow-prevention assemblies.
 - 4. Water pressure-reducing valves.
 - 5. Primary, thermostatic, water mixing valves.
- K. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each pressure vacuum breaker according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

DOMESTIC WATER PIPING SPECIALTIES SECTION 221119

3.3 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 211119.0

SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. LEED Submittals:

1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1, without amendments, Section 7 - "Service Water Heating."

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Retain shipping flange protective covers and protective coatings during storage.
- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Manufactures:
 - 1. Grundfos
 - 2. Armstrong
 - 3. Taco
- B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- C. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
 - 2. Casing: Bronze, with threaded or companion-flange connections.
 - 3. Impeller: Plastic.
 - 4. Motor: Single speed, unless otherwise indicated.
- D. Capacities and Characteristics:
 - 1. See drawings for schedule.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 50 to 125 deg F (10 to 52 deg C).
 - 3. Enclosure: NEMA 250, Type 4X.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 24 V, ac.
 - 7. Settings: Start pump at 105 deg F (41 deg C) and stop pump at 110 deg F (49 deg C).

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.
- C. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.
 - 1. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 - 2. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- D. Install thermostats in hot-water return piping.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.
- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.

- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," Section 220523.14 "Check Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties."
 - Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- E. Connect thermostats, to pumps that they control.
- F. Interlock pump between water heater and hot-water storage tank with water heater burner and time-delay relay.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats, for automatic starting and stopping operation of pumps.
 - 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 7. Start motor.
 - 8. Open discharge valve slowly.
 - 9. Adjust temperature settings on thermostats.
 - 10. Adjust timer settings.

3.6 ADJUSTING

- A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following soil and waste, sanitary drainage and vent piping inside the building:
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.
- B. Related Sections: Division 22 Section "Sanitary Sewerage Pumps" for effluent and sewage pumps.

1.2 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.
 - 2. Waste, Force-Main Piping: 150 psig.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than 5 days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service class.
- B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Fernco Inc.
 - c. Mission Rubber Company; a division of MCP Industries, Inc.
 - d. Tyler Pipe.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Clamp-All Corp.
 - c. Mission Rubber Company; a division of MCP Industries, Inc.
 - d. Tyler Pipe.
 - 2. Standards: ASTM C 1277 and ASTM C 1540.
 - 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 COPPER TUBE AND FITTINGS

- A. Copper DWV Tube: ASTM B 306, drainage tube, drawn temper.
- B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
- C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.
- D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.
- E. Copper Pressure Fittings:
 - 1. Copper Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint fittings. Furnish wrought-copper fittings if indicated.
 - 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.
- F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 - 1. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.5 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.

1. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

- 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
- 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- 3. Unshielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) Fernco Inc.
 - 3) Mission Rubber Company; a division of MCP Industries, Inc.
 - 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
 - b. Standard: ASTM C 1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- 4. Pressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Dresser, Inc.
 - 3) EBAA Iron, Inc.
 - 4) JCM Industries, Inc.
 - 5) Romac Industries, Inc.
 - 6) Smith-Blair, Inc.; a Sensus company.
 - 7) The Ford Meter Box Company, Inc.
 - 8) Viking Johnson.
 - b. Standard: AWWA C219.
 - c. Description: Metal, sleeve-type same size as, with pressure rating at least equal to, and ends compatible with, pipes to be joined.

- d. Center-Sleeve Material: Manufacturer's standard.
- e. Gasket Material: Natural or synthetic rubber.
- f. Metal Component Finish: Corrosion-resistant coating or material.

B. Dielectric Fittings:

- 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- 2. Dielectric Unions:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Capitol Manufacturing Company.
 - 2) Central Plastics Company.
 - 3) Hart Industries International, Inc.
 - 4) Jomar International Ltd.
 - 5) Matco-Norca, Inc.
 - 6) McDonald, A. Y. Mfg. Co.
 - 7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 8) Wilkins; a Zurn company.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Pressure Rating: 125 psig minimum at 180 deg F.
 - 3) End Connections: Solder-joint copper alloy and threaded ferrous.
- 3. Dielectric Flanges:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Capitol Manufacturing Company.
 - 2) Central Plastics Company.
 - 3) Matco-Norca, Inc.
 - 4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 5) Wilkins; a Zurn company.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 125 psig minimum at 180 deg F.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.

- C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- E. Aboveground, vent piping NPS 5 and larger shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- G. Underground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Solid-wall PVC pipe; PVC socket fittings; and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- H. Aboveground sanitary-sewage force mains NPS 1-1/2 and NPS 2 shall be the following:
 - 1. Hard copper tube, Type L; copper pressure fittings; and soldered joints.
- I. Underground sanitary-sewage force mains NPS 4 and smaller shall be the following:
 - 1. Soft copper tube, Type L; wrought-copper pressure fittings; and soldered joints.
 - 2. Fitting-type transition coupling for piping smaller than NPS 1-1/2 and pressure transition coupling for NPS 1-1/2 and larger if dissimilar pipe materials.

3.2 PIPING INSTALLATION

- A. Sanitary sewer piping outside the building is specified in Division 22 Section "Facility Sanitary Sewers."
- B. Each horizontal sanitary and storm drainage pipe shall be provided with a clean out at the upstream end of the pipe and in changes in direction greater than 45 degrees. Offset cleanouts so that they are not located in classrooms or building entrances whenever possible.
- C. Cleanouts shall be provided at 50' intervals for horizontal sanitary drain pipes of 3" or less and 80' intervals for pipes 4" and larger in accordance with the SPC.
- D. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

- E. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- F. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- I. Install piping to permit valve servicing.
- J. Install piping at indicated slopes.
- K. Install piping free of sags and bends.
- L. Install fittings for changes in direction and branch connections.
- M. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers.
- N. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."
- O. Install wall penetration system at each service pipe penetration through foundation wall. Make installation watertight. Wall penetration systems are specified in Division 22 Section "Common Work Results for Plumbing."
- P. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- Q. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if 2 fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- R. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

- S. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 2-1/2 and smaller; 1 percent downward in direction of flow for piping NPS 3 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- T. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- U. Plumbing Specialties:
 - 1. Install backwater valves in sanitary waste gravity-flow piping. Comply with requirements for backwater valves specified in Division 22 Section "Sanitary Waste Piping Specialties."
 - 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping. Comply with requirements for cleanouts specified in Division 22 Section "Sanitary Waste Piping Specialties."
 - 3. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
- V. Install soil and waste drainage and vent piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 22 Section "Common Work Results for Plumbing."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 22 Section "Common Work Results for Plumbing."
- Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 22 Section "Common Work Results for Plumbing."
- Z. Install PVC soil and waste drainage and vent piping according to ASTM D 2665.
- AA. Install underground PVC soil and waste drainage piping according to ASTM D 2321.
- BB. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

- 1. Install transition couplings at joints of piping with small differences in OD's.
- 2. In Drainage Piping: Unshielded, nonpressure transition couplings.
- 3. In Aboveground Force Main Piping: Fitting-type transition couplings.
- 4. In Underground Force Main Piping:
 - a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 - b. NPS 2 and Larger: Pressure transition couplings.

B. Dielectric Fittings:

- 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.4 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Cast-Iron, Soil-Piping Joints: Make joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Gasketed Joints: Make with rubber gasket matching class of pipe and fittings.
 - 2. Hubless Joints: Make with rubber gasket and sleeve or clamp.
- C. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.5 VALVE INSTALLATION

- A. General-duty valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- B. Shutoff Valves: Install shutoff valve on each sewage pump discharge.
 - 1. Use gate or full-port ball valve for piping NPS 2 and smaller.
 - 2. Use gate valve for piping NPS 2-1/2 and larger.
- C. Check Valves: Install swing check valve, downstream from shutoff valve, on each sewage pump discharge.
- D. Backwater Valves: Install backwater valves in piping subject to sewage backflow.
 - 1. Horizontal Piping: Horizontal backwater valves.
 - 2. Floor Drains: Drain outlet backwater valves, unless drain has integral backwater valve.
 - 3. Install backwater valves in accessible locations.
 - 4. Backwater valves are specified in Division 22 Section "Sanitary Waste Piping Specialties."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6: 60 inches with 3/4-inch rod.
 - 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.
 - 6. NPS 8: 10 feet with 3/4-inch rod.
- I. Install supports for vertical copper tubing every 10 feet.
- J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.

- K. Install supports for vertical PVC piping every 15 inches.
- L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Comply with requirements for backwater valves, cleanouts, and drains specified in Division 22 Section "Sanitary Waste Piping Specialties."
 - 6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Connect force-main piping to the following:
 - 1. Sewage Pump: To sewage pump discharge.
- E. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- F. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - 3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 4. Prepare reports for tests and required corrective action.
- E. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 6. Prepare reports for tests and required corrective action.

3.9 CLEANING

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PROTECTION

A. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

END OF SECTION 221316

SECTION 221319.0 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following sanitary drainage piping specialties:
 - 1. Backwater valves.
 - 2. Cleanouts.
 - 3. Floor drains.
 - 4. Air-admittance valves.
 - 5. Roof flashing assemblies.
 - 6. Through-penetration firestop assemblies.
 - 7. Miscellaneous sanitary drainage piping specialties.
 - 8. Flashing materials.

B. Related Sections include the following:

- 1. Division 22 Section "Storm Drainage Piping Specialties" for trench drains for storm water, channel drainage systems for storm water, roof drains, and catch basins.
- 2. Division 22 Section "Plumbing Fixtures" for hair interceptors.

1.2 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. FOG: Fats, oils, and greases.
- C. FRP: Fiberglass-reinforced plastic.
- D. HDPE: High-density polyethylene plastic.
- E. PE: Polyethylene plastic.
- F. PP: Polypropylene plastic.
- G. PVC: Polyvinyl chloride plastic.

1.3 SUBMITTALS

- A. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- B. Field quality-control test reports.
- C. Operation and Maintenance Data: For drainage piping specialties to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NSF 14, "Plastics Piping Components and Related Materials," for plastic sanitary piping specialty components.

1.5 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES

- A. Horizontal, Cast-Iron Backwater Valves:
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfr. Co.; Division of Smith Industries, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
 - 2. Standard: ASME A112.14.1.
 - 3. Size: Same as connected piping.
 - 4. Body: Cast iron.
 - 5. Cover: Cast iron with bolted or threaded access check valve.
 - 6. End Connections: Hub and spigot or hubless.
 - 7. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang open for airflow unless subject to backflow condition.
 - 8. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

2.2 CLEANOUTS

A. Exposed Metal Cleanouts:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
- 3. Size: Same as connected drainage piping
- 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Closure: Stainless-steel plug with seal.

B. Metal Floor Cleanouts:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.36.2M for heavy-duty, adjustable housing cleanout.
- 3. Size: Same as connected branch.
- 4. Type: Heavy-duty, adjustable housing.
- 5. Body or Ferrule: Cast iron.
- 6. Clamping Device: Required.
- 7. Outlet Connection: Inside calk.
- 8. Closure: Brass plug with straight threads and gasket.
- 9. Adjustable Housing Material: Cast iron with threads.
- 10. Frame and Cover Material and Finish: Stainless steel.
- 11. Frame and Cover Shape: Round.
- 12. Top Loading Classification: Heavy Duty.
- 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- 14. Standard: ASME A112.3.1.
- 15. Size: Same as connected branch.
- 16. Housing: Stainless steel.
- 17. Closure: Stainless steel with seal.
- 18. Riser: Stainless-steel drainage pipe fitting to cleanout.

C. Cast-Iron Wall Cleanouts:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.

- 2. Standard: ASME A112.36.2M. Include wall access.
- 3. Size: Same as connected drainage piping.
- 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Wall Access: Round, deep, chrome-plated bronze cover plate with screw.
- 8. Wall Access: Round, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

2.3 FLOOR DRAINS

A. Cast-Iron Floor Drains:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Josam Company; Josam Div.
 - b. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - c. Watts Drainage Products Inc.
 - d. Zurn Plumbing Products Group; Specification Drainage Operation.
- 2. Standard: ASME A112.6.3 with backwater valve.
- 3. See plumbing schedule and details for all other requirements.

2.4 AIR-ADMITTANCE VALVES

A. Fixture Air-Admittance Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Oatey.
 - b. ProSet Systems Inc.
 - c. Studor, Inc.
- 2. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
- 3. Housing: Plastic.
- 4. Operation: Mechanical sealing diaphragm.
- 5. Size: Same as connected fixture or branch vent piping.

B. Wall Box:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Oatey.
 - b. Studor, Inc.
- 2. Description: White plastic housing with white plastic grille, made for recessed installation. Include bottom pipe connection and space to contain one air-admittance valve.
- 3. Size: About 9 inches wide by 8 inches high by 4 inches deep.

2.5 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

- 1. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - a. Acorn Engineering Company; Elmdor/Stoneman Div.
 - b. Thaler Metal Industries Ltd.
- B. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch- thick, lead flashing collar and skirt extending at least 6 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - 1. Open-Top Vent Cap: Without cap.
 - 2. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - 3. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.6 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ProSet Systems Inc.
 - b. UL
 - c. Hilti
 - 2. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 3. Size: Same as connected soil, waste, or vent stack.
 - 4. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 5. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 6. Special Coating: Corrosion resistant on interior of fittings.

2.7 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:

- 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
- 2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Deep-Seal Traps:

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.

C. Air-Gap Fittings:

- 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
- 2. Body: Bronze or cast iron.
- 3. Inlet: Opening in top of body.
- 4. Outlet: Larger than inlet.
- 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:

- 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
- 2. Size: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings:

- 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

F. Vent Caps:

- 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
- 2. Size: Same as connected stack vent or vent stack.

G. Expansion Joints:

- 1. Standard: ASME A112.21.2M.
- 2. Body: Cast iron with bronze sleeve, packing, and gland.
- 3. End Connections: Matching connected piping.
- 4. Size: Same as connected soil, waste, or vent piping.

2.8 FLASHING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:

- 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
- 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
- 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.
- B. Copper Sheet: ASTM B 152/B 152M, of the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Applications: 12 oz./sq. ft..
 - 2. Vent Pipe Flashing: 8 oz./sq. ft..
- C. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness, unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.
- D. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- E. Fasteners: Metal compatible with material and substrate being fastened.
- F. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- G. Solder: ASTM B 32, lead-free alloy.
- H. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
- C. Each building drain shall be provided with a two-way grade cleanout within 6' of the junction of the building drain and building sewer immediately after exiting the building. If the two-way cleanout is installed in a grassy area, it shall be embedded in an 18"x18"x4" thick concrete pad.
- D. Each horizontal sanitary and storm drainage pipe shall be provided with a clean out at the upstream end of the pipe and in changes in direction greater than 45 degrees. Offset cleanouts so that they are not located in classrooms or building entrances whenever possible.
- E. Cleanouts shall be provided at 50' intervals for horizontal sanitary drain pipes of 3" or less and 80' intervals for pipes 4" and larger.

- F. Cleanout plug will be encompasses in a concrete pad the measures a minimum of 18" square and 6" inches in depth.
- G. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at base of each vertical soil and waste stack.
- H. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- I. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- J. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- K. Install fixture air-admittance valves on fixture drain piping.
- L. Trap guard inserts shall be installed in accordance with the manufacturer's instructions and the requirements of the applicable codes.
- M. Install stack air-admittance valves at top of stack vent and vent stack piping.
- N. Install air-admittance-valve wall boxes recessed in wall.
- O. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- P. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- Q. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
- R. Assemble open drain fittings and install with top of hub 1 inch above floor.

- S. Install deep-seal traps on floor drains and other waste outlets.
- T. Install floor-drain, trap-seal primer fittings or trap guards (if allowed by the local AHJ) on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- U. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- V. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- W. Install vent caps on each vent pipe passing through roof.
- X. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.
- Y. Install grease interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 - 1. Flush with Floor Installation: Set unit and extension, if required, with cover flush with finished floor.
 - 2. Recessed Floor Installation: Set unit in receiver housing having bottom or cradle supports, with receiver housing cover flush with finished floor.
 - 3. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.
- Z. Install wood-blocking reinforcement for wall-mounting-type specialties.
- AA. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.
- BB. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Division 07 Section "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each grease interceptor.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Protect elastomeric trap guard inserts from being touched with solvent cement or primers during installation.
- C. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

SECTION 223300 - ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. "Commissioning of equipment or systems specified in this section is part of the construction process. Documentation and testing of these systems, as well as training of the Owner's operation and maintenance personnel, is required in cooperation with the Commissioning Authority. Project Closeout is dependent on successful completion of all commissioning procedures, documentation, and issue closure.

1.2 SUMMARY

A. Section Includes:

- 1. Flow-control, electric, tankless, domestic-water heaters.
- 2. Commercial, light-duty, storage, electric, domestic-water heaters.
- 3. Domestic-water heater accessories.

1.3 SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Operation and Maintenance Data: For electric, domestic-water heaters to include in emergency, operation, and maintenance manuals.
- C. Warranty: Sample of special warranty.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- C. ASME Compliance: Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components Health Effects."
- E. Any valve, fitting, or fixture coming in contact with potable water must have a weighted average lead content of less than 0.25%.

1.5 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. Electric, Tankless, Domestic-Water Heaters: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

- A. Flow-Control, Electric, Tankless, Domestic-Water Heaters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bosch Water Heating.
 - b. Chronomite Laboratories, Inc.
 - c. Eemax, Inc. (Basis of Design)
 - 2. Standard: UL 499 for electric, tankless, (domestic-water heater) heating appliance.
 - 3. Construction: Copper piping or tubing complying with NSF 61 barrier materials for potable water, without storage capacity.
 - a. Connections: ASME B1.20.1 pipe thread.
 - b. Pressure Rating: 150 psig.
 - c. Heating Element: Resistance heating system.
 - a. Temperature Control: Factory Calibrated Mixing Valve and Thermostatic Temperature Control Board for Accuracy.
 - b. Safety Control: High-temperature-limit cutoff device or system.
 - c. Jacket: Aluminum or steel with enameled finish or plastic.
 - 4. Support: Bracket for wall mounting.

- B. Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:
 - 1. Manufacturers:
 - a. AO Smith Corporation
 - b. Lochinvar, LLC
 - c. State Industries
 - 2. Standard: UL 174.
 - 3. Storage-Tank Construction: Steel, vertical arrangement.
 - a. Tappings: ASME B1.20.1 pipe thread.
 - b. Pressure Rating: 150 psig.
 - c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.
 - 4. Factory-Installed Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 - c. Drain Valve: ASSE 1005.
 - d. Insulation: Comply with ASHRAE/IESNA 90.1 or ASHRAE 90.2.
 - e. Jacket: Steel with enameled finish.
 - f. Heat-Trap Fittings: Inlet type in cold-water inlet and outlet type in hot-water outlet.
 - g. Heating Elements: Two; electric, screw-in immersion type; wired for simultaneous operation unless otherwise indicated. Limited to 12 kW total.
 - h. Temperature Control: Adjustable thermostat.
 - i. Safety Control: High-temperature-limit cutoff device or system.
 - j. Relief Valve: ASME rated and stamped for combination temperature-and-pressure relief valves. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valve with sensing element that extends into storage tank.
 - 5. Special Requirements: NSF 5 construction with legs for off-floor installation.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Domestic-Water Compression Tanks:
 - 1. Manufacturers:
 - a. AO Smith Corporation
 - b. AMTROL, Inc.
 - c. State Industries
 - d. Watts (Basis of Design)
 - 2. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.
 - Construction:
 - a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 - b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.

- c. Air-Charging Valve: Factory installed.
- 4. Capacity and Characteristics:
 - a. Working-Pressure Rating: 100 psig.
 - b. Capacity Acceptable: 4 gal. minimum.
 - c. Air Precharge Pressure: Pressure shall match the incoming water pressure.
- B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1 or ASHRAE 90.2.
- D. Heat-Trap Fittings: ASHRAE 90.2.
- E. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-, butterfly-, or gate-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
 - 1. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," Section 220523.13 "Butterfly Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping."
 - 2. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."
- F. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig- maximum outlet pressure unless otherwise indicated.
- G. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
- Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than domesticwater heater working-pressure rating.
- I. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4.
- J. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.
- K. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Include dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.
- L. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Electric, Tankless, Domestic-Water Heater Mounting: Install electric, tankless, domestic-water heaters at least 18 inches above floor on wall bracket.
 - 1. Maintain manufacturer's recommended clearances.
 - 2. Arrange units so controls and devices that require servicing are accessible.
 - 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 5. Anchor domestic-water heaters to substrate.
- B. Install electric, domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- C. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Division 22 Section "Domestic Water Piping Specialties."
- D. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- E. Install thermometers on inlet and outlet piping of residential, solar, electric, domestic-water heaters. Comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- F. Assemble and install inlet and outlet piping manifold kits for multiple electric, domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each electric, domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each electric, domestic-water heater outlet. Comply with requirements for valves specified in Division 22 Section "General-Duty Valves for Plumbing Piping," and comply with requirements for thermometers specified in Division 22 Section "Meters and Gages for Plumbing Piping."
- G. Fill electric, domestic-water heaters with water.
- H. Charge domestic-water compression tanks with air matching the incoming domestic water pressure.

3.2 CONNECTIONS

- A. Comply with requirements for piping specified in Division 22 Section "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. "Contractors' tests shall be scheduled and documented in accordance with the commissioning requirements.
- B. "System functional testing is part of the Commissioning Process. Functional testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority. Refer to Section 019100, Commissioning, for system functional tests and commissioning requirements."
- C. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Division 01 Section "Quality Requirements" for retesting and reinspecting requirements and Division 01 Section "Execution" for requirements for correcting the Work.
- E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. "Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans.

END OF SECTION 223300

SECTION 224000 - PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Faucets for lavatories.
 - 2. Flushometers.
 - 3. Toilet seats.
 - 4. Protective shielding guards.
 - 5. Fixture supports.
 - 6. Water closets.
 - 7. Urinals.
 - 8. Lavatories.
 - 9. Service sinks.
- B. "Commissioning of equipment or systems specified in this section is part of the construction process. Documentation and testing of these systems, as well as training of the Owner's operation and maintenance personnel, is required in cooperation with the Commissioning Authority. Project Closeout is dependent on successful completion of all commissioning procedures, documentation, and issue closure. Refer to Contract Closeout, Section 01700, for substantial completion details.

1.2 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. Accessible Fixture: Plumbing fixture that can be approached, entered, and used by people with disabilities.
- C. FRP: Fiberglass-reinforced plastic.
- D. PMMA: Polymethyl methacrylate (acrylic) plastic.
- E. PVC: Polyvinyl chloride plastic.
- F. Solid Surface: Nonporous, homogeneous, cast-polymer-plastic material with heat-, impact-, scratch-, and stain-resistance qualities.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain plumbing fixtures, faucets, and other components of each category through one source from a single manufacturer.
 - 1. Exception: If fixtures, faucets, or other components are not available from a single manufacturer, obtain similar products from other manufacturers specified for that category.
- B. Regulatory Requirements: Comply with requirements in ICC A117.1, "Accessible and Usable Buildings and Facilities"Public Law 90-480, "Architectural Barriers Act"; and Public Law 101-336, "Americans with Disabilities Act" for plumbing fixtures for people with disabilities.
- C. Regulatory Requirements: Comply with requirements in Public Law 102-486, "Energy Policy Act," about water flow and consumption rates for plumbing fixtures.
- D. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- E. Select combinations of fixtures and trim, faucets, fittings, and other components that are compatible.
- F. Comply with the following applicable standards and other requirements specified for plumbing fixtures:
 - 1. Solid-Surface-Material Lavatories and Sinks: ANSI/ICPA SS-1.
 - 2. Stainless-Steel Commercial, Handwash Sinks: NSF 2 construction.
 - 3. Vitreous-China Fixtures: ASME A112.19.2M.
 - 4. Water-Closet, Flush Valve, Tank Trim: ASME A112.19.5.
- G. Comply with the following applicable standards and other requirements specified for lavatory and sink faucets:
 - 1. Faucets: ASME A112.18.1.
 - 2. Integral, Atmospheric Vacuum Breakers: ASSE 1001.
 - 3. NSF Potable-Water Materials: NSF 61.

- 4. Pipe Threads: ASME B1.20.1.
- 5. Supply Fittings: ASME A112.18.1.
- 6. Brass Waste Fittings: ASME A112.18.2.
- H. Comply with the following applicable standards and other requirements specified for shower faucets:
 - 1. Backflow Protection Devices for Hand-Held Showers: ASME A112.18.3M.
 - 2. Combination, Pressure-Equalizing and Thermostatic-Control Antiscald Faucets: ASSE 1016.
 - 3. Deck-Mounted Bath/Shower Transfer Valves: ASME 18.7.
 - 4. Faucets: ASME A112.18.1.
 - 5. Hand-Held Showers: ASSE 1014.
 - 6. High-Temperature-Limit Controls for Thermal-Shock-Preventing Devices: ASTM F 445.
 - 7. Hose-Coupling Threads: ASME B1.20.7.
 - 8. Manual-Control Antiscald Faucets: ASTM F 444.
 - 9. Pipe Threads: ASME B1.20.1.
 - 10. Pressure-Equalizing-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
 - 11. Sensor-Actuated Faucets and Electrical Devices: UL 1951.
 - 12. Thermostatic-Control Antiscald Faucets: ASTM F 444 and ASSE 1016.
- I. Comply with the following applicable standards and other requirements specified for miscellaneous fittings:
 - 1. Atmospheric Vacuum Breakers: ASSE 1001.
 - 2. Brass and Copper Supplies: ASME A112.18.1.
 - 3. Manual-Operation Flushometers: ASSE 1037.
 - 4. Plastic Tubular Fittings: ASTM F 409.
 - 5. Brass Waste Fittings: ASME A112.18.2.
- J. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Flexible Water Connectors: ASME A112.18.6.

- 2. Floor Drains: ASME A112.6.3.
- 3. Grab Bars: ASTM F 446.
- 4. Hose-Coupling Threads: ASME B1.20.7.
- 5. Off-Floor Fixture Supports: ASME A112.6.1M.
- 6. Pipe Threads: ASME B1.20.1.
- 7. Plastic Toilet Seats: ANSI Z124.5.
- 8. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 WARRANTY

- A. Special Warranties: Manufacturer's standard form in which manufacturer agrees to repair or replace components of whirlpools that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures of unit shell.
 - b. Faulty operation of controls, blowers, pumps, heaters, and timers.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Period for Commercial Applications: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

- A. Water Closets: Wall mounted, top spud.
 - 1. Manufactures:
 - a. American Standard (Basis of Design)
 - b. Kohler
 - c. Zurn
 - d. Sloan
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard.
 - f. Rim Contour: Elongated.

- g. Water Consumption: 1.28 gal. per flush.h. Spud Size and Location: NPS 1-1/2; top.
- B. Hardwired, Solenoid-Actuator, Diaphragm Flushometer Valves:
 - 1. Manufactures:
 - a. Sloan (Basis of Design)
 - b. American Standard
 - c. Zurn
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.
 - 5. Material: Brass body with corrosion-resistant components.
 - 6. Exposed Flushometer-Valve Finish: Chrome plated.
 - 7. Panel Finish: Chrome plated or stainless steel.
 - 8. Style: Exposed.
 - 9. Actuator: Solenoid complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 10. Trip Mechanism: Hard-wired electronic sensor complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 11. Consumption: 1.28 gal. per flush.
 - 12. Minimum Inlet: NPS 1.
 - 13. Minimum Outlet: NPS 1-1/4.

2.2 TOILET SEATS

- A. Toilet Seats:
 - 1. Manufactures:
 - a. Bemis (Basis of Design)
 - b. Centoco
 - c. Church
 - d. Olsonite
 - 2. Standard: IAPMO/ANSI Z124.5.

- 3. Material: Plastic.
- 4. Type: Commercial (Standard).
- 5. Shape: Elongated rim, open front.
- 6. Hinge: Self-sustaining, check.
- 7. Hinge Material: Noncorroding metal.
- 8. Seat Cover: Not required.
- 9. Color: White.
- B. Urinals: Wall hung, back outlet, siphon jet.
 - 1. Manufactures:
 - a. American Standard (Basis of Design)
 - b. Kohler
 - c. Zurn
 - d. Sloan
 - 2. Fixture:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 - e. Water Consumption: Water saving.
 - f. Spud Size and Location: NPS 3/4; top.
 - g. Outlet Size and Location: NPS 2; back.
 - h. Color: White.
 - 3. Flushometer Valve: Solenoid-Actuator, Diaphragm Flushometer Valves.
 - 4. Waste Fitting:
 - a. Standard: ASME A112.18.2/CSA B125.2 for coupling.
 - b. Size: NPS 2.

2.3 URINAL FLUSHOMETER VALVES

- A. Solenoid-Actuator, Diaphragm Flushometer Valves:
 - 1. Manufactures:
 - a. Sloan (Basis of Design)
 - b. American Standard
 - c. Zurn
 - 2. Standard: ASSE 1037.

- 3. Minimum Pressure Rating: 125 psig.
- 4. Features: Include integral check stop and backflow-prevention device.
- 5. Material: Brass body with corrosion-resistant components.
- 6. Exposed Flushometer-Valve Finish: Chrome plated.
- 7. Panel Finish: Chrome plated or stainless steel.
- 8. Style: Exposed.
- 9. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
- 10. Trip Mechanism: Hard-wired electronic sensor complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
- 11. Consumption: 0.125 gal. per flush.
- 12. Minimum Inlet: NPS 3/4.
- 13. Minimum Outlet: NPS 3/4.

2.4 ABOVE COUNTER LAVATORIES

- A. Lavatory: Round, above counter, vitreous china, glazed underside.
 - 1. Manufactures:
 - a. Kohler (Basis of Design)
 - b. Or approved equal
 - 2. Fixture:
 - a. Standard: ASME A112.19.2.
 - b. Type: Vitreous china, above counter, round.
 - c. Nominal Size: Round 16-1/4" in diameter.
 - d. Faucet-Hole Punching: N/A.
 - e. Faucet-Hole Location: N/A
 - f. Mounting Material: Counter mounted.
 - 3. Faucet:
 - a. Manufactures:
 - 1) Delta
 - 2) Or approved equal
 - 4. Standards: ASME A112.18.1/CSA B125.1.

- 5. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 6. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
- 7. Body Type: Single hole.
- 8. Body Material: Commercial, solid brass.
- 9. Finish: Polished chrome plate.
- 10. Maximum Flow Rate: 0.5 gpm.
- 11. Mounting Type: Deck, exposed.
- 12. Spout: Rigid type.
- 13. Spout Outlet: Aerator.
- 14. Drain: Not part of faucet.

2.5 CORIAN LAVATORIES

- A. Lavatory: Seamless Oval White Integral Bowl.
 - 1. Manufactures:
 - a. Corian (Basis of Design)
 - b. Or approved equal
 - 2. Fixture:
 - a. Standard: ANSI Z124.3 and ANSI Z124.6.
 - b. Type: Solid Surface Integral.
 - c. Nominal Size: Oval 22 7/16" x 16 7/16" x 61/4" deep.
 - d. Faucet-Hole Punching: N/A.
 - e. Faucet-Hole Location: N/A
 - f. Color: White.
 - g. Mounting Material: Integral with counter.

2.6 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

- A. Lavatory: Ledge back, vitreous china, wall mounted.
 - 1. Manufactures:
 - a. American Standard (Basis of Design)
 - b. Kohler
 - c. Zurn

- d. Sloan
- 2. Fixture:
 - a. Standard: ASME A112.19.2/CSA B45.1.
 - b. Type: For wall hanging.
 - c. Nominal Size: Rectangular, 20.5 by 18.25 inches.
 - d. Faucet-Hole Punching: One hole.
 - e. Faucet-Hole Location: Top.
 - f. Color: White.
 - g. Mounting Material: Chair carrier.

2.7 SOLID-BRASS, AUTOMATICALLY OPERATED LAVATORY FAUCETS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for faucet materials that will be in contact with potable water.
- B. Lavatory Faucets: Automatic-type, hard-wired, electronic-sensor-operated, mixing, solid-brass valve.
 - 1. Manufactures:
 - a. Sloan (Basis of Design)
 - b. American Standard
 - c. Zurn
 - 2. Standards: ASME A112.18.1/CSA B125.1 and UL 1951.
 - 3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 - 5. Body Type: Single hole.
 - 6. Body Material: Commercial, solid brass.
 - 7. Finish: Polished chrome plate.
 - 8. Maximum Flow Rate: 0.5 gpm.
 - 9. Mounting Type: Deck, concealed.
 - 10. Spout: Rigid type.
 - 11. Spout Outlet: Aerator.
 - 12. Drain: Not part of faucet.

2.8 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Loose key.
- F. Risers:
 - 1. NPS 3/8.
 - 2. Chrome-plated, rigid-copper-pipe and brass straight or offset tailpieces riser.

2.9 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2 by NPS 1-1/4.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch- thick stainless-steel tube to wall; and stainless-steel wall flange.

2.10 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Co.
 - b. McGuire Manufacturing Co., Inc.

- c. TRUEBRO, Inc.
- d. Zurn Plumbing Products Group; Tubular Brass Plumbing Products Operation.
- 3. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

2.11 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Company.
 - 2. Smith, Jay R. Mfg. Co.
 - 3. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 4. Zurn Plumbing Products Group; Specification Drainage Operation.

B. Water-Closet Supports:

- 1. Standard: ASME A112.6.1M. ADA carriers shall be rated for 750lbs and standard carriers shall be rated for 500lbs.
- 2. Description: Combination carrier designed for accessible and standard mounting height of wall-mounting, water-closet-type fixture. Include single or double, vertical or horizontal, hub-and-spigot or hubless waste fitting as required for piping arrangement; faceplates; couplings with gaskets; feet; and fixture bolts and hardware matching fixture. Include additional extension coupling, faceplate, and feet for installation in wide pipe space.

C. Urinal Supports:

- 1. Description: Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture for wall-mounting, urinal-type fixture. Include steel uprights with feet.
- 2. Accessible-Fixture Support: Include rectangular steel uprights.

D. Lavatory Supports:

- 1. Description: Type I, lavatory carrier with exposed arms and tie rods for wall-mounting, lavatory-type fixture. Include steel uprights with feet.
- 2. Accessible-Fixture Support: Include rectangular steel uprights.
- E. Sink Supports:

1. Description: Type I, sink carrier with exposed arms and tie rods for sink-type fixture. Include steel uprights with feet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Assemble plumbing fixtures, trim, fittings, and other components according to manufacturers' written instructions.
- B. Install off-floor supports, affixed to building substrate, for wall-mounting fixtures.
 - 1. Use carrier supports with waste fitting and seal for back-outlet fixtures.
 - 2. Use carrier supports without waste fitting for fixtures with tubular waste piping.
 - 3. Use chair-type carrier supports with rectangular steel uprights for accessible fixtures.
- C. Install back-outlet, wall-mounting fixtures onto waste fitting seals and attach to supports.
- D. Install floor-mounting fixtures on closet flanges or other attachments to piping or building substrate.
- E. Install wall-mounting fixtures with tubular waste piping attached to supports.
- F. Install fixtures level and plumb according to roughing-in drawings.
- G. Install water-supply piping with stop on each supply to each fixture to be connected to water distribution piping. Attach supplies to supports or substrate within pipe spaces behind fixtures. Install stops in locations where they can be easily reached for operation.
- H. Install trap and tubular waste piping on drain outlet of each fixture to be directly connected to sanitary drainage system.
- I. Install tubular waste piping on drain outlet of each fixture to be indirectly connected to drainage system.
- J. Install flushometer valves for accessible water closets and urinals with handle mounted on wide side of compartment. Install other actuators in locations that are easy for people with disabilities to reach.
- K. Install toilet seats on water closets.
- L. Install faucet-spout fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- M. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.

- N. Install traps on fixture outlets.
 - 1. Exception: Omit trap on fixtures with integral traps.
 - 2. Exception: Omit trap on indirect wastes, unless otherwise indicated.
- O. Install escutcheons at piping wall and ceiling penetrations in exposed, finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- P. Seal joints between fixtures and walls, floors, and countertops using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Verify that installed plumbing fixtures are categories and types specified for locations where installed.
- B. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- C. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- D. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- E. All plumbing equipment are subject to the requirements of specification section 018111 Sustainable Construction Requirements.

3.4 CLEANING

A. Contractors' tests shall be scheduled and documented in accordance with the commissioning requirements.

- B. System functional testing is part of the Commissioning Process. Functional testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority.
- C. Clean fixtures, faucets, and other fittings with manufacturers' recommended cleaning methods and materials. Do the following:
 - 1. Remove faucet spouts and strainers, remove sediment and debris, and reinstall strainers and spouts.
 - 2. Remove sediment and debris from drains.
- D. After completing installation of exposed, factory-finished fixtures, faucets, and fittings, inspect exposed finishes and repair damaged finishes.

3.5 ADJUSTING

- A. Operate and adjust faucets and controls. Replace damaged and malfunctioning fixtures, fittings, and controls.
- B. Operate and adjust controls. Replace damaged and malfunctioning units and controls.
- C. Adjust water pressure at faucets and flushometer valves to produce proper flow and stream.
- D. Replace washers and seals of leaking and dripping faucets and stops.

3.6 PROTECTION

- A. Provide protective covering for installed fixtures and fittings.
- B. Do not allow use of plumbing fixtures for temporary facilities unless approved in writing by Owner.

3.7 DEMONSTRATION

A. Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans.

END OF SECTION 224000

SECTION 224700 - DRINKING FOUNTAINS AND WATER COOLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Style W, wall-mounting drinking fountains.
 - 2. Type PB, pressure with bubbler, Style W, wall-mounting water coolers.
 - 3. Fixture supports.
- B. "Commissioning of equipment or systems specified in this section is part of the construction process. Documentation and testing of these systems, as well as training of the Owner's operation and maintenance personnel, is required in cooperation with the Commissioning Authority. Project Closeout is dependent on successful completion of all commissioning procedures, documentation, and issue closure. Refer to Contract Closeout, Section 01700, for substantial completion details.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.
- C. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. NSF Standard: Comply with NSF 61, "Drinking Water System Components--Health Effects," for fixture materials that will be in contact with potable water.
- C. ARI Standard: Comply with ARI's "Directory of Certified Drinking Water Coolers" for style classifications.
- D. ARI Standard: Comply with ARI 1010, "Self-Contained, Mechanically Refrigerated Drinking-Water Coolers," for water coolers and with ARI's "Directory of Certified Drinking Water Coolers" for type and style classifications.
- E. ASHRAE Standard: Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants" for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant unless otherwise indicated.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

A. Water Coolers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkay Manufacturing Co.
 - b. Oasis Corporation.
- 2. Description: ARI 1010, Type PB, pressure with bubbler, Style F, freestanding water cooler.
 - a. Cabinet: Steel with powder-coat finish.
 - b. Bubbler: One, with adjustable stream regulator, located on deck.
 - c. Control: Push button.
 - d. Supply: NPS 3/8 with ball, gate, or globe valve.
 - e. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
 - f. Drain: Grid with NPS 1-1/4 minimum horizontal waste and trap complying with ASME A112.18.2.
 - g. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 - 1) Capacity: 8 gph of 50 deg F cooled water from 80 deg F inlet water and 90 deg F ambient air temperature.
 - 2) Electrical Characteristics: 1/4 hp; 120-V ac; single phase; 60 Hz.

B. Water Coolers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkay Manufacturing Co.
 - b. Oasis Corporation.
- 2. Description: Accessible, ARI 1010, Type PB, pressure with bubbler, Style W, wall-mounting water cooler for child-mounting height.
 - a. Cabinet: Bi-level with two attached cabinets and with bi-level skirt kit,
 - b. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
 - c. Control: Push button.
 - d. Supply: NPS 3/8 with ball, gate, or globe valve.
 - e. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
 - f. Drain(s): Grid with NPS 1-1/4 minimum horizontal waste and trap complying with ASME A112.18.1.
 - g. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 - 1) Capacity: 8 gph of 50 deg F cooled water from 80 deg F inlet water and 90 deg F ambient air temperature.
 - 2) Electrical Characteristics: 1/5 hp; 120-V ac; single phase; 60 Hz.
 - h. Support: Type I, water cooler carrier. Refer to "Fixture Supports" Article.

2.2 FIXTURE SUPPORTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Josam Co.
 - 2. MIFAB Manufacturing, Inc.
 - 3. Watts Drainage Products Inc.; a div. of Watts Industries, Inc.
 - 4. Zurn Plumbing Products Group; Specification Drainage Operation.
- B. Description: ASME A112.6.1M, water cooler carriers. Include vertical, steel uprights with feet and tie rods and bearing plates with mounting studs matching fixture to be supported.
 - 1. Type I: Hanger-type carrier with two vertical uprights.
 - 2. Type II: Bilevel, hanger-type carrier with three vertical uprights.
 - 3. Supports for Accessible Fixtures: Include rectangular, vertical, steel uprights instead of steel pipe uprights.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Use carrier off-floor supports for wall-mounting fixtures, unless otherwise indicated.
- B. Use chrome-plated brass or copper tube, fittings, and valves in locations exposed to view.

3.2 INSTALLATION

- A. Install fixtures level and plumb. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Install water-supply piping with shutoff valve on supply to each fixture to be connected to water distribution piping. Use ball, gate, or globe valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."
- C. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- D. Install pipe escutcheons at wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding pipe fittings. Escutcheons are specified in Division 22 Section "Common Work Results for Plumbing."
- E. Seal joints between fixtures and walls and floors using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Sealants are specified in Division 07 Section "Joint Sealants."
- F. All plumbing equipment are subject to the requirements of specification section 01 8111 Sustainable Construction Requirements.

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, traps, and risers, and with soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. "Contractors' tests shall be scheduled and documented in accordance with the commissioning requirements. Refer to Sections 019100, 230800, and 260800 for further details."
- B. "System functional testing is part of the Commissioning Process. Functional testing shall be performed by the contractor and witnessed and documented by the Commissioning Authority. Refer to Section 019100, Commissioning, for system functional tests and commissioning requirements."
- C. Water Cooler Testing: After electrical circuitry has been energized, test for compliance with requirements. Test and adjust controls and safeties.
 - 1. Remove and replace or repair malfunctioning units and retest as specified above.
 - 2. Report test results in writing.

3.5 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust water cooler temperature settings.

3.6 DEMONSTRATION

A. "Training of the owner's operation and maintenance personnel is required in cooperation with the Commissioning Authority. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Commissioning Authority after submission and approval of formal training plans.

END OF SECTION 224700

SECTION 230001 - CLEANING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SCOPE OF THE WORK

- A. Provide all labor, materials, facilities, equipment and services to thoroughly clean HVAC systems noted on the plans.
- B. The cleaning work for each building is to include but not limited to the following components:
 - 1. Main Air Handling Unit(s) or Roof Top Unit(s):
 - a. Unit enclosure.
 - b. Heating and cooling coils.
 - c. Fan assembly.
 - d. Condensate pan.
 - e. Replacement of existing filters and/or filter section.
 - f. Outside air and return air plenum(s).
 - g. Outside air intake(s).
 - 2. All supply and return ductwork, lined and unlined, including ductwork plenums, branches, risers, etc.
 - 3. All associated air terminal devices, i.e. supply diffuses, return registers, etc.
 - 4. Variable air volume (VAV) boxes.
 - 5. Reheat coils (electric or hot water).
 - 6. Sound attenuators.
 - 7. Exhaust duct system and all associated registers.
 - 8. Exhaust fan and return fan.
 - 9. Fire and fire/smoke dampers.
 - 10. Dust collector systems including:
 - a. Dust collector.
 - b. Filter bag replacement.
 - c. Ductwork system.

- C. Contractor will provide all labor, material and services to obtain access to HVAC units and associated components including:
 - 1. Removal of ceiling tiles.
 - 2. Installation of new access panels and removal/replacement of existing panels.
 - 3. See Section 3.9 for specification on reinstallation of removed materials.
- D. The bidders are encouraged to attend the pre-bid, site visit conference prior to submission of a bid proposal, to compare site conditions with drawings and/or specifications and to satisfy themselves of conditions existing at the site and all other matters that may be incidental to the work performed under this contract. No allowance will be made to the successful contractor by reason of any error on his/her part due to neglect to comply with the requirements of this paragraph. No extra charge will be allowed for work caused by unfamiliarity with the work area.
- E. It is the responsibility of the Contractor to verify field conditions before start of work.
- F. The Contractor will repair and replace to match existing materials where access to walls or ceilings was made, or damage occurs, including but are not limited to:
 - 1. Ductwork and components.
 - 2. Insulation.
 - 3. Pneumatic and electric control components.
 - 4. Others as applicable.
- G. Scope of the work also includes the following:
 - 1. The Contractor, on the basis of field inspections and review, must determine the method of cleaning the HVAC systems and its component to prevent any damage to the system and its operation. Upon completion of the initial inspection, the Contractor will notify the Project Engineer of the proposed methods and their effects to the system.
 - 2. Reset all balancing dampers to original settings if moved during work. Be sure to mark original position so that during the final inspection, original settings can be field verified.
 - 3. Report to Project Engineer any system defects discovered during the cleaning operation, which will require repair to an HVAC system (e.g. equipment, ductwork, dampers, registers, etc.).

1.3 QUALITY ASSURANCE

- A. Ductwork shall be cleaned in compliance with latest edition of the following standards:
 - 1. Mechanical cleaning of non-porous air conveyance system components, NADCA Latest Edition.
 - 2. Debris levels shall conform to:

Surface Debris Weight < 100MG/100cm

Total Surface Bacteria < 30,000 cfu/g

Total Surface Mold < 15,000 cfu/g

Note: cfu/g refers to colony forming units per gram of debris.

3. Plans and specifications which exceed the requirements in any of the referenced stand-

ards.

B. All sheet metal shall be fabricated and installed by an experienced Contractor specializing in this type of work and approved by the Engineer.

1.4 SUBMITTALS TO THE ARCHITECT/ENGINEER

- A. Shop drawings locating all proposed duct penetrations and ceiling access holes in plaster ceilings.
- B. Provide MSDS sheets on all solvents, cleaners and disinfectants to be used on the project.
- C. Provide submittals on any equipment or materials replacing the existing during the remediation process, i.e., diffusers, flex duct, fire dampers.

PART 2 - PRODUCTS

2.1 DUCT ACCESS DOORS

- A. Fabricate in accordance with SMACNA Duct Construction Standards.
- B. Review locations with the Project Engineer prior to installation.
- C. Fabricate rigid and close-fitting doors or galvanized steel with sealing gaskets and quick fastening locking devices. For insulated ductwork, install minimum one inch (25 mm) thick insulation sheet metal cover. All materials to be approved prior to use.
- D. Access doors smaller than 12 inches may be secured with sash locks.
- E. Provide two hinges and two sash locks for sizes up to 18 inches (450 mm) square, three hinges and two compression latches with outside and inside handles for sizes up to 24 x 49 inches (600 x 1200 mm). Provide an additional hinge for large sized.
- F. Access doors with sheet metal screw fasteners are not acceptable.
- G. All doors must be leak tight at the completion of the job.
- H. Doors shall be similar to Ventlock insulated access door, or Ruskin Model #CAD.

2.2 DUCT DISINFECTANT

- A. Equal to Madacide, as supplied by Mateson Chemical, EnviroCon as manufactured by Bio-Cide International, Inc., or approved equal.
- 2.3 SANITIZER * This product is no longer approved by the EPA.
 - A. An E.P.A. registered sanitizer "Oxine" as manufactured by Bio-Cide International or approved

equal. Product shall be a mixture of Oxychloride compounds.

2.4 ENCAPSULANT

A. Carlisle RE-500 is a high-performance, spray-applied insulation encapsulant and coating. This spray coating provides resistance to mold growth and is designed for use inside HVAC ductwork to encapsulate surfaces of lined ducts to prevent • berglass • bers from becoming airborne. At 13 g/l this low-VOC coating is ideal for critical projects such as hospitals and schools. The semi-gloss • nish provides a surface that will prevent debris accumulation that could lead to mold growth.

PART 3 - EXECUTION

3.1 PRE-CLEANING PREPARATIONS

- A. Prior to start of work, the HVAC system is to be carefully inspected and checked for all conditions affecting the cleaning. Defects are to be reported in writing to the Project Engineer, and work will not precede until defects have been documented. Commencement of work will constitute acceptance of the conditions of the area to which the cleaning work is to be performed, and all defects in work resulting from such accepted service will be corrected by this trade without additional expense to the Owner. No cleaning is to be performed to ducts where the process has the capability of damaging the duct lining. This decision will be made by the Project Engineer after review of the Contractor's findings, and the Project Engineer has seen the field conditions.
- B. Disassemble all removable items as required for access to work area. Store the removables in a Project Engineer approved storage area until the completion of the cleaning work.
- C. Fire protection devices (such as smoke detectors, panel, etc.) shall be protected prior to cleaning procedures. They are to be cleaned and tested at the conclusion of the work.
- D. The Contractor shall coordinate the shutdown and reactivating of the fire alarm system to avoid accidental alarms during cleaning process and related work.
- E. The Contractor shall coordinate the shutdown of the air handling equipment with the Owner before starting work, and shall conform to the OSHA requirements regarding fan motor disconnect lock-outs.
- F. The mechanical contractor shall hire a 3rd party hygienist to run this test. It cannot be performed by the air duct cleaning contractor.

3.2 CLEANING PROCEDURES

A. Sequence of work on each air handling system:

- 1. Review area with the Project Engineer.
- 2. Determine locations of HVAC units, ductwork, ventilation needs, sensitive equipment protection requirements, access and cleaning procedures.
- 3. Notify Maintenance Staff to shut down the air handling system(s).
- 4. CLEANING AND REMOVAL METHOD
- B. The following general ductwork cleaning procedures are to be used as a guideline throughout the project. Determination of which method should be used in each area is to be made by the Contractor and the Project Engineer. Contractors are to provide detailed procedures in their bid proposal. Deviations from specified methods of removal must be approved by the Project Engineer prior to their implementation.

C. Methods:

- 1. Debris Collection Equipment:
 - a. Equipment used shall be portable and sized to enter the areas easily. Electrical requirements shall be the responsibility of the Contractor, and any cost incurred due to modifications to the electrical systems shall be at the Contractor's expense.
 - b. The collection systems shall be self-contained units, with the appropriate components to adequately collect dirt and debris loosened from the ductwork. Air duct cleaning is to be performed by a high powered vacuum system with three stages of filtration. The final stage shall be HEPA filter. HEPA efficiency shall be 99.97 @ 0.3 micron.
 - c. The collection system shall be capable of producing a minimum of .42" water gauge negative static pressure in the area of ductwork to be cleaned.

2. Agitation Equipment:

- a. Air power cleaning of all interior ductwork, fan housings and HVAC units performed by a high pressure compressed air system which will be directed through small access doors in the ductwork. All access doors are to be provided per Section 2.1.
- b. Compressed air powered Gollum technology generating 90 CFM at 110 psi, as means of dislodging the debris shall be used. Air powered lances, extended whip sections, or oscillating brush systems may also be used.
- c. Electric robotic air powered brushing systems, or electric rotary brush systems may be used.
- d. Cleaning tools such as skipper balls, or air sweeps may not be used due to their inability to contact clean all sides of the duct.
- e. Where ductwork is large enough and able to support the weight of a worker, hand tools and vacuums may be used. If workers enter the inside of the duct, they must follow the OSHA confined space requirements (OSHA 29 CFR 1910.146).
- D. Open Ductwork: During the cleaning process, provide temporary closures of metal or taped polyethylene on open ductwork to prevent the dust during the cleaning process from dispersing throughout the work area.
- E. All lined ductwork is to be encapsulated as applicable.
 - 1. Controlling Odors: All responsible measures shall be taken to control any and all offensive odors and/or mist vapors generated during the cleaning process.
 - 2. Containment: Debris removed during the cleaning process shall be collected and tagged as to its origin within the Air Conveyance System (ACS). Precautions must be taken to ensure that debris is not dispersed outside the ACS during the cleaning

process.

3.4 CLEANING OF HVAC COMPONENTS

A. All A/C coils, drain pans, heating coils, humidifiers, fans, registers and grilles to be power washed using a high pressure, low fluid volume equipment. Cleaning to be performed in the steps:

Using biodegradable industrial type concentrated detergent.

Using a concentrated disinfectant, fungicide, odor counteractant, EPA approved material such as Oxine.

B. Air Handling Unit Surfaces:

- 1. The interior of the air handling units shall be brushed and mechanically vacuumed such that all metal surfaces are visibly clean and capable of Non-Porous Surfaces Cleaning Verification as described in the NADCA Standards. Internally lined ductwork shall be visibly clean, but will not be subject to testing as per NADCA Standards. No cleaning method should be used which could potentially damage components of the ductwork or negatively alter the integrity of the system.
- 2. Air handling unit cleaning shall include plenums, filter section, mixing boxes, return air fans, dampers and all components not specifically covered by Section 3.4.2.
- 3. Air handling unit fiberglass lining shall be encapsulated to deter further deterioration and breakdown. Method and type of encapsulating material must be approved by the Project Engineer prior to implementation.
- C. Coil and Fan Section of Air Handling Units: Coils shall be pressure washed and vacuumed such that they are visibly clean and capable of passing Coil Cleaning Verification. Coil drain pans shall be subject to Non-Porous Surfaces Cleaning Certifications as per NADCA Standards. The drain for the condensate pan shall be operational. Cleaning methods shall not cause any appreciable damage to, displacement of, or erosion of the coil surface, and shall conform to coil manufacturer recommendations when available.
- D. Ceiling Plenums and Mechanical Rooms: All loose debris shall be removed, and the entire ceiling plenum or mechanical room including, but not limited to, duct exterior, walls, deck, top of ceiling tiles, structural steel, piping, conduit, light fixtures shall be mechanically vacuumed. The plenum or Mechanical Room shall be visibly clean, but will not be subject to verification as per NADCA Standards.
- E. Induction Units: The induction unit covers shall be removed, and the entire unit interior completely brushed and vacuumed. All unit nozzles shall be clean and inspected. The Owner shall be notified of any broken or missing nozzles. Units subject to visual verification only.
- F. VAV Boxes: Disconnect inlet ducts, open access door and completely brush and mechanically vacuum all interior surfaces.
- G. Duct Re-heat Coils: Duct mounted coils shall be hand washed (air or water) on both coil faces. Thoroughly clean coil faces insuring the removal of debris, while avoiding damage to the fins. Remove corrosion from around the coil frames and paint all corroded metal surfaces. Perform pressure differential readings across the coil to verify cleanliness. Final pressure differentials across the coil shall be within 10% of manufacturer's original ratings.

- H. Volume, Fire and Zone Dampers: Duct mounted volume, fire and zone damper sets are to be marked to their current setting, then inspected and cleaned if necessary. External moving parts are to be treated with an approved dry lubricant material. After cleaning, the dampers shall be repaired as necessary to insure proper operation and returned to original settings. Contractor shall indicate locations of damaged and/or repaired dampers.
- I. Grilles, Registers and Diffusers: Whenever the grilles, registers and diffusers (GRD) are removable, they shall be removed, washed, dried, sanitized and replaced. When the GRD are restricted by a facade or welded in place, hand vacuuming and cleaning are acceptable. The Contractor shall avoid disturbing the existing volume damper settings. The Contractor is not responsible for cleaning the debris built-up on the ceiling.

3.5 FINAL INSPECTION

- A. A final check is to be carried out to ensure that no dust or debris remain on surfaces as the result of dismantling operations.
- B. The Project Engineer will thoroughly inspect the place jointly with the Contractor, to determine whether any damage has been done on the finishes, equipment or any other part of the work place. A final inspection report will be prepared jointly between the Project Engineer and the Contractor detailing the list of items to be fixed by the Contractor.

3.6 VERIFICATION

- A. General verification of cleanliness will be determined after Mechanical Cleaning and before the application of any treatment or introduction of any treatment-related substance. Verification of Non-Porous Surface cleaning and Verification of Coil Cleaning shall be conducted after Mechanical Cleaning and before the system is restored to normal operation.
- B. Verification of Coil Cleaning: Mechanical cleaning must restore the coil-pressure drop to within 10% of the pressure drop measured when the coil was first installed. If the original pressure drop is not known, the coil will be considered clean based on a thorough visual inspection.

3.7 SEQUENCE OF WORK

A. Since the systems must be operational during the normal work hours, the Contractor shall submit to the Owner a procedure and schedule for cleaning the ductwork and installing filters which will minimize contamination of already cleaned areas. This schedule must be approved by the Owner prior to starting work.

3.8 RESTORATION, REPAIRS AND INSTALLATION

- A. Repair and restore space in accordance with the final inspection list specified herein. If no additional modification of the work space is to take place, re-install all removable equipment and fixtures back in the space.
- B. Any damages to the finishes, floor, walls or any other item or fixture that has been the result of actions by the Contractor personnel is to be repaired to their original condition without any additional costs.
- C. Reinstall existing and install new accessories in accordance with manufacturer's instructions.

- D. Demonstrate resetting of fire and balancing dampers to authorities having jurisdiction and Owner's representative.
- E. Provide duct access doors for inspection and cleaning before and after filters, coils, fans, automatic dampers at fire dampers, and elsewhere if required. Provide suitable size access doors for hand access or shoulder access where necessary.
- F. Reconnect mixing box to ducts. Replace flexible ducts, clamps and gasketing if damaged during removal.
- G. Reconnect diffusers to ducts, replace straps or clamps and flexible duct if damaged during removal.
- H. Repair or replace duct insulation damaged during the work. Materials to match existing.
- I. The Contractor shall replace existing prefilters and filters with new filters for each system as required.

3.10 POST PROJECT REPORT

A post project report must be presented to include digital documentation, findings, recommendations, and success of services provided.

END OF SECTION 23 00 01

SECTION 230500 - COMMON WORK RESULTS FOR MECHANICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Mechanical equipment coordination and installation.
- 2. Common mechanical installation requirements.
- 3. Commissioning requirements.

1.3 GENERAL REQUIREMENTS

- A. Carefully examine General Conditions, other specification sections, and other drawings (in addition to DIVISION 23), in order to be fully acquainted with their effect on mechanical work. Additions to the contract cost will not be allowed due to failure to inspect existing conditions.
- B. Do all work in compliance with 2010 Florida Building Code, and the Codes adopted therein, 2010 Florida Fire Prevention Code. Obtain and pay for any and all required permits, inspections, certificates of inspections and approval, and the like, and deliver such certificates to the Architect/Engineer.
- C. Cooperate and coordinate with all other trades. Perform work in such manner and at such times as not to delay work of other trades. Complete all work as soon as the condition of the structure and installations of equipment will permit. Patch, in a satisfactory manner and by the proper craft, any work damaged by mechanical workmen.
- D. Furnish, perform, or otherwise provide all labor (including, but not limited to, all planning, purchasing, transporting, rigging, hoisting, storing, installing, testing, chasing, channeling, cutting, trenching, excavating and backfilling), coordination, field verification, equipment installation, support, and safety, supplies, and materials necessary for the correct installation of complete and functional mechanical systems (as described or implied by these specifications and the applicable drawings).

1.4 DRAWINGS:

A. Indicate only diagrammatically the extent, general character, and approximate location of work. Where work is indicated, but with minor details omitted, furnish and install it complete and so as to perform its intended functions.

- B. DIVISION 23 work called for under any section of the project specifications, shall be considered as included in this work unless specifically excluded by inclusion in some other branch of the work. This shall include roughing-in for connections and equipment as called for or inferred. This would include connection and ductwork required for all fans, hoods, dryers, diffusers etc as required for a functional installation, whether shown on the drawings or not. Check all drawings and specifications for the project and shall be responsible for the installation of all DIVISION 23 work.
- C. Take finish dimensions at the job site in preference to scale dimensions. Do not scale drawings where specific details and dimensions for DIVISION 23 work are not shown on the drawings, take measurements and make layouts as required for the proper installation of the work and coordination with all drawings and coordination with all other work on the project. In case of any discrepancies between the drawings and the specifications that have not been clarified by addendum prior to bidding, it shall be assumed by the signing of the contract that the higher cost (if any difference in costs) is included in the contract price, and perform the work in accordance with the drawings or with the specifications, as determined and approved by the Architect/ Engineer, and no additional costs shall be allowed to the base contract price.
- D. Carefully check the drawings and specifications of all trades and divisions before installing any of the work. Contractor shall in all cases consider the work of all other trades, and shall coordinate his work with them so that the best arrangements of all equipment, piping, conduit, ducts, rough-in, etc., can be obtained. The avoidance of any beams, joist or bracing that is an obstruction to ductwork, shall be included in the bid. This includes the reroute of ductwork or dimension revisions required to obtain the intended function of the ductwork. Bring all obstructions to the attention of the A/E during the shop drawing preparation and prior to fabrication of any ductwork. No cost will be paid by the owner for these modifications that can be identified by reviewing all sets of drawings prior to bid.
- E. Provide appropriately rated fire dampers or fire/smoke dampers as required by code at penetrations of fire rated or smoke rated walls by all duct work including but not limited to air supply, return, exhaust and ventilation ducts. These shall be provided at no additional cost whether shown on the drawings or not.
- F. Provide louvers in generator rooms for the generator whether shown or not. Louver shall be sized for appropriate combustion and cooling required per the manufacturers literature. Include all exhaust piping to take exhaust from muffler to the building exterior and fuel vent to the exterior whether shown or not.
- G. Coordinate mechanical equipment voltage requirements with electrical drawings. Notify the A/E of any discrepancies prior to bid. Make all revisions required to coordinate with no additional cost to the owner.
- H. Obtain manufacturer's data on all equipment, the dimensions of which may affect mechanical work. Use this data to coordinate proper service characteristics, entry locations, etc., and to ensure minimum clearances are maintained.

COMMON WORK RESULTS FOR MECHANICAL SECTION 230500

1.5 QUALIFICATIONS OF CONTRACTOR:

- A. Contractor performing any part of this scope of work shall be a Florida State Certified Mechanical Contractor (Type CMC)
- B. Provide field superintendent who has had a minimum of four (4) years previous successful experience on projects of comparable size and complexity. Superintendent shall be on the site at all times during construction.

1.6 SITE VISIT/CONDITIONS

- A. Visit the site of this contract and thoroughly familiarize with all existing field conditions and the proposed work as described or implied by the contract documents. During the course of his site visit, verify every aspect of the proposed work and the existing field conditions in the areas of construction which might affect his work. No compensation or reimbursement for additional expenses incurred due to failure or neglect to make a thorough investigation of the contract documents and the existing site conditions will be permitted.
- B. Install all equipment so that all Code required and Manufacturer recommended servicing clearances are maintained. Coordinate the proper arrangement and installation of all equipment within any designated space. If it is determined that a departure from the Contract Documents is necessary, submit to the A/E, for approval, detailed drawings of the proposed changes with written reasons for the changes. No changes shall be implemented without the approval of the engineer.
- C. Submission of a proposal will be construed as evidence that such examination has been made and later claims for labor, equipment or materials required because of difficulties encountered will not be recognized.
- D. Existing conditions and utilities indicated are taken from existing construction documents, surveys, and field investigations. Unforeseen conditions probably exist and existing conditions shown on drawings may differ from the actual existing installation with the result being that new work may not be field located exactly as shown on the drawings. Field verify dimensions of all site conditions prior to bidding and include any deviations in the contract. Notify A/E if deviations are found.
- E. All existing mechanical is not shown. Become familiar with all existing conditions prior to bidding, and include in the bid the removal of all mechanical equipment, duct, controls wiring, control devices, and control conduits, etc. that is not being reused, back to it's originating point.
- F. Locate all existing utilities and protect them from damage. Pay for repair or replacement of utilities or other property damaged by operations in conjunction with the completion of this work.
- G. Work is in connection with existing buildings which must remain in operation while work is being performed. Work shall be in accord with the schedule required by the Contract. Schedule work for a minimum shut down to Owner. Notify Owner 72 hours in advance of any shut-down of existing systems. Perform work during non-operating hours unless otherwise accepted by Owner. Protect existing buildings and equipment during construction.

1.7 COMMISSIONING RESPONSIBILITIES

- A. Attend commissioning meetings scheduled by the CM.
- B. Schedule work so that required mechanical installations are completed, and system verification checks and functional performance test can be carried out on schedule.
- C. Inspect, check and confirm in writing the proper installation and performance of all mechanical services as required by the system verification and functional performance testing requirements of mechanical equipment in the commissioning specifications.
- D. Provide qualified personnel to assist and operate mechanical system during system verification checks and functional performance testing of HVAC systems as required by the commissioning specifications.
- E. Provide instruction and demonstrations for the Owner's designated operating staff in accordance with the requirements of the commissioning specifications.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR MECHANICAL INSTALLATION

- A. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- B. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both mechanical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- D. Right of Way: Give to piping systems installed at a required slope.
- E. All work shall be executed in a workmanship manner and shall present a neat mechanical appearance upon completion.
- F. Care shall be exercised that all items are plumb, straight, level.
- G. Care shall be exercised so that Code clearance is allowed for all panels, controls. etc., requiring it. Do not allow other trades to infringe on this clearance.

H. The electrical circuits, components and controls for all equipment are selected and sized based on the equipment specified. If substitutions are proposed, furnish all materials and data required to prove equivalence. No additional charges shall be allowed if additional materials, labor, connections or equipment are needed for substituted products. Any modifications to the electrical design and installation or other trades will also need to be made at no additional cost to the Owner to accommodate the proposed substitutions. Comply with division 1 "substitutions" if allowable.

END OF SECTION 230500

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.
- B. Comply with NEMA MG 1 unless otherwise indicated.
- C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by
 - pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- B. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.

COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT SECTION 230513

- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513

SECTION 230519 - METERS AND GAGES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following meters and gages for mechanical systems:
 - 1. Thermometers.
 - 2. Gages.
 - 3. Test plugs.
 - 4. Flowmeters.
 - 5. Thermal-energy meters.

1.3 DEFINITIONS

- A. CR: Chlorosulfonated polyethylene synthetic rubber.
- B. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated; include performance curves.
- B. Shop Drawings: Schedule for thermometers, gages and flowmeters indicating manufacturer's number, scale range, and location for each.
- C. Product Certificates: For each type of thermometer, gage and flowmeter, signed by product manufacturer.
- D. Operation and Maintenance Data: For flowmeters and thermal-energy meters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 METAL-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers:
 - 1. Palmer Wahl Instruments Inc.
 - 2. Trerice, H. O. Co.
 - 3. Weiss Instruments, Inc.
 - 4. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- B. Case: Die-cast aluminum or brass, 7 inches (178 mm) long.
- C. Tube: blue reading, organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.3 PLASTIC-CASE, LIQUID-IN-GLASS THERMOMETERS

- A. Manufacturers:
 - 1. Ernst Gage Co.
 - 2. Eugene Ernst Products Co.
 - 3. Marsh Bellofram.
 - 4. Miljoco Corp.

- 5. Trerice, H. O. Co.
- 6. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- 7. Winters Instruments.
- B. Case: Plastic, 7 inches (178 mm) long.
- C. Tube: Blue reading, mercury or organic-liquid filled, with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Metal, for thermowell installation and of length to suit installation.
- H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.4 DUCT-TYPE, LIQUID-IN-GLASS THERMOMETERS

- A. Available Manufacturers:
 - 1. Miljoco Corp.
 - 2. Palmer Wahl Instruments Inc.
 - 3. Trerice, H. O. Co.
 - 4. Weiss Instruments, Inc.
- B. Case: Die-cast aluminum, 7 inches (178 mm) long.
- C. Tube: blue reading with magnifying lens.
- D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- E. Window: Glass or plastic.
- F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.
- G. Stem: Metal, for installation in mounting bracket and of length to suit installation.
- H. Mounting Bracket: Flanged fitting for attachment to duct and made to hold thermometer stem.
- I. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.5 THERMOWELLS

A. Available Manufacturers:

- 1. AMETEK, Inc.; U.S. Gauge Div.
- 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
- 3. Ernst Gage Co.
- 4. Marsh Bellofram.
- 5. Miljoco Corp.
- 6. NANMAC Corporation.
- 7. Noshok, Inc.
- 8. Palmer Wahl Instruments Inc.
- 9. REO TEMP Instrument Corporation.
- 10. Tel-Tru Manufacturing Company.
- 11. Trerice, H. O. Co.
- 12. Weiss Instruments, Inc.
- 13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
- 14. WIKA Instrument Corporation.
- 15. Winters Instruments.
- B. Manufacturers: Same as manufacturer of thermometer being used.
- C. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

2.6 PRESSURE GAGES

- A. Available Manufacturers:
 - 1. AMETEK, Inc.; U.S. Gauge Div.
 - 2. Ashcroft Commercial Instrument Operations; Dresser Industries; Instrument Div.
 - 3. Ernst Gage Co.
 - 4. Eugene Ernst Products Co.
 - 5. KOBOLD Instruments, Inc.
 - 6. Marsh Bellofram.
 - 7. Miljoco Corp.
 - 8. Noshok, Inc.
 - 9. Palmer Wahl Instruments Inc.
 - 10. REO TEMP Instrument Corporation.
 - 11. Trerice, H. O. Co.
 - 12. Weiss Instruments, Inc.
 - 13. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
 - 14. WIKA Instrument Corporation.
 - 15. Winters Instruments.
- B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.
 - 1. Case: Liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch (114-mm) diameter.
 - 2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
 - 3. Pressure Connection: Brass, NPS 1/4 (DN 8), bottom-outlet type unless back-outlet type is indicated.

- 4. Movement: Mechanical, with link to pressure element and connection to pointer.
- 5. Dial: Satin-faced, nonreflective aluminum with permanently etched scale markings.
- 6. Pointer: Red metal.
- 7. Window: Glass or plastic.
- 8. Ring: Metal Brass Stainless steel.
- 9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
- 10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure (100 kPa of vacuum to 103 kPa of pressure).
- 11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

- 1. Valves: NPS 1/4 (DN 8) brass or stainless-steel needle type.
- 2. Syphons: NPS 1/4 (DN 8) coil of brass tubing with threaded ends.
- 3. Snubbers: ASME B40.5, NPS 1/4 (DN 8) brass bushing with corrosion-resistant, porousmetal disc of material suitable for system fluid and working pressure.

2.7 TEST PLUGS

1

- B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.
- C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).
- D. Core Inserts: One or two self-sealing rubber valves.
 - 1. Insert material for air, water, oil, or gas service at 20 to 200 deg F (minus 7 to plus 93 deg C) shall be CR.
 - 2. Insert material for air or water service at minus 30 to plus 275 deg F (minus 35 to plus 136 deg C) shall be EPDM.
- E. Test Kit: Furnish one test kit(s) containing one pressure gage and adaptor, two thermometer(s), and carrying case. Pressure gage, adapter probes, and thermometer sensing elements shall be of diameter to fit test plugs and of length to project into piping. Manufacturer: Peterson Equipment Co., Inc, Model 1500
 - 1. Pressure Gage: Small bourdon-tube insertion type with 2- to 3-inch- (51- to 76-mm-) diameter dial and probe. Dial range shall be 0 to 200 psig (0 to 1380 kPa).
 - 2. Low-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial ranges shall be 25 to 125 deg F (minus 4 to plus 52 deg C).
 - 3. High-Range Thermometer: Small bimetallic insertion type with 1- to 2-inch- (25- to 51-mm-) diameter dial and tapered-end sensing element. Dial ranges shall be 0 to 220 deg F (minus 18 to plus 104 deg C).
 - 4. Carrying case shall have formed instrument padding.
 - 5. Kit shall be per national and OCPS standards.

2.8 WAFER-ORIFICE FLOWMETERS

- A. Available Manufacturers:
 - 1. ABB, Inc.; ABB Instrumentation.

- 2. Armstrong Pumps, Inc.
- 3. Badger Meter, Inc.; Industrial Div.
- 4. Bell & Gossett: ITT Industries.
- 5. Meriam Instruments Div.; Scott Fetzer Co.
- B. Description: Differential-pressure-design orifice insert for installation between pipe flanges; with calibrated flow-measuring element, separate flowmeter, hoses or tubing, valves, fittings, and conversion chart compatible with flow-measuring element, flowmeter, and system fluid.
- C. Construction: Cast-iron body, brass valves with integral check valves and caps, and calibrated nameplate.
- D. Pressure Rating: 300 psig (2070 kPa).
- E. Temperature Rating: 250 deg F (121 deg C).
- F. Range: Flow range of flow-measuring element and flowmeter shall cover operating range of equipment or system served.
- G. Permanent Indicators: Suitable for wall or bracket mounting, calibrated for connected flowmeter element, and having 6-inch- (150-mm-) diameter, or equivalent, dial with fittings and copper tubing for connecting to flowmeter element.
 - 1. Scale: Gallons per minute (Liters per second).
 - 2. Accuracy: Plus or minus 1 percent between 20 and 80 percent of range.
- H. Portable Indicators: Differential-pressure type calibrated for connected flowmeter element and having two 12-foot (3.7-m) hoses in carrying case.
 - 1. Scale: Gallons per minute (Liters per second).
 - 2. Accuracy: Plus or minus 2 percent between 20 and 80 percent of range.
- I. Operating Instructions: Include complete instructions with each flowmeter.

2.9 FLOW INDICATORS

- A. Available Manufacturers:
 - 1. Brooks Instrument Div.; Emerson Electric Co.
 - 2. Dwyer Instruments, Inc.
 - 3. Ernst Gage Co.
 - 4. Eugene Ernst Products Co.
 - 5. McCrometer, Inc.
 - 6. OPW Engineered Systems; Dover Corp.
 - 7. Penberthy, Inc.
- B. Description: Instrument for installation in piping systems for visual verification of flow.
- C. Construction: Bronze or stainless-steel body; with sight glass and plastic pelton-wheel indicator, and threaded or flanged ends.
- D. Pressure Rating: 125 psig (860 kPa).

- E. Temperature Rating: [200 deg F (93 deg C)].
- F. End Connections for NPS 2 (DN 50) and Smaller: Threaded.
- G. End Connections for NPS 2-1/2 (DN 65) and Larger: Flanged.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

- A. Install liquid-in-glass thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic chiller.
 - 3. Inlet and outlet of each hydronic coil in air-handling units and built-up central systems.
 - 4. Outside-air, return-air, and mixed-air ducts.
- B. Provide the following temperature ranges for thermometers:
 - 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions (Minus 1 to plus 82 deg C, with 1-degree scale divisions).
 - 2. Chilled Water: 0 to 100 deg F, with 2-degree scale divisions (Minus 18 to plus 38 deg C, with 1-degree scale divisions).

3.2 GAGE APPLICATIONS

- A. Install dry-case-type pressure gages for discharge of each pressure-reducing valve.
- B. Install liquid-filled-case-type pressure gages at chilled--water inlets and outlets of chillers.
- C. Install liquid-filled-case-type pressure gages at suction and discharge of each pump.

3.3 INSTALLATIONS

- A. Install direct-mounting thermometers and adjust vertical and tilted positions.
- B. Install remote-mounting dial thermometers on panel, with tubing connecting panel and thermometer bulb supported to prevent kinks. Use minimum tubing length.
- C. Install thermowells with socket extending a minimum of 2 inches (51 mm) into fluid and in vertical position in piping tees where thermometers are indicated.
- D. Duct Thermometer Support Flanges: Install in wall of duct where duct thermometers are indicated. Attach to duct with screws.
- E. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
- F. Install remote-mounting pressure gages on panel.

- G. Install needle-valve and snubber fitting in piping for each pressure gage for fluids (except steam).
- H. Install needle-valve and syphon fitting in piping for each pressure gage for steam.
- I. Install test plugs in tees in piping.
- J. Install flow indicators, in accessible positions for easy viewing, in piping systems.
- K. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters as prescribed by manufacturer's written instructions.
- L. Install flowmeter elements in accessible positions in piping systems.
- M. Install differential-pressure-type flowmeter elements with at least minimum straight lengths of pipe upstream and downstream from element as prescribed by manufacturer's written instructions.
- N. Install wafer-orifice flowmeter elements between pipe flanges.
- O. Install permanent indicators on walls or brackets in accessible and readable positions.
- P. Install connection fittings for attachment to portable indicators in accessible locations.
- Q. Install flowmeters at discharge of hydronic system pumps and at inlet of hydronic air coils.
- R. Assemble components and install thermal-energy meters.
- S. Mount meters on wall if accessible; if not, provide brackets to support meters.

3.4 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding."
- D. Connect wiring according to Division 26 Section "Conductors and Cables."

3.5 ADJUSTING

- A. Calibrate meters according to manufacturer's written instructions, after installation.
- B. Adjust faces of meters and gages to proper angle for best visibility.

END OF SECTION 230519

SECTION 230523 - VALVES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following general-duty valves:
 - 1. Copper-alloy ball valves.
 - 2. Ferrous-alloy ball valves.
 - 3. Ferrous-alloy butterfly valves.
 - 4. High-pressure butterfly valves.
 - 5. Bronze check valves.
 - 6. Bronze gate valves.

1.3 DEFINITIONS

- A. The following are standard abbreviations for valves:
 - 1. CWP: Cold working pressure.
 - 2. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 3. PTFE: Polytetrafluoroethylene plastic.
 - 4. SWP: Steam working pressure.
 - 5. TFE: Tetrafluoroethylene plastic.

1.4 SUBMITTALS

A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

1.5 QUALITY ASSURANCE

- A. ASME Compliance: ASME B31.9 for building services piping valves.
- B.
- 1. Exceptions: Domestic hot- and cold-waterpiping valves unless referenced.

- C. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.
- D. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Crane
 - 2. Milwaukee
 - 3. Stockham
 - 4. Nibco
 - 5. Powell
 - 6. Belimo

2.2 VALVES, GENERAL

- A. Refer to Part 3 "Valve Applications" Article for applications of valves.
- B. Bronze Valves: NPS 2 (DN 50) and smaller with threaded ends, unless otherwise indicated.
- C. Ferrous Valves: NPS 2-1/2 (DN 65) and larger with flanged ends, unless otherwise indicated.
- D. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

- E. Valve Sizes: Same as upstream pipe, unless otherwise indicated.
- F. Valve Actuators:
 - 1. Gear Drive: For quarter-turn valves NPS 8 (DN 200) and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Lever Handle: For quarter-turn valves NPS 6 (DN 150) and smaller, except plug valves.
- G. Valves in Insulated Piping: With 2-inch (50-mm) stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 2. Butterfly Valves: With extended neck.
- H. Valve Flanges: ASME B16.1 for cast-iron valves, ASME B16.5 for steel valves, and ASME B16.24 for bronze valves.
- I. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- J. Valve Bypass and Drain Connections: MSS SP-45.

2.3 COPPER-ALLOY BALL VALVES

- A. Copper-Alloy Ball Valves, General: MSS SP-110.
- B. Two-Piece, Copper-Alloy Ball Valves: Brass or bronze body with full or regular-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig (4140-kPa) minimum CWP rating and blowout-proof stem.

2.4 FERROUS-ALLOY BALL VALVES

- A. Ferrous-Alloy Ball Valves, General: MSS SP-72, with flanged ends.
- B. Ferrous-Alloy Ball Valves: Class 150, full or regular port.

2.5 FERROUS-ALLOY BUTTERFLY VALVES

- A. Ferrous-Alloy Butterfly Valves, General: MSS SP-67, Type I, for tight shutoff, with disc and lining suitable for potable water, unless otherwise indicated.
- B. Flanged, 200-psig (1380-kPa) CWP Rating, Ferrous-Alloy Butterfly Valves: Flanged-end type with one- or two-piece stem.

2.6 BRONZE CHECK VALVES

- A. Bronze Check Valves, General: MSS SP-80.
- B. Type 2, Class 125, Bronze, Horizontal Lift Check Valves: Bronze body with nonmetallic disc and bronze seat.
- C. Type 2, Class 125, Bronze, Vertical Lift Check Valves: Bronze body with nonmetallic disc and bronze seat.

2.7 BRONZE GATE VALVES

- A. Bronze Gate Valves, General: MSS SP-80, with ferrous-alloy handwheel.
- B. Type 1, Class 125, Bronze Gate Valves: Bronze body with nonrising stem and bronze solid wedge and union-ring bonnet.

2.8 CHAINWHEELS

- A. Description: Valve actuation assembly with sprocket rim, brackets, and chain.
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to butterfly valve stems.
 - 3. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve. Include zinc coating.
 - 4. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine piping system for compliance with requirements for installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.
- B. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- C. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- D. Examine threads on valve and mating pipe for form and cleanliness.
- E. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

F. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE APPLICATIONS

- A. Refer to piping Sections for specific valve applications. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball or butterfly valves.
 - 2. Throttling Service: ball or butterfly valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
- C. Chilled-Water Piping: Use the following types of valves:
 - 1. Pressure Independent Control Valves [Water Coil Optimization]
 - a. NPS 2 and Smaller (DN 15 50): : Forged brass body rated at no less than 250 PSI, stainless steel ball and stem, female NPT union ends, dual EPDM lubricated O-rings and a brass or TEFZEL characterizing disc.
 - b. NPS 2-1/2 through 6(DN 65 150): : GG25 cast iron body according to ANSI Class 125, standard class B, stainless steel ball and blowout proof stem, flange to match ANSI 125 with a dual EPDM O-ring packing design, PTFE seats, and a stainless steel flow characterizing disc.
 - c. Accuracy: The control valves shall accurately control the flow from 0 to 100% rated flow with an operating pressure differential range of 5 to 50 PSI differential across the valve with a valve body flow accuracy of +/- 5 total assembly error incorporating differential pressure fluctuation, manufacturing tolerances and valve hysteresis
 - d. Flow Characteristics: Equal percentage characteristic.
 - e. All actuators shall be capable of being electronically programmed in the field by use of external computer software or a dedicated handheld tool for the adjustment of flow. Programming using actuator mounted switches or multi-turn actuators are not acceptable.
 - f. [Water coil optimization shall be accomplished by utilizing a pressure independent control valve assembly; two temperature sensors providing feedback of coil inlet and outlet water temperatures; and an electronic flow meter to provide analog flow feedback. Software shall control the valve to avoid the coil differential temperature from falling below a programmed set point; the valve assembly shall be capable of accepting an analog signal representing the coil power required. Real-time data and configuration of valve operating parameters shall be available by means of BACnet MS/TP, BACnet/IP or HTTP. Monitored points shall include, but not be limited to inlet and outlet coil water temperatures, absolute flow, absolute valve position, absolute coil power and total heating/cooling energy in BTU/hr. Configuration points shall include but not be limited to valve, flow, and power settings. Historical trend data shall be stored for up to 13 months and be retrievable in a standard time-stamped format.]
 - g. The manufacturer shall provide a published commissioning procedure following the guidelines of the National Environmental Balancing Bureau (NEBB) and the Testing Adjusting Balancing Bureau (TABB).
 - h. A wet calibrated electronic flow meter shall provide dynamic feedback to measure flow and verify performance.

- i. The control valve shall require no maintenance and shall not include replaceable cartridges.
- j. Calibrated Balancing Valves and Automatic Flow-Control Valves shall not be used on equipment where pressure independent control valves are installed.
- 2. Characterized Control Valves:
 - a. 3" and Smaller: (DN 15 80): Nickel-plated forged brass body rated at no less than 400 psi, stainless steel ball and blowout proof stem, female NPT end fittings, with a dual EPDM O-ring packing design, fiberglass reinforced Teflon seats, and a TEFZEL or stainless steel flow characterizing disc.
 - b. 2-1/2" through 6": (DN 65 150): GG25 cast iron body, ANSI 125, class B, stainless steel ball and blowout proof stem, flange to match ANSI 125 with a dual EPDM O-ring package design, PTFE seats, and a stainless steel flow characterizing disc.
 - c. Valve assemblies shall be maintenance free.
- 3. Ball Valves, NPS 2 (DN 50) and Smaller: Two-piece, 600-psig (4140-kPa) CWP rating, copper alloy or bronze body.
- 4. Butterfly Valves, NPS 2-1/2 to NPS 12 (DN 65 300): Flanged, 200-psig (1380-kPa) shall be full lugged ductile iron 200 psig body with a 304 stainless steel disc, EPDM seat, extended neck and shall meet ANSI Class 125/150 flange standards. Disc-to-stem connection shall utilize an internal spline. The shaft shall be supported at four locations by RPTFE bushings. A coated disc shell is not acceptable
- 5. Butterfly Valves, NPS 14 (DN 350): and Larger: Flanged, 150-psig shall be full lugged ductile iron 150-psig body with a 304 stainless steel disc, EPDM seat, extended neck and shall meet ANSI Class 125/150 flange standards. Disc-to-stem connection shall utilize a dual-pin method to prevent the disc from settling onto the liner. The shaft shall be supported at four locations by RPTFE bushings. A coated disc shell is not acceptable.
 - a. Sizing: Two-Position (on/off) butterfly valves shall be sized using the 90° Cv rating. Modulating butterfly valves shall be sized using the 60° Cv rating.
 - b. Close-Off Pressure Rating: Bubble-tight shutoff (no leakage).
 - c. The combination of two 2-way butterfly valves in a tee configuration cross-linked to ensure proper flow orientation shall be permitted. The tee shall be constructed of cast iron/stainless steel
- D. Select valves, except wafer and flangeless types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Solder-joint or threaded ends, except provide valves with threaded ends for heating hot water, steam, and steam condensate services.
 - 2. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 DN 100): Flanged or threaded ends.
 - 3. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.
- E. Install chainwheels on operators for butterfly valves NPS 4 (DN 100) and larger and more than 96 inches (2400 mm) above floor. Extend chains to 60 inches (1520 mm) above finished floor.

3.3 VALVE INSTALLATION

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- C. Locate valves for easy access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe.
- E. Install valves in position to allow full stem movement.

3.4 JOINT CONSTRUCTION

A. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.5 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 230523

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
- C. Welding certificates.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. Non-MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to,

the following:

- a. Anvil International; a subsidiary of Mueller Water Products Inc.
- b. Empire Industries, Inc.
- c. ERICO International Corporation.
- d. Haydon Corporation; H-Strut Division.
- e. PHD Manufacturing, Inc.
- f. PHS Industries, Inc.
- 2. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
- 3. Standard: Comply with MFMA-4.
- 4. Channels: Continuous slotted steel channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- 7. Coating: Zinc.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 7. Piping Technology & Products, Inc.
 - 8. Rilco Manufacturing Co., Inc.
 - 9. Value Engineered Products, Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.

- 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

C. High-Type, Multiple-Pipe Stand:

- 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
- 2. Bases: One or more; plastic.
- 3. Vertical Members: Two or more protective-coated-steel channels.
- 4. Horizontal Member: Protective-coated-steel channel.
- 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

- 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
- 5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm).

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and attachments for general service applications.
- F. Use padded hangers for piping that is subject to scratching.
- G. Use thermal-hanger shield inserts for insulated piping and tubing.
- H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 (DN 100 to DN 900), with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24 (DN 24 to DN 600).
- J. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
- 3. C-Clamps (MSS Type 23): For structural shapes.
- K. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- L. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529

SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Freestanding and restrained spring isolators.
 - 4. Spring hangers.
 - 5. Inertia, vibration isolation equipment bases.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 120 MPH.
 - 2. Building Classification Category: III.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

- B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, wind forces required to select vibration isolators, wind restraints, and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 22 Sections for equipment mounted outdoors.
 - 2. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads.
- C. Qualification Data: For professional engineer.

1.6 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1.
 - 2. Amber/Booth Company
 - 3. Kinetics Noise Control.
 - 4. Mason Industries.
- B. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant neoprene.
- C. Mounts: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.

- D. Spring Isolators: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- E. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic or limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- (6-mm-) thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Seismic or limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- F. Spring Hangers: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 VIBRATION ISOLATION EQUIPMENT BASES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Amber/Booth Company
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
- B. Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. Powder coating on springs and housings.
 - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.
 - 3. Baked enamel or powder coat for metal components on isolators for interior use.
 - 4. Color-code or otherwise mark vibration isolation control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Comply with requirements in Division 07 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- B. Equipment Restraints:
 - 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
- C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

3.3 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.
- D. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Duct labels.
 - 4. Valve tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving,

- 1/16 inch thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules).
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches.

2.3 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Per section 3.4.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

- E. Minimum Label Size: Length and width vary for required label content, but not less than 4 by 2-4 inch.
- F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches.

2.4 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.
- C. When equipment is located above the ceiling install label on the ceiling grid T-bar below the equipment and on equipment.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Division 09.

- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

C. Pipe Label Color Schedule:

- 1. Chilled-Water Piping:
 - a. Background Color: Green.
 - b. Letter Color: White.
- 2. Condenser-Water Piping:
 - a. Background Color: Blue.
 - b. Letter Color: White.
- 3. Refrigerant Piping:
 - a. Background Color: Black.
 - b. Letter Color: White
- 4. Gas Piping.
 - a. Background Color: Yellow.
 - b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION

- A. Install duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT SECTION 230553

- 1. Valve-Tag Size and Shape:
 - a. Chilled Water: 1-1/2 inches, round.
 - b. Condenser Water: 1-1/2 inches, round.
 - c. Gas: 1-1/2 inches, round.
- 2. Valve-Tag Color:
 - a. Chilled Water: Natural.
 - b. Condenser Water: Natural.
 - c. Gas: Yellow.
- 3. Letter Color:
 - a. Chilled Water: Black.
 - b. Condenser Water: Black.
 - c. Gas: Black.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Hydronic Piping Systems:
 - a. Variable-flow systems.
 - 3. HVAC equipment quantitative-performance settings.
 - 4. Vibration measuring.
 - 5. Indoor-air quality measuring.
 - 6. Verifying that automatic control devices are functioning properly.
 - 7. Reporting results of activities and procedures specified in this Section.

1.3 DEFINITIONS

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.
- C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.
- D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- E. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.
- F. Report Forms: Test data sheets for recording test data in logical order.
- G. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.

- H. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.
- I. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- J. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- K. TAB: Testing, adjusting, and balancing.
- L. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- M. Test: A procedure to determine quantitative performance of systems or equipment.
- N. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 30 days from Contractor's Notice to Proceed, submit 2 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 45 days from Contractor's Notice to Proceed, submit 6 copies of the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 2 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- E. Sample Report Forms: Submit two sets of sample TAB report forms.
- F. Warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.
- B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.

- C. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems."
- D. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems."
- E. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.6 PROJECT CONDITIONS

- A. Owner Occupancy: Owner will not occupy the building during entire TAB period. T&B reports shall be finalized and approved prior to owner occupancy.
- B. T&B firm shall be independent from the mechanical contractor.

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.8 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - 1. Contract Documents are defined in the General and Supplementary Conditions of Contract.
 - 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 1 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.

- L. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- M. Examine strainers for clean screens and proper perforations.
- N. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- O. Examine system pumps to ensure absence of entrained air in the suction piping.
- P. Examine equipment for installation and for properly operating safety interlocks and controls.
- Q. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- R. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Permanent electrical power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" and this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.
- L. Check for proper sealing of air duct system.

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure fan static pressures to determine actual static pressure as follows:
 - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters.
 - 3. Measure static pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions.
 - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions.
 - 5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes.
 - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure terminal outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

- D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - 8. Record the final fan performance data.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

- B. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check expansion tank liquid level.
 - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 5 percent of design.
- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow
 - 3. Record settings and mark balancing devices.

- F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- G. Measure the differential-pressure control valve settings existing at the conclusions of balancing.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.11 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.12 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.13 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.14 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.

- 13. Data for terminal units, including manufacturer, type size, and fittings.
- 14. Notes to explain why certain final data in the body of reports varies from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data: Include the following:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches (mm), and bore.
 - i. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - i. Number of belts, make, and size.
 - k. Number of filters, type, and size.
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Filter static-pressure differential in inches wg (Pa).
 - f. Preheat coil static-pressure differential in inches wg (Pa).

- g. Cooling coil static-pressure differential in inches wg (Pa).
- h. Heating coil static-pressure differential in inches wg (Pa).
- i. Outside airflow in cfm (L/s).
- j. Return airflow in cfm (L/s).
- k. Outside-air damper position.
- 1. Return-air damper position.
- m. Vortex damper position.
- G. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch (mm) o.c.
 - f. Make and model number.
 - g. Face area in sq. ft. (sq. m).
 - h. Tube size in NPS (DN).
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Average face velocity in fpm (m/s).
 - c. Air pressure drop in inches wg (Pa).
 - d. Outside-air, wet- and dry-bulb temperatures in deg F (deg C).
 - e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 - f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 - h. Water flow rate in gpm (L/s).
 - i. Water pressure differential in feet of head or psig (kPa).
 - j. Entering-water temperature in deg F (deg C).
 - k. Leaving-water temperature in deg F (deg C).
 - 1. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig (kPa).
 - n. Refrigerant suction temperature in deg F (deg C).
 - o. Inlet steam pressure in psig (kPa).
- H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btuh (kW).
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.
 - h. Airflow rate in cfm (L/s).
 - i. Face area in sq. ft. (sq. m).
 - j. Minimum face velocity in fpm (m/s).

- 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btuh (kW).
 - b. Airflow rate in cfm (L/s).
 - c. Air velocity in fpm (m/s).
 - d. Entering-air temperature in deg F (deg C).
 - e. Leaving-air temperature in deg F (deg C).
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- I. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches (mm), and bore.
 - h. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - 2. Motor Data:
 - a. Make and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches (mm), and bore.
 - f. Sheave dimensions, center-to-center, and amount of adjustments in inches (mm).
 - g. Number of belts, make, and size.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm (L/s).
 - b. Total system static pressure in inches wg (Pa).
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg (Pa).
 - e. Suction static pressure in inches wg (Pa).
- J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F (deg C).
 - d. Duct static pressure in inches wg (Pa).
 - e. Duct size in inches (mm).
 - f. Duct area in sq. ft. (sq. m).
 - g. Indicated airflow rate in cfm (L/s).
 - h. Indicated velocity in fpm (m/s).
 - i. Actual airflow rate in cfm (L/s).
 - j. Actual average velocity in fpm (m/s).
 - k. Barometric pressure in psig (Pa).

- K. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft. (sq. m).
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm (L/s).
 - b. Air velocity in fpm (m/s).
 - c. Preliminary airflow rate as needed in cfm (L/s).
 - d. Preliminary velocity as needed in fpm (m/s).
 - e. Final airflow rate in cfm (L/s).
 - f. Final velocity in fpm (m/s).
 - g. Space temperature in deg F (deg C).
- L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model and serial numbers.
 - f. Water flow rate in gpm (L/s).
 - g. Water pressure differential in feet of head or psig (kPa).
 - h. Required net positive suction head in feet of head or psig (kPa).
 - i. Pump rpm.
 - j. Impeller diameter in inches (mm).
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig (kPa).
 - b. Pump shutoff pressure in feet of head or psig (kPa).
 - c. Actual impeller size in inches (mm).
 - d. Full-open flow rate in gpm (L/s).
 - e. Full-open pressure in feet of head or psig (kPa).
 - f. Final discharge pressure in feet of head or psig (kPa).
 - g. Final suction pressure in feet of head or psig (kPa).
 - h. Final total pressure in feet of head or psig (kPa).
 - i. Final water flow rate in gpm (L/s).

- j. Voltage at each connection.
- k. Amperage for each phase.

M. Vibration Measurement Reports:

- 1. Date and time of test.
- 2. Vibration meter manufacturer, model number, and serial number.
- 3. Equipment designation, location, equipment, speed, motor speed, and motor horsepower.
- 4. Diagram of equipment showing the vibration measurement locations.
- 5. Measurement readings for each measurement location.
- 6. Calculate isolator efficiency using measurements taken.
- 7. Description of predominant vibration source.

N. Indoor-Air Quality Measurement Reports for Each HVAC System:

- 1. HVAC system designation.
- 2. Date and time of test.
- 3. Outdoor temperature, relative humidity, wind speed, and wind direction at start of test.
- 4. Room number or similar description for each location.
- 5. Measurements at each location.
- 6. Observed deficiencies.

O. Instrument Calibration Reports:

- 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.15 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
- 2. Randomly check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Measure sound levels at two locations.
 - e. Measure space pressure of at least 10 percent of locations.
 - f. Verify that balancing devices are marked with final balance position.
 - g. Note deviations to the Contract Documents in the Final Report.

B. Final Inspection:

1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.

- 2. TAB firm test and balance engineer shall conduct the inspection in the presence of Owner.
- 3. Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day.
- 4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- 6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report.
- 7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment.

3.16 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION 230593

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- CertainTeed Corp.; SoftTouch Duct Wrap. Johns Manville; Microlite. a.
- b.

- c. Knauf Insulation; Friendly Feel Duct Wrap.
- d. Manson Insulation Inc.; Alley Wrap.
- e. Owens Corning; SOFTR All-Service Duct Wrap.
- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company: 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

- 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: Aluminum.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 TAPES

١.

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.

- c. Compac Corporation; 110 and 111.
- d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
- 2. Width: 3 inches (75 mm).
- 3. Thickness: 6.5 mils (0.16 mm).
- 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
- 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.7 SECUREMENTS

- A. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch (38-mm) galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

- 4. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.

- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of vapor-barrier mastic at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm)
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.

- b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
- c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
- d. Do not overcompress insulation during installation.
- e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of vapor-barrier mastic at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches (75 mm).
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.5 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply, return, outdoor air.
 - 2. Indoor, exposed supply, return, outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with Florida Energy Conservation Code.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Factory-insulated access panels and doors.

3.6 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- B. Concealed, round and flat-oval, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- C. Concealed, round and flat-oval, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- D. Concealed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- E. Concealed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- F. Concealed, rectangular, outdoor-air duct insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- G. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- H. Concealed, return-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- I. Concealed, outdoor-air plenum insulation shall be the following:
 - 1. Mineral-Fiber Blanket: 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- J. Exposed, round and flat-oval, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- K. Exposed, round and flat-oval, return-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- L. Exposed, round and flat-oval, outdoor-air duct insulation shall be one of the following:

- 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- M. Exposed, round, flat-oval and rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- N. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- O. Exposed, rectangular, return-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- P. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- Q. Exposed, return-air plenum insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.
- R. Exposed, outdoor-air plenum insulation shall be one of the following:
 - 1. Mineral-Fiber Board: 1-1/2 inches (38 mm) thick and 2-lb/cu. ft. (32-kg/cu. m) nominal density.

END OF SECTION 230713

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors.
 - 2. Chilled-water and brine piping, indoors and outdoors.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Pittsburgh Corning Corporation; Foamglas.

b.

- 2. Block Insulation: ASTM C 552, Type I.
- 3. Special-Shaped Insulation: ASTM C 552, Type III.

- 4. Board Insulation: ASTM C 552, Type IV.
- 5. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
- 6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

d.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84.

b.

- C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.

e.

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.

C

- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.

d

- 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
- 3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
- 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
- 5. Color: White.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.

d.

- 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
- 4. Service Temperature Range: 0 to plus 180 deg F (Minus 18 to plus 82 deg C).
- 5. Color: White.

2.5 SEALANTS

A. Joint Sealants:

- 1. Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.

f.

- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Permanently flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
- 5. Color: White or gray.

B. FSK and Metal Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.

e.

- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: Aluminum.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.

b.

- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Chil-Glas Number 10.

b.

2.8 FIELD-APPLIED CLOTHS

- A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd. (271 g/sq. m).
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Alpha Associates, Inc.; Alpha-Maritex 84215 and 84217/9485RW, Luben 59.

b.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.

d.

- 2. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.

- 3) Tee covers.
- 4) Flange and union covers.
- 5) End caps.
- 6) Beveled collars.
- 7) Valve covers.
- 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.10 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 11.5 mils (0.29 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.11 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

c.

- 2. Aluminum: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) wide with wing seal or closed seal.
- 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Retain one of first two paragraphs below. Corrosion of metal pipe under insulation, while not typically caused by insulation, is an issue that must be considered during design of any HVAC insulation system. The potential for corrosion depends on many factors. Requirements cited in second paragraph represent added measures of protection but are not meant to take the place of proper system design and specification.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, remove materials that will adversely affect insulation application.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install all new insulation for all existing and new chilled water piping, condensate piping, and all associated hydronic piping located within the mechanical rooms only. The insulation and field applied jacket shall be seamless within the existing mechanical rooms. Under no circumstance shall any existing insulation remain within the mechanical room.
- B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- E. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- F. Install multiple layers of insulation with longitudinal and end seams staggered.
- G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- H. Keep insulation materials dry during application and finishing.

- I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- J. Install insulation with least number of joints practical.
- K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- M. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- Q. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Install all new insulation for all existing and new chilled water piping, condensate piping, and all associated hydronic piping located within the mechanical rooms only. The insulation and field applied jacket shall be seamless within the existing mechanical rooms. Under no circumstance shall any existing insulation remain within the mechanical room.
- B. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

- C. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- D. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- E. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

- 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches (150 mm) o.c.
- 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of cellular-glass insulation to valve body.
- 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.9 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended UV protective coating for exterior installation.
- B. Do not field paint aluminum or stainless-steel jackets.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch (19 mm) thick.
- B. Chilled Water, above 40 Deg F (5 Deg C):
 - 1. NPS 12 (DN 300) and Smaller: Insulation shall be the following:
 - a. Cellular Glass: 1-1/2 inches (38 mm) thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Chilled Water:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Cellular Glass: 3 inches (75 mm) thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.020 inch (0.51 mm) thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.024 inch (0.61 mm) thick.
- C. If more than one material is listed, selection from materials listed is Contractor's option.
- D. Piping, Concealed:
 - 1. None.

E. Piping, Exposed:

1. Aluminum, Corrugated with Z-Shaped Locking Seam: 0.020 inch (0.51 mm) thick.

END OF SECTION 230719

SECTION 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes open protocol DDC control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls, lighting in new and existing facilities, generators, freezer, coolers and make-up water meter.
- B. The specified control system is an expansion of the existing Honeywell XL5000 system and EBI front end platform. The existing DDC controllers will be reused and additional I/O modules will be provided to meet the requirements for the new points and sequence of operation for each new AHU. The current AHU controller software will be modified to accommodate the new sequence of operation. The EBI front end software shall be modified to add the new points and new graphics to the system. All of the existing servers' software will be modified with the new points and graphics.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. I/O: Input/output.
- C. BACnet: ASHRAE Standard 135/2004 open protocol standards
- D. MS/TP: Master slave/token passing. BACnet standard for 485 communications
- E. PC: Personal computer.
- F. PID: Proportional plus integral plus derivative.
- G. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.

1.4 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

- 1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds.
- 2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds.
- 3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
- 4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
- 5. Alarm Response Time: Annunciate alarm at workstation within 45 seconds. Multiple workstations must receive alarms within five seconds of each other.
- 6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
- 7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
- 8. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - a. Water Temperature: Plus or minus 1 deg F (0.5 deg C).
 - b. Water Flow: Plus or minus 5 percent of full scale.
 - c. Water Pressure: Plus or minus 2 percent of full scale.
 - d. Space Temperature: Plus or minus 0.35 deg F (0.5 deg C).
 - e. Ducted Air Temperature: Plus or minus 0.35 deg F (0.5 deg C).
 - f. Outside Air Temperature: Plus or minus 0.35 deg F (1.0 deg C).
 - g. Dew Point Temperature: Plus or minus 0.35 deg F (1.5 deg C).
 - h. Temperature Differential: Plus or minus 0.25 deg F (0.15 deg C).
 - i. Relative Humidity: Plus or minus 2 percent.
 - j. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 - k. Airflow (Terminal): Plus or minus 10 percent of full scale.
 - 1. Air Pressure (Ducts): Plus or minus 0.1-inch wg (25 Pa).
 - m. Carbon Dioxide: Plus or minus 50 ppm.
 - n. Electrical: Plus or minus 5 percent of reading.

1.5 SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
 - 1. DDC System Hardware: Bill of materials of equipment indicating quantity, manufacturer, and model number. Include technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors,
 - actuators, valves, relays/switches, control panels, and operator interface equipment.
 - 2. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.
 - 3. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 - 2. Schematic flow diagrams showing fans, pumps, coils, dampers, valves, and control devices.
 - 3. Wiring Diagrams: Power, signal, and control wiring.
 - 4. Details of control panel faces, including controls, instruments, and labeling.
 - 5. Written description of sequence of operation.
 - 6. Schedule of dampers including size, leakage, and flow characteristics.
 - 7. Schedule of valves including flow characteristics.
 - 8. DDC System Hardware:
 - a. Wiring diagrams for control units with termination numbers.
 - b. Schematic diagrams and floor plans for field sensors and control hardware.
 - c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.
 - 9. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
 - 10. Controlled Systems:
 - a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 - b. Scaled drawings showing mounting, routing, and wiring of elements including bases and special construction.
 - c. Written description of sequence of operation including schematic diagram.
 - d. Points list.
- C. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135 and that system is Open Protocol.
- D. Software and Firmware Operational Documentation: Include the following:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.
 - 5. Software license required by and installed for DDC workstations and control systems.
- E. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.
- F. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
 - 2. Interconnection wiring diagrams with identified and numbered system components and devices.
 - 3. Keyboard illustrations and step-by-step procedures indexed for each operator function.

- 4. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
- 5. Calibration records and list of set points.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Automatic control system manufacturer's authorized representative who is trained and approved for installation of system components required for this Project.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.
- B. System Software: Update to latest version of software at Project completion.

1.8 COORDINATION

- A. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.
- B. Coordinate equipment with Division 26 Section "Lighting Controls" to achieve compatibility with equipment that interfaces with that system.
- C. Coordinate equipment with Division 28 Section "Fire Detection and Alarm" to achieve compatibility with equipment that interfaces with that system.
- D. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.
- E. Coordinate equipment with Division 26 Section "Motor-Control Centers" to achieve compatibility with motor starters and annunciation devices.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Manufacturers:

- 1. Honeywell Local Branch Office (No Substitutions)
- 2. Johnson Controls Inc.
- 3. Trane
- 4. Pre-approved Substitute
- B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

2.3 DDC EQUIPMENT

- A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:

- a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
- b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
- c. Chiller Control Programs: Control function of condenser-water reset, chilled-water reset, and equipment sequencing.
- d. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
- e. Remote communications.
- f. Maintenance management.

- g. Units of Measure: Inch-pound.
- 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.

5.

6. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.

- B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 4. LonWorks Compliance: Control units shall use LonTalk protocol and communicate using EIA/CEA 709.1 datalink/physical layer protocol.
- C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect

points so that shorting will cause no damage to controllers.

- 1. Binary Inputs: Allow monitoring of on-off signals without external power.
- 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
- 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
- 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.
- 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
- 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
- 7. Universal I/Os: Provide software selectable binary or analog outputs.
- D. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- E. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.4 SYSTEM SOFTWARE

A. General:

- 1. Contractor shall provide all software required for efficient operation of all functions required by this specification. Software shall be modular in design for flexibility in expansion or revision of the system. Software shall, as a minimum, include:
 - a. Complete database entry.
 - b. Configuration of all application programs to provide the sequence of operation indicated.
 - c. Complete graphics package, including graphics floor plans and individual graphics, for each system.
 - d. Alarm limits and alarm messages for all critical and non-critical alarms.
 - e. Configuration of all reports and point summaries indicated.
- 2. System software shall be complete such that each control loop shall function as specified in the Sequence of Operation.
- 3. Building control system manufacturer shall be required to write the software program and test the operation of every control loop. A letter certifying that the system is ready for inspection shall be submitted to the engineer prior to the controllers being shipped to the field. The Engineer may at his option visit the contractor's office and witness proper operation of each control loop prior to shipping from the contractor's point of fabrication. The control contractor shall provide a means of simulating every input to the system as a requirement for debugging the software. Prior to shipping of the microprocessor controller, the debugged software shall be transmitted to the owner for approval.
- 4. After all field connections have been made and control power is available in the control panel, the owner shall be notified and the control system shall be energized. Any required reloading of the software shall be performed and start-up of the mechanical system and building control system shall commence.
- 5. Building control contractor shall be responsible for all necessary revisions to the software as required to provide a complete and workable system consistent with the letter and intent of the specification. All control performance criteria are specified in the Sequence of Operations section of the specification.
- 6. After the system has operated properly for 90 days following start-up of the final component of the heating and air conditioning systems, an as-built copy of the software shall be transmitted to the owner for permanent record purposes. Any software upgrading or enhancements to improve the system operation or as required for proper operation of the system during the first year of operation is the responsibility of the building control system contractor. Any changes to the software shall be immediately transmitted to the Owner.
- 7. The Building Network Controller shall incorporate the GUI (Graphical User Interface) via a standard web browser. Use of hardware keys or special licenses requirements to access the system with a browser is unacceptable. The Building controller will serve up the web pages on a standalone per building application for the intent that if the WAN is not working, an operator can access the system on site via the building internal network using an IP. A server computer will be located at the energy management office to supervise the remote panels and alarm if the communication is lost as well as any control function alarm. This server computer will also be the area of trending archives.
- 8. Software required to provide the initial operation routines shall not consume more than 70% of the programmable capability of the controller.

- 9. Software shall be provided in these five categories:
 - a. System executive software.
 - b. Software for user control over system configuration at the Central Site location, and by Maintenance Personnel in the field.
 - c. Facility monitoring functions.
 - d. Direct digital control.
 - e. Application software.
- 10. Each category of software shall consist of interactive software modules. Each module shall have an associated priority level and shall execute as determined by the program controller as defined in the real time operating system.
- 11. Building operator shall be able to communicate and direct all control functions through the use of a 2-button "mouse" operator interface to monitor and control all functions and sequences within the system.
- 12. Central site shall allow receipt of alarms and messages while in a functional mode other than energy management. I.e. incoming alarms shall be displayed while the operator is in a word processing, spreadsheet or other operating mode. The system must automatically switch from a non- energy management mode, respond to an alarm, and return to the exact position left in the previous functional mode.
- 13. Central site must be able to generate standard ASCII file formats to allow use with third-party software (**Microsoft Excel**) to generate and store owner-designed reports.

B. Systems Software:

- 1. Central site shall display graphically, in up to 64 different colors, the following system information:
 - a. Floor plan maps shall show heating and cooling zones throughout the buildings in a range of colors which provide a visual display of temperature relative to their respective setpoints. The colors shall be updated dynamically as zones' comfort condition change. Locations of space sensors shall also be shown for each zone. Setpoint adjustment and color band displays shall be provided as specified.
 - b. Lighting floor plan maps shall show the status of each individual lighting circuit. When the lights are "on", the area served shall respond in a pre-selected color. When the lights are "off", the area served shall appear gray.
 - c. Mechanical system graphics shall show the type of mechanical system components serving any zone through the use of a pictorial representation of components. It shall also provide a current status of all I/O points being controlled and applicable to each piece of equipment including analog readouts in appropriate engineering units at appropriate locations on the graphic representation.
 - d. The following information shall be selected from a "pop- up" menu available on various graphics:
 - 1) Alarms.
 - 2) Messages.
 - 3) Module Status.
 - 4) Programming Parameters.
 - 5) Quit.
 - 6) Schedules.
 - 7) Schedule Graphs.
 - 8) Schedule Groups.
 - 9) Setpoints.
 - 10) Trends.

Orange County Convention Center West Building Restroom Renovations

INSTRUMENTATION AND CONTROL FOR HVAC SECTION 230900

11) Utilities.

e. Programming, scheduling and set-point changes shall be accessible for modification on each menu for the associated equipment. Operator shall be able to automatically download changes from the central site to the appropriate program for the equipment being controlled. Operator shall be able to upload information from the field modules to the central site.

2. Input Format:

a. Allowable operators, as defined under user access, shall be able to control system functions by their inputs at an appropriate user terminal. Primary operator interface shall be via two button mouse.

3. Verification of Operator Input:

a. System shall acknowledge all inputs as functions or commands to be performed. System's handling of operator inputs, such as requests to start a motor, output a log, change a time program, acknowledge an alarm, or do any of the other commands described in this specification, shall be in a similar format.

4. Operator Commands:

a. All operator commands shall be in graphics data base and menu driven. After the operator selects the desired object item or menu, the system shall display either the status of selected object item or the allowable options available. Upon entry of a command to the point or points desired as described above, the system shall, before performing any command requested and any entered data. System shall include error monitoring software for user's input error.

5. Output Format:

- a. The system shall operate on a System Format basis, regardless of the manner or hardware configuration in which the data is acquired. A "system" shall consist of a logical grouping of data points, related to a piece of mechanical equipment, an energy distribution system, or an architectural area. For example, in some cases, it may be desired to display, as a single system, a space temperature with its associated air handling unit, and in other cases to display all space temperatures on a floor or in a building. The DDC shall allow such determinations to be made without regard to the physical hardware locations of a point or group of points. Likewise, the system shall accommodate future changes of system grouping and operations without field hardware changes.
- b. All displays and logs shall contain a header line indicating date, day-of-week, and time.
- c. All output displays or logs of a point or group of points shall contain, as a minimum, the following information:
 - 1) Graphic presentation of the System.
 - 2) User name of point.
 - 3) Point descriptor.
 - 4) Current value/status.
 - 5) Associated engineering units.
 - 6) Alarm description.
- d. User names, point descriptors, and engineering units shall be operator definable on a per point basis.

6. Set points:

a. System shall utilize a contiguous band of colors each corresponding to actual zone temperatures relative to the desired heating and cooling setpoints. The ideal temperature shall be shown as a green color band. This color band corresponds to

- the dead band between the onset of mechanical heating or cooling. Temperatures warmer than ideal shall be shown in orange.
- b. Temperatures cooler than ideal shall be blue. All alarm colors shall be in red.
- c. System shall be capable of utilizing the mouse operator interface device to change individual zone temperature setpoints. The change shall be accomplished by pointing to a graphic temperature bar and by depressing a button, moving the mouse cursor to an increased or decreased temperature set-point within that zone. System shall also be capable of utilizing the mouse interface device or a conventional keyboard to change a numeric temperature set-point value instead of utilizing the graphic temperature bar. Floor plan graphic shall then be able to change colors on a zone by zone basis to reflect the actual temperature in each zone relative to the changed desired heating or cooling set-point.
- d. System shall be capable of globally changing all setpoints. The global change capability shall be accessed via a "pop up menu" called by depressing a button on the mouse.
- 7. Graphic Structure and Hardware:

The intent of the graphics is to ensure the operator is always aware of his position within the system as well as how to logically progress through the graphical hierarchy to select any desired graphic or other source of information. The GUI will be served as a web page and access from any computer without any special software or hardware keys. The building network controller will hold the graphics for standalone operation. A computer on site will not be acceptable to serve the graphics. The sever computer will have the ability to access the system for engineering from the owner, alarming archives and alarms, remote monitoring of the health of the communications to the field devices and to archive the trend collection data from the building controllers. The web pages will follow a minimum Graphical layout shall be as follows:

Main greeting page will have links for all building monitored for quick access.

Once a building is selected a picture of the building will be displayed along with a menu of all systems controlled from this section. There will also be links for the floor plans.

Once the floor plan has been chosen, the selected graphic page will display the architectural floor plan. This plan will have temperature readings and Setpoints of all VAV's within this floor. There will also be links or button depicting the location and equipment number that is serving that area. This link will hyperlink into the graphic of the AHU. The temperature and setpoint reading will hyperlink to the selected VAV grahic for further review. If the floor has too many VAV data readings to display for an easy reading the floor plan may be broken into sections so that the view is easily readable.

Graphical VAV – The VAV box will be a graphical representation of a VAV box. The data shown on the box will be as follows:

Box Flow

Box Flow Trend hyperlink

Box Flow Setpoint

Box Flow Trend hyperlink

Box Flow Min Setpoint

Box Flow Max Setpoint

Box Flow Reheat Min Setpoint (if applicable)

Reheat Stage Commands (if applicable)

Supply Air Temperature (with reheat)

Room Setpoint

Room Setpoint Trend hyperlink

INSTRUMENTATION AND CONTROL FOR HVAC SECTION 230900

Room Temperature

Room Temperature Trend hyperlink

Room Humidity (If applicable)

Room Humidity Trend hyperlink

Room Humidity Setpoint (if applicable)

Room Humidiy Setpoint Trend hyperlink

All points above to show a different status color if overridden

Graphical AHU – The AHU will be a graphical representation of the physical air handling unit specified. The data will be located on the AHU as physically located on the unit. The data on the AHU will be as follows:

Schedule for Unit hyperlink – link to the scheduling editor

Schedule for Ventalation hyperlink – link to the scheduling editor.

Occupied/Unoccupied status for each schedule

Fan command

Fan status

Fan speed

Fan VFD alarm

Temperature sensors as specified in the control sequence of operation and trending points

All setpoints as specified in the sequence of operation

Example – VAV AHU will have a supply air temperature and setpoint

Supply air static and trend hyperlink

Supply air static Setpoint and trend hyperlink

Return air damper position

Outside air damper position

Outside air flow and trend hyperlink

Outside air flow setpoint and trend hyperlink

Outside air heater command

Outside air heater setpoint

Any misc points needed from a sequence of operation

All points above to show a different status color if overridden

Grapical Chiller plant – The plant will be a graphical representation of the physical chiller plant as specified and installed. The data will be located on the graphical screen as physically installed in the plant.

All Chiller interface data

Enable/Disable of Chillers and isolation valves

Primary pump command and status

Secondary Pump command, status, speed, and general alarm from the VFD.

Flow meters

Temperature sensors

Misc. Points and graphical screens

Graphical representation of text on thes screens – The text blocks will have an opposing color for easier reading

Graphical representation of the trends – each point to be trended will have a icon next to the point being trended. This icon will hyperlink to the trending chart builder for the individual trend screen. A trend icon on the main building screen will be a trendchart builder. This trend builder will allow to selct multiple trends from a list, pick whether recent trending data or archived (in the server), date range, etc. Then after selection the tred chart builder will compile the data and build the trend for viewing or exporting to a spread sheet. This all happens with a standard web browser.

A text block for an overridable point shall be highlighted when a mouse is scrolled over an object. When the text block and or pint is overridden the graphical point will turn to a different color. This allows for easy viewing of which points are overridden on a graphic screen.

- 8. User Access Restriction. Operator sign-on shall require an assignable password. Passwords shall have six (6) levels of system access **or user defined**:
 - a. Level 1 Trainee: The level shall allow readout of data only. System shall display all operation data base.
 - b. Level 2 Maintenance 1: This level shall allow all of Level 1 functions plus the changing of all schedules.
 - c. Level 3 Maintenance 2: This level shall allow performance of Level 2 functions plus the changing of all set points.
 - d. Level 4 Supervisor: This level shall allow performance of Level 3 functions plus the changing of all system parameters.
 - e. Level 5 System Programmer: This level shall allow performance of Level 4 functions plus the modifying the system configuration.
 - f. Level 6 System Manager: This level shall allow performance of Level 5 functions plus the changing of passwords.
- 9. Power Failure/Automatic Restart:
 - a. Power failures shall cause the system to go into an orderly shutdown with no loss of program memory.
 - b. Upon resumption of power, the system shall automatically restart and printout the time and date of the power failure and restoration at the Central Site. "Restart" program shall automatically restart affected field equipment. Operator shall be able to define an automatic power up time delay for each piece of equipment under control.
 - c. User Control Over System Configuration:
 - 1) Database Creation and Modification. All changes shall be done utilizing standard procedures and be capable of being done while the system is online and operational. The system shall allow changes to be made through the portable operator terminal and form the central site. To aid the user, instructive prompting software shall be provided.
 - 2) System shall permit the operator, with proper password, to perform as a minimum the following:
 - a) Add and delete points.
 - b) Modify point parameters.
 - c) Create and modify control sequences.
 - d) Reconfigure application programs.
 - e) Add and/or modify graphics.
 - 3) All data points within the database shall be completely accessible as independent or dependent variables for custom programming, calculation, interlocking, or manipulation.
 - 4) Graphics Software:
 - a) Graphics software shall permit the easy construction of infinitely variable shapes and sizes through the use of the mouse pointing device.
 - b) A selection of 64 colors and various fill textures, line types and text styles shall all be accessible through the use of the mouse interface.

The software shall resemble many of the computer aided design programs currently available and allow graphics to be easily moved, edited, added or deleted.

- c) Graphics software shall be fully implemented and operational to accomplish the following:
- d) 1. Create a new graphic picture.
- e) 2. Modify a portion of a graphic picture.
- f) 3.Delete a graphic picture, or any portion thereof.
- g) 4. Call up a graphic picture.
- h) 5.Cancel the display of a graphic picture.
- i) 6.Assign conditions which automatically initiate the display.
- j) 7. Overlay alphanumeric and graphics.
- k) 8. Save the graphic picture.
- 1) 9.Display latest process data fully integrated with the graphic display m)
- d. Facility Management Functions:
 - 1) Trend Logging:
 - a) System shall be able to trend and display either numerically or graphically any analog or digital points in the system.
 - b) System shall be able to simultaneously graphically display any two trended points within a module function block or any point in the module versus the outside air temperature, enthalpy or relative humidity.
 - c) Each field module shall be capable of storing the most recent 60 samples for each single trend point or the most recent 30 samples for each of two trended points from one module function block.
 - d) Each module shall be capable of automatically uploading on a daily basis all accumulated trend data to the central site for permanent storage on hard disk.
 - 2) Run Time:
 - a) System shall provide run time information for all digital output and input points on command from the operator. Maximum run time limits shall be operator definable and shall be capable of automatically issuing a **visual** when the run time maximum is exceeded. Operator shall be able to reset the run time accumulator.
 - b) Run time hours and start time date shall be retained in non-volatile module memory.
 - c) Each module shall be capable of automatically uploading all accumulated data to the central site for permanent storage on hard disk
 - 3) Alarm Conditions and Maintenance Messages:
 - a) Central site shall allow receipt of alarms and messages while in a functional mode other than energy management. i.e., Incoming alarms shall be displayed **and generate an audible alarm** while the operator is utilizing another mode such as word processing and allow the operator to automatically return to word processing after the alarm is received.
 - b) System shall distinguish between alarms and messages with alarms having a higher priority.

- c) System shall be capable of calling up to three different remote locations to deliver an alarm or message **through E-Mail, E-Page or alphanumeric page**. Operator shall determine if alarms or messages are to be based on temperature limit, status or off-normal reporting.
- d) System shall be capable of printing maintenance messages when run time accumulation maximum limits are exceeded.
- e) Text for operator alarm and messages shall be operator definable. System shall be capable of storing at least 100 messages each of any length. Generic messages used for multiple points throughout the system shall only count as one message. In the event the central site is powered down, alarms shall be stored in the modules until the central site is restored.
- f) Central site shall be capable of transferring all alarms to hard disk for storage.
- 4) Reports and Archiving:
 - Field modules shall be capable of calling the central site during off peak phone rate hours to automatically upload all current and accumulated data. This shall be delivered to the central site for printing and/or permanent storage on hard disk. The system shall further be capable of transferring hard disk information onto a CD or USB external drive for remote site storage.
 - b) System shall be capable of reporting and archiving the following information as a minimum:
- 5) Outside air temperature history and degree day history.
- 6) Electric demand and usage history.
- 7) All trended points.
- 8) All alarms and messages.
- 9) Equipment runtime information.
 - a) The system shall also provide the following additional reports for which archiving is not applicable:
 - b) All points summary.
 - c) Building operating schedules.
 - d) Printout of any graphic screen.
 - e) System shall be capable of providing all points summaries on a hierarchical basis. e.g., only the points associated with a particular graphic shall be selectable and printed. For example, if the operator is viewing an air handling unit (AHU), he may request an all points summary at this level and receive only the points associated with the AHU. If the building is being viewed and an all points summary selected, all building points will be listed. Similarly, the system shall print building operating schedules pertinent to the graphic level being viewed, e.g., if a zone or tenant zone group is being viewed on the graphic display, then the system shall be capable of printing the building operating schedules for the zone or tenant zone group. If the entire building graphic is being viewed, the system shall be capable of printing schedules at the building level. All systems reports shall be capable to being viewed at the operators' terminal and printed at the operator's discretion.
- e. Direct Digital Control Software:

- 1) System shall continuously perform DDC functions at the local DDC controller in a stand-alone mode. The operator shall be able to design and modify the control loops to meet the requirements of the system being operated. Operators shall use system provided displays for tuning of PID loops. These displays shall include the past three input variable values, the set point for the loop as well as the sample interval and the results of the proportional, integral and derivative effects of the final output.
- 2) Each Controller shall perform the following functions:
 - a) Identify and report alarm conditions.
 - b) Execute DDC algorithms.
 - c) Execute all application programs indicated on the I/O Summary table.
 - d) Trend and store data.

- 3) In the event of a Controller failure, all points under its control shall be commanded to the failure mode.
- 4) All DDC software shall reside in the respective DDC Controller.
- f. Application Software:
 - 1) Application software shall be as required to produce the sequence of operation specified.

2.5 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Temperature Sensors: 10K resistor style.
 - 1. Accuracy: Plus or minus 0.35 deg F (0.2 deg C) at calibration point.
 - 2. Wire: Twisted, shielded-pair cable.
 - 3. Insertion Elements in Ducts: Single point, 8 inches (200 mm) long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m).
 - 4. Averaging Elements in Ducts: 36 inches (915 mm) long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft. (1 sq. m).
 - 5. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches (64 mm).
 - 6. Room Sensor Cover Construction: Manufacturer's standard covers.
 - a. Set-Point Adjustment: Exposed but disable.
 - b. Set-Point Indication: Exposed.
 - c. Thermometer: Digital temperature display.
 - d. Color: Beige
 - e. Orientation: Vertical.
 - f. Occupancy Override: Exposed only for office and classrooms.
 - 7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- C. Humidity Sensors: Bulk polymer sensor element.
 - 1. Accuracy: 2 percent full range with linear output.
 - 2. Room Sensor Range: 0 to 100 percent relative humidity.
 - 3. Room Sensor Cover Construction: Manufacturer's standard covers.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Exposed.
 - c. Humidity: Digital humidity display
 - d. Color: Beige.
 - e. Orientation: Vertical.
 - 4. Calibration: Single point.
- D. Pressure Transmitters/Transducers:
 - 1. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.
 - c. Building Static-Pressure Range: 0- to 0.25-inch wg (0 to 62 Pa).

- d. Duct Static-Pressure Range: 0- to 5-inch wg (0 to 1240 Pa).
- 2. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure; linear output 4 to 20 mA.
- 3. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure and tested to 300
 - psig (2070-kPa); linear output 4 to 20 mA.
- 4. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
- 5. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.
- E. Room sensor accessories include the following:
 - 1. Guards: Metal wire, tamperproof for sensors located in gymnasiums, locker room, corridors, cafeteria, media center and multipurpose rooms.

2.6 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg (0 to 1240 Pa).
- B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig (55 to 414 kPa), piped across pump.
- C. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- D. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
- E. Water-Flow Switches: Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainless-steel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure.

2.7 GAS DETECTION EQUIPMENT

A. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F (minus 5 to plus 55 deg C) and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output;, for wall mounting.

2.8 FLOW MEASURING STATIONS

- A. Duct Airflow Station: Thermal Dispersion Technology.
 - 1. Manufacturers:
 - a. Ebtron.
 - b. Tekair.

- 2. Each measuring device shall consist of one or more multi-point measuring probes and single microprocessor-base transmitter. Each transmitter shall have an LCD display capable of displaying airflow and temperature. Airflow shall be field configurable to display as a velocity or volumetric rate. Each transmitter shall operate at 24V.
- 3. Each sensing point shall independently determine the airflow rate and temperature, which shall be equally weighted and average by the transmitter prior to the output. Devices, which average multiple non-linear sensing points signals, are not acceptable. Pitot tubes arrays are not acceptable.
- 4. The operation air flow range shall be 0 5,000 FPM.
- 5. The operation temperature range for the measuring probes shall be -20°F to 160°F.
- 6. Accuracy: Each independent airflow sensor shall have a laboratory accuracy of $\pm 2\%$ and each independent temperature sensor shall have a laboratory accuracy of ± 0.15 °F.
- 7. The transmitter shall be capable of communicating with the host controls using the following interface options:
 - a. Linear analog output signal: Field selectable, fuse protected and isolated, 0-10VDC and 4-20mA (4-wire).
 - b. LonWorks Free Topology.
- B. Pipe Flow Metter: Electromagnetic Flow Meter.
 - 1. Manufacturer:
 - a. Onicon.
 - 2. Accuracy: $\pm 1.0\%$ of reading at calibration velocity.
 - 3. Sensing Method: Electromagnetic sensing (no moving parts).
 - 4. Pipe Size Range: 3" through 72".
 - 5. Supply Voltage: 24 V AC/DC at 250 mA.
 - 6. Liquid Temperature Range: 15°F to 250°F peak.
 - 7. Operating Pressure: 400 psi.

2.9 ENERGY METER

A. BTU Meter.

- 1. Manufacturer:
 - a. Onicon
- 2. Accuracy: Differential temperature accuracy ± 0.15 °F.
- 3. Memory: Non-volatile EEPROM memory retains all parameters and totalized values in the event of power loss.
- 4. Flow meter: Flow meter by Onicon. Flow meter shall met the requirements of section 2.7.C on these specifications.
- 5. Temperature sensors: Solid state sensors.
- 6. Temperature Range: 32°F to 200°F.
- 7. Display: Alpanumeric LCD display total energy, total flow, energy rate, flow rate, supply temperature and return temperature.
- 8. Output Signal: LonWorks.

2.10 THERMOSTATS

A. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; listed for electrical rating of 125% of service equipment; with exposed set-point adjustment, 55 to 85 deg F (13 to 30 deg C) set-point range, and 2 deg F (1 deg C) maximum differential.

2.11 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
 - 4. Spring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).
 - 5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
 - 6. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running and breakaway torque of 150 in, x lbf (16.9 N x m).
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Manufacturers:
 - a. Belimo Aircontrols (USA), Inc.
 - b. Schneider Electric Dura Drive
 - c. Honeywell
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. (86.8 kg-cm/sq. m) of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. (62 kg-cm/sq. m) of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft (49.6 kg-cm/sq. m) of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. (37.2 kg-cm/sq. m) of damper.
 - e. Dampers with 2- to 3-Inch wg (500 to 750 Pa) of Pressure Drop or Face Velocities of 1000 to 2500 fpm (5 to 13 m/s): Increase running torque by 1.5.
 - f. Dampers with 3- to 4-Inch wg (750 to 1000 Pa) of Pressure Drop or Face Velocities of 2500 to 3000 fpm (13 to 15 m/s): Increase running torque by 2.0.
 - 4. Coupling: V-bolt and V-shaped, toothed cradle.

- 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 7. Power Requirements (Two-Position Spring Return): 24-V ac.
- 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 9. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 10. Temperature Rating: Minus 22 to plus 122 deg F (Minus 30 to plus 50 deg C).
- 11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F (Minus 30 to plus 121 deg C).
- 12. Run Time: 12 seconds open, 5 seconds closed.

2.12 CONTROL VALVES

- A. Manufacturers:
 - 1. Belimo.
 - 2. Schneider Electric
 - 3. Honeywell
- B. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- C. Ball Valves: NPS 2 and Smaller: Two-Piece, Copper-Alloy Ball Valves: Brass or bronze body with full or regular-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig (4140-kPa) minimum CWP rating and blowout-proof stem. NPS 2-1/2 and Larger: Class 150, ferrous alloy.
- D. Butterfly Valves: 200-psig (1380-kPa), 150-psig (1034-kPa) maximum pressure differential, ASTM A 126 cast-iron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - 1. Body Style: Wafer or Grooved.
 - 2. Disc Type: Nickel-plated ductile iron.
 - 3. Sizing: 1-psig (7-kPa) maximum pressure drop at design flow rate.
 - 4.
- E. Terminal Unit Control Valves: Bronze body, bronze trim, two or three ports as indicated, replaceable plugs and seats, and union and threaded ends.
 - 1. Rating: Class 125 for service at 125 psig (860 kPa) and 250 deg F (121 deg C) operating conditions.
 - 2. Sizing: 3-psig (21-kPa) maximum pressure drop at design flow rate, to close against pump shutoff head.
 - 3. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.

2.13 DAMPERS

- A. Dampers: AMCA-rated, opposed blade design; 0.108-inch- (2.8-mm-) minimum thick, galvanized-steel or 0.125-inch- (3.2-mm-) minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch- (1.6-mm-) thick galvanized steel with maximum blade width of 8 inches (200 mm) and length of 48 inches (1220 mm).
 - 1. Secure blades to 1/2-inch- (13-mm-) diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 - 2. Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).
 - 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
 - 4. Edge Seals, Low-Leakage Applications: Use replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. (50 L/s per sq. m) of damper area, at differential pressure of 4-inch wg (1000 Pa) when damper is held by torque of 50 in. x lbf (5.6 N x m); when tested according to AMCA 500D.

2.14 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Division 27 Section "Data Communications Integrations."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that power supply is available to control units and operator workstation.

3.2 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches (1220 mm) above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- D. Install automatic dampers according to Division 23 Section "Air Duct Accessories."
- E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

- F. Install labels and nameplates to identify control components according to Division 23 Section "Identification for HVAC Piping and Equipment."
- G. Install hydronic instrument wells, valves, and other accessories according to Division 23 Section "Hydronic Piping."

H.

- I. Install duct volume-control dampers according to Division 23 Sections specifying air ducts.
- J. Install electronic and fiber-optic cables according to Division 27 Section "Communications Horizontal Cabling."

3.3 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Division 26 Section "Raceway and Boxes for Electrical Systems."
- B. Install building wire and cable according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- C. Install signal and communication cable according to Division 27 Section "Communications Horizontal Cabling."
 - 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 - 2. Install exposed cable in raceway.
 - 3. Install concealed cable in raceway.
 - 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
- D. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- E. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
 - 2. Test and adjust controls and safeties.
 - 3. Test calibration of electronic controllers by disconnecting input sensors and stimulating operation with compatible signal generator.
 - 4. Test each point through its full operating range to verify that safety and operating control set points are as required.
 - 5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Adjust PID actions.
 - 6. Test each system for compliance with sequence of operation.
 - 7. Test software and hardware interlocks.

C. DDC Verification:

- 1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
- 2. Check instruments for proper location and accessibility.
- 3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
- 4. Check instrument tubing for proper fittings, slope, material, and support.
- 5. Check installation of air supply for each instrument.
- 6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
- 7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
- 8. Check temperature instruments and material and length of sensing elements.
- 9. Check control valves. Verify that they are in correct direction.
- 10. Check DDC system as follows:
 - a. Verify that DDC controller power supply is from emergency power supply, if applicable.
 - b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
 - c. Verify that spare I/O capacity has been provided.
 - d. Verify that DDC controllers are protected from power supply surges.
- D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.
- E. After start-up and calibration, Building Controls Contractor shall submit to the Engineer trend logs of all points on each system demonstrating stable and proper operation. The trend logs shall be as follows:
 - 1. 24 hour period at 15 minutes intervals.
 - 2. 3 hour start-up period at 5 minute intervals.
 - 3. A total of two sets covering two days during each period are required.

3.5 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Calibrate instruments.
 - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.

- 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
- 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
- 5. Flow:
 - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 - b. Manually operate flow switches to verify that they make or break contact.
- 6. Pressure:
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.
- 7. Temperature:
 - a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 - b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 230900

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Condensate-drain piping.
 - 3. Air-vent piping.

1.3 DEFINITIONS

A. PTFE: Polytetrafluoroethylene.

1.4 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Chilled-Water Piping: 125 psig (862 kPa) at 200 deg F (93 deg C).
 - 2. Condensate-Drain Piping: 150 deg F (66 deg C).
 - 3. Air-Vent Piping: 200 deg F (93 deg C).

1.5 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air control devices.
 - 3. Hydronic specialties.
- B. Welding certificates.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

E. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

1.7 EXTRA MATERIALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
- C. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
- D. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- C. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.

- 3. Facings: Raised face.
- D. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Jomar International Ltd.
 - e. Matco-Norca, Inc.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Matco-Norca, Inc.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.

2. Description:

- a. Standard: ASSE 1079.
- b. Factory-fabricated, bolted, companion-flange assembly.
- c. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
- d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

2.5 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 23 Section "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to,

the following:

- a. Armstrong Pumps, Inc.
- b. Bell & Gossett Domestic Pump; a division of ITT Industries.
- c. Flow Design Inc.
- d. Gerand Engineering Co.
- e. Griswold Controls.
- f. Taco.
- 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Plug: Resin.
- 5. Seat: PTFE.
- 6. End Connections: Threaded or socket.
- 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 8. Handle Style: Lever, with memory stop to retain set position.
- 9. CWP Rating: Minimum 125 psig (860 kPa).
- 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.

- b. Bell & Gossett Domestic Pump; a division of ITT Industries.
- c. Flow Design Inc.
- d. Gerand Engineering Co.
- e. Griswold Controls.
- f. Taco.
- g. Tour & Andersson; available through Victaulic Company.
- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig (860 kPa).
- 11. Maximum Operating Temperature: 250 deg F (121 deg C).

2.6 AIR CONTROL DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering

products that may be incorporated into the Work include, but are not limited to, the following:

- 1. Amtrol, Inc.
- 2. Armstrong Pumps, Inc.
- 3. Bell & Gossett Domestic Pump; a division of ITT Industries.
- 4. Taco.

B. Automatic Air Vents:

- 1. Body: Bronze or cast iron.
- 2. Internal Parts: Nonferrous.
- 3. Operator: Noncorrosive metal float.
- 4. Inlet Connection: NPS 1/2 (DN 15).
- 5. Discharge Connection: NPS 1/4 (DN 8).
- 6. CWP Rating: 150 psig (1035 kPa).
- 7. Maximum Operating Temperature: 240 deg F (116 deg C).

2.7 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig (860 kPa).
- B. Stainless-Steel Bellow, Flexible Connectors:

- 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
- 2. End Connections: Threaded or flanged to match equipment connected.
- 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
- 4. CWP Rating: 150 psig (1035 kPa).
- 5. Maximum Operating Temperature: 250 deg F (121 deg C).

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be the following:
 - 1. Type L (B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- B. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be any of the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Condensate-Drain Piping: Type M (C), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- D. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.
 - 2. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- C. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, **NPS 3/4** (**DN 20**) ball valve, and short NPS 3/4 (**DN 20**) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.
- S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, inline pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- T. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Division 23 Section "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 23 Section "Escutcheons for HVAC Piping."
- X. Contractor shall include an additional 20% of added piping into their price for coordination purposes.

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
 - 7. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
 - 8. NPS 6 (DN 150): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).
 - 9. NPS 8 (DN 200): Maximum span, 12 feet (3.7 m); minimum rod size, 5/8 inch (16 mm).
 - 10. NPS 10 (DN 250): Maximum span, 12 feet (3.7 m); minimum rod size, 3/4 inch (19 mm).
 - 11. NPS 12 (DN 300): Maximum span, 12 feet (3.7 m); minimum rod size, 7/8 inch (22 mm).
 - 12. NPS 14 (DN 350): Maximum span, 12 feet (3.7 m); minimum rod size, 1 inch (25 mm).
 - 13. NPS 16 (DN 400): Maximum span, 12 feet (3.7 m); minimum rod size, 1 inch (25 mm).
 - 14. NPS 18 (DN 450): Maximum span, 12 feet (3.7 m); minimum rod size, 1-1/4 inches (32 mm).
 - 15. NPS 20 (DN 500): Maximum span, 12 feet (3.7 m); minimum rod size, 1-1/4 inches (32 mm).
- D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).

- 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
- 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
- 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
- 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
- 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
- E. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 23 Section "Meters and Gages for HVAC Piping."

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 100 psig. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 15 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 232113

SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes special-duty valves and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Condensate-drain piping.
 - 3. Air-vent piping.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and specialduty valves to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure

Vessel Code: Section IX.

1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Chilled-Water Piping: 125 psig (860 kPa) at 200 deg F (93 deg C).
 - 2. Condensate-Drain Piping: 150 deg F (66 deg C).
 - 3. Air-Vent Piping: 200 deg F (93 deg C).
 - 4. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 "General-Duty Valves for HVAC Piping.
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230900 "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bell & Gossett Domestic Pump.
 - b. Flow Design Inc.
 - c. Gerand Engineering Co.
 - d. Griswold Controls.
 - e. Taco.

f.

- 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Plug: Resin.
- 5. Seat: PTFE.
- 6. End Connections: Threaded or socket.
- 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 8. Handle Style: Lever, with memory stop to retain set position.
- 9. CWP Rating: Minimum 125 psig (860 kPa).
- 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bell & Gossett Domestic Pump.
 - b. Flow Design Inc.
 - c. Griswold Controls.
 - d. Taco.
 - 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Stem Seals: EPDM O-rings.

- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig (860 kPa).
- 11. Maximum Operating Temperature: 250 deg F (121 deg C).

E. Diaphragm-Operated, Pressure-Reducing Valves: ASME labeled.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Bell & Gossett Domestic Pump.
 - c. Conbraco Industries, Inc.
 - d. Spence Engineering Company, Inc.
 - e. Watts Regulator Co.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Low inlet-pressure check valve.
- 8. Inlet Strainer: stainless steel, removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Automatic Flow-Control Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
 - c. Nexus Valve, Inc.
- 2. Body: Brass or ferrous metal.
- 3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.
- 4. Combination Assemblies: Include bronze or brass-alloy ball valve.
- 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 6. Size: Same as pipe in which installed.
- 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
- 8. Minimum CWP Rating: 175 psig (1207 kPa).
- 9. Maximum Operating Temperature: 200 deg F (93 deg C).

2.3 AIR-CONTROL DEVICES

A. Manual Air Vents:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.

- b. Armstrong Pumps, Inc.
- c. Bell & Gossett Domestic Pump.
- d. Nexus Valve, Inc.
- e. Taco, Inc.
- 2. Body: Bronze.
- 3. Internal Parts: Nonferrous.
- 4. Operator: Screwdriver or thumbscrew.
- 5. Inlet Connection: NPS 1/2 (DN 15).
- 6. Discharge Connection: NPS 1/8 (DN 6).
- 7. CWP Rating: 150 psig (1035 kPa).
- 8. Maximum Operating Temperature: 225 deg F (107 deg C).

B. Automatic Air Vents:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Nexus Valve, Inc.
 - e. Taco, Inc.
- 2. Body: Bronze or cast iron.
- 3. Internal Parts: Nonferrous.
- 4. Operator: Noncorrosive metal float.
- 5. Inlet Connection: NPS 1/2 (DN 15).
- 6. Discharge Connection: NPS 1/4 (DN 8).
- 7. CWP Rating: 150 psig (1035 kPa).
- 8. Maximum Operating Temperature: 240 deg F (116 deg C).

C. Air Purgers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Taco, Inc.
- 2. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.
- 3. Maximum Working Pressure: 150 psig (1035 kPa).
- 4. Maximum Operating Temperature: 250 deg F (121 deg C).

2.4 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
- 3. Strainer Screen: Stainless-steel, 20-mesh strainer, or perforated stainless-steel basket.
- 4. CWP Rating: 125 psig (860 kPa).

- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Spherical, Rubber, Flexible Connectors:
 - 1. Body: Fiber-reinforced rubber body.
 - 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 - 3. Performance: Capable of misalignment.
 - 4. CWP Rating: 250 psig.
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing or automatic balancing valves at each branch connection to return main.
- C. Install calibrated-orifice or automatic, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

END OF SECTION 232116

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Double-wall rectangular ducts and fittings.
- 3. Single-wall round ducts and fittings.
- 4. Double-wall round and flat-oval ducts and fittings.
- 5. Sheet metal materials.
- 6. Sealants and gaskets.
- 7. Hangers and supports.
- 8. Duct Liner Encapsulator/Coating

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Sealants and gaskets.
 - 2. Insulation Encapsulator/Coating
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.

- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment and vibration isolation

C. Delegated-Design Submittal:

- 1. Sheet metal thicknesses.
- 2. Joint and seam construction and sealing.
- 3. Reinforcement details and spacing.
- 4. Materials, fabrication, assembly, and spacing of hangers and supports.
- 5. Design Calculations: Calculations for selecting hangers and supports.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel," for hangers and supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.

- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- F. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.
- G. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- H. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

- A. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.

- b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch- diameter perforations, with overall open area of 23 percent.
- D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 DUCT LINER ENCAPSULATOR/COATING

A. Refer to specification section 23 00 01 Cleaning of HVAC systems

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round and flat-oval ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.
- M. Contractor shall include an additional 20% of added ductwork into their price for coordination purposes.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Division 23 Section "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

- A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.
- B. All ductwork located within the ballroom shall be painted. Coordinate with architect to determine the final color.

3.7 DUCT LINER ENCAPSULATOR/COATING

- A. Provide assessment, cleaning and restoration of existing HVAC ductwork that is existing internally insulated supply and return ductwork in accordance with NADCA ACR Standard 2013.
- B. Lined air duct shall be inspected and mechanically cleaned to remove mold, dust and loose particulate being careful not to damage insulation or liners.
- C. Ensure all surfaces are thoroughly dry before application.
- D. Apply to all surfaces by brush, roller or airless spray. Application rate will vary depending on porosity of the insulation. Apply one coat by airless spray, or two coats by brush or roller.
- E. Coating shall be applied to internally lined ductwork indicated on drawings as resurfaced to encapsulate the existing liner and provide resistance to mold growth.
- F. Verify that the product is thoroughly dry before turning on air handling system.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Supply Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 100 percent of total installed duct area for each designated pressure class.

- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days' advance notice for testing.
- C. Duct system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Contractor shall include an additional 20% of added ductwork into their price for coordination purposes.

3.9 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.10 DUCT SCHEDULE

A. Supply Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

B. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.

d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 2. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Carbon-steel sheet.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 3-inch wg.
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
- 3. Ducts Connected to Dishwasher Hoods:
 - a. Type 304, stainless-steel sheet.
 - b. Exposed to View: No. 4 finish.
 - c. Concealed: No. 2D finish.
 - d. Welded seams and flanged joints with watertight EPDM gaskets.
 - e. Pressure Class: Positive or negative 3-inch wg.
 - f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - g. SMACNA Leakage Class: 3.

D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: C.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: B.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Intermediate Reinforcement:

- 1. Galvanized-Steel Ducts: Galvanized steel.
- 2. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Match duct material.

F. Double-Wall Duct Interstitial Insulation:

- 1. Supply Air Ducts: 1 inch thick.
- 2. Return Air Ducts: 1 inch thick.
- 3. Exhaust Air Ducts: 1 inch thick.

G. Elbow Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

H. Branch Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233114 - ELECTRIC RESISTANCE DUCT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawing and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated in the Work include, but are not limited to, the following:
 - 1. Indeeco, Inc.
 - 2. Electric Heaters, Inc.
 - 3. Brasch NUF, Inc.
 - 4. REDDI-I Heat
 - 5. Warren Technologies

2.2 DUCT HEATERS

- A. Duct heaters shall be open coil heaters. Voltage, size, wattage, number of steps and control voltage shall be as scheduled on the drawings. Three-phase heaters shall be furnished with balanced three-phase steps. Heaters shall be UL listed for zero clearance and shall meet all applicable requirements of the National Electric Code.
- B. Heaters shall be of the slip-in type for duct mounting.
- C. Elements shall be constructed of 80% nickel and 20% chromium; steps shall be arranged to prevent stratification when operating at less than full capacity. The maximum watts per square inch of wire surface shall be 50.
- D. Coil terminals shall be of stainless steel, terminal insulators and bracket bushings shall be constructed of ceramic and securely positioned. Terminals shall be machine crimped to coil.
- E. Frame shall be constructed of sufficiently heavy gauge galvanized steel to assure structural rigidity and have vertical galvanized steel supports with
- F. Stiffening ribs and gussets spaced no more than 4" apart, spot welded to the casing.

- G. Terminal box shall be provided with solid cover in order to minimize dust infiltration and shall be hinged. Heater terminal box must be totally enclosed and must be without perforated or expanded sheet metal covers. Terminal box shall be insulated.
- H. Recessed terminal box to be provided when coils are installed in ducts with internal obstruction greater than 1" to assure that heating elements and safety controls are in the airstream.
- I. Direction of Airflow: Heaters shall be interchangeable for mounting in a horizontal or vertical duct and air-flow may be through the heater in either direction.
- J. Safety Devices: A disc type automatic reset thermal cutout shall be furnished for primary overtemperature protection. For secondary protection, a sufficient number of heat limiters in the power lines shall be de-energize elements if the primary cutout fails. All safety devices shall be serviceable through the terminal box without removing the heating coil from the duct.
- K. Built-in components shall include disconnecting break magnetic contactors, door mounted pilot light, transformer with primary fusing, pressure-type airflow switch set at .07" WC, all as required by UL, interlocking integral fused disconnect switch with branch circuit fuses per NEC and a single terminal block to accept the number, type and size of conductors as required. Other requirements shall include all devices and wiring shown and noted in the duct heater schedule and indicated on the wiring diagram.
- L. Units indicated to utilize a remote panelboard shall include the following control and safety components:
 - 1. Contactors Use disconnecting controlling contactors which break all ungrounded lines. Thus, when heat is not being called for, all terminals in the heater will be dead.
 - 2. Pilot Switch Add a dead front pilot switch to the heater terminal box to make it safe for servicing by simply tripping the pilot switch. This shuts off power to the heater circuits through the disconnecting contactors in the panel.
 - 3. Fuses Built-in fusing for each panelboard will be in accordance with UL and NEC requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install systems as required and as recommended by the coil supplier.
- B. The coil shall be mounted in the duct in accordance with the requirements of SMACNA Ducted Electric Heat Guide.
- C. The coil shall occupy entire cross sectional area of duct.
- D. Install and suspend coil and terminal box so the connecting duct work does not support coil weight in any way.
- E. Provide duct access doors at entering air side of heaters to allow for inspection with adequate clearances as defined by the manufacturer and NEC.

Orange County Convention Center West Building Restroom Renovations ELECTRIC RESISTANCE DUCT HEATERS SECTION 233114

END OF SECTION 233114

SECTION 233300 - DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backdraft dampers.
 - 2. Barometric Relief Damper
 - 3. Manual-volume dampers.
 - 4. Fire dampers.
 - 5. Flexible ducts.
 - 6. Flexible connectors.
 - 7. Duct accessory hardware.
 - 8. Flange Connectors
 - 9. Duct Mounted Access Door

1.3 SUBMITTALS

- A. Product Data: For the following:
 - 1. Backdraft dampers.
 - 2. Barometric Relief Damper
 - 3. Manual-volume dampers.
 - 4. Fire and smoke dampers.
 - 5. Flexible ducts.
 - 6. Flange Connector
 - 7. Duct Mounted Access Door
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loadings, required clearances, method of field assembly, components, location, and size of each field connection. Detail the following:
 - 1. Special fittings and manual- and automatic-volume-damper installations.
 - 2. Fire- and smoke-damper installations, including sleeves and duct-mounted access doors and panels.
- C. Product Certificates: Submit certified test data on dynamic insertion loss; self-noise power levels; and airflow performance data, static-pressure loss, dimensions, and weights.

1.4 QUALITY ASSURANCE

- A. NFPA Compliance: Comply with the following NFPA standards:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

- A. Galvanized, Sheet Steel: Lock-forming quality; ASTM A 653, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.
- B. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets, commercial quality, with oiled, exposed matte finish.
- C. Aluminum Sheets: ASTM B 209, Alloy 3003, Temper H14, sheet form; with standard, one-side bright finish for ducts exposed to view and mill finish for concealed ducts.
- D. Extruded Aluminum: ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized steel reinforcement where installed on galvanized, sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for 36-inch length or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 BACKDRAFT DAMPERS

- A. Description: Suitable for horizontal or vertical installations.
- B. Frame: 0.052-inch thick, galvanized, sheet steel, with welded corners and mounting flange.
- C. Blades: 0.050-inch thick aluminum sheet.
- D. Blade Seals: Vinyl 01, Neoprene.
- E. Blade Axles: Galvanized steel.
- F. Tie Bars and Brackets: Galvanized steel.
- G. Return Spring: Adjustable tension.

2.3 BAROMETRIC RELIEF DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 - 1. Cesco Products; a division of Mestek, Inc.

- 2. <u>Greenheck Fan Corporation</u>.
- 3. Nailor Industries Inc.
- 4. Ruskin Company.
- B. Suitable for horizontal or vertical mounting.
- C. Maximum Air Velocity: 1250 fpm (6.4 m/s).
- D. Maximum System Pressure: 2-inch wg (0.5 kPa).
- E. Frame: Hat-shaped, 0.05-inch- (1.3-mm-) thick, galvanized sheet steel, with welded corners or mechanically attached.
- F. Blades:
 - 1. Multiple, 0.025-inch- (0.6-mm-) thick, roll-formed aluminum.
 - 2. Maximum Width: 6 inches (150 mm).
 - 3. Action: Parallel.
 - 4. Balance: Gravity.
 - 5. Eccentrically pivoted.
- G. Blade Seals: Neoprene.
- H. Blade Axles: Galvanized steel.
- I. Tie Bars and Brackets:
 - 1. Material: Aluminum.
 - 2. Rattle free with 90-degree stop.
- J. Return Spring: Adjustable tension.
- K. Bearings: Synthetic.
- L. Accessories:
 - 1. Flange on intake.
 - 2. Adjustment device to permit setting for varying differential static pressures.

2.4 MANUAL-VOLUME DAMPERS

- A. General: Factory fabricated with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
 - 1. Pressure Classifications of 3-Inch wg or Higher: End bearings or other seals for ducts with axles full length of damper blades and bearings at both ends of operating shaft.
- B. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.

- C. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, and suitable for horizontal or vertical applications.
 - 1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 16 gauge, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 16 gauge, galvanized, sheet steel.
 - 3. Blade Axles: Plated steel.
 - 4. Tie Bars and Brackets: Galvanized steel.
- D. Low-Leakage Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, low-leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.
- E. Low-Leakage Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, low-leakage rating, and suitable for horizontal or vertical applications.
 - 1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 16 gauge, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 2. Roll-Formed Steel Blades: 16 gauge, galvanized, sheet steel, air foil shaped.
 - 3. Blade Seals: Neoprene.
 - 4. Blade Axles: Plated steel.
 - 5. Tie Bars and Brackets: Galvanized steel.
- F. High-Performance Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, low-leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.
 - 1. Aluminum Frames: Hat-shaped, 0.125-inch thick, extruded-aluminum channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
 - 2. Extruded-Aluminum Blades: Minimum of 0.081-inch thick, 6063T extruded aluminum.
 - 3. Blade Seals: Dual-durometer vinyl on blade edges; metallic compression on jambs.
 - 4. Blade Axles: Plated steel.
 - 5. Tie Bars and Brackets: Aluminum.
- G. Jackshaft: 1-inch diameter, galvanized steel pipe rotating within a pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 1. Length and Number of Mountings: Appropriate to connect linkage of each damper of a multiple-damper assembly.
- H. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.5 FIRE DAMPERS

- A. General: Labeled to UL 555.
- B. Fire Rating: One and one-half hours.
- C. Fire Rating: One and one-half and three hours.

- D. Frame: SMACNA Type A with blades in airstream; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.
- E. Frame: SMACNA Type B with blades out of airstream; fabricated with roll-formed, 0.034-inch thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed galvanized, sheet steel.
 - 1. Minimum Thickness: 0.052 inch or 0.138 inch thick as indicated, and length to suit application.
 - 2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch thick, galvanized, sheet steel. In place of interlocking blades, use full-length, 0.034-inch thick, galvanized steel blade connectors.
- I. Horizontal Dampers: Include a blade lock and stainless-steel negator closure spring.
- J. Fusible Link: Replaceable, 165 or 212 deg F rated as indicated.

2.6 FLEXIBLE CONNECTORS

- A. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
- B. Standard Metal-Edged Connectors: Factory fabricated with a strip of fabric 3-1/2 inches wide attached to two strips of 2-3/4-inch wide, 0.028-inch thick, galvanized, sheet steel or 0.032-inch aluminum sheets. Select metal compatible with connected ducts.
- C. Conventional, Indoor System Flexible Connector Fabric: Glass fabric double coated with polychloroprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp, and 360 lbf/inch in the filling.
- D. Conventional, Outdoor System Flexible Connector Fabric: Glass fabric double coated with a synthetic-rubber, weatherproof coating resistant to the sun's ultraviolet rays and ozone environment.
 - 1. Minimum Weight: 26 oz./sq. vd.
 - 2. Tensile Strength: 530 lbf/inch in the warp, and 440 lbf/inch in the filling.

2.7 FLEXIBLE DUCTS

- A. General: Comply with UL 181, Class 1.
- B. Flexible Ducts, Insulated: Factory-fabricated, insulated, round duct, with an outer jacket enclosing 1-1/2-inch thick, glass-fiber insulation around a continuous inner liner.
 - 1. Reinforcement: Steel-wire helix encapsulated in inner liner.

- 2. Outer Jacket: Glass-reinforced, silver Mylar with a continuous hanging tab, integral fibrous-glass tape, and nylon hanging cord.
- 3. Inner Liner: Polyethylene film.
- 4. Flexible Duct: Technaflex, Flexmaster.
- C. Flexible Duct Acoustical: Factory-fabricated insulated round duct with an outer jacket enclosing 1-1/2 inch thick, glass-fiber insulation around an acoustically transparent nylon inner liner.
 - 1. Reinforcement: Steel-wire helix encapsulated in inner liner.
 - 2. Outer Jacket: Glass-reinforced, silver Mylar with a continuous hanging tab, integral fibrous-glass tape, and nylon hanging cord.
 - 3. Inner Liner: Acoustically transparent nylon fabric.
 - 4. Acoustical flexible duct shall be Flexmaster Type 6 or pre-approved substitute.
- D. Pressure Rating: 6-inch wg positive, 1/2-inch wg negative.

2.8 ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments, and length to suit duct insulation thickness.
- B. Splitter Damper Accessories: Zinc-plated damper blade bracket; 1/4-inch, zinc-plated operating rod; and a duct-mounted, ball-joint bracket with flat rubber gasket and square-head set screw.
- C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 to 18 inches to suit duct size.
- D. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

2.9 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDO; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.10 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Elgen Manufacturing.
 - 5. Flexmaster U.S.A., Inc.
 - 6. Greenheck Fan Corporation.
 - 7. <u>McGill AirFlow LLC</u>.
 - 8. <u>Nailor Industries Inc</u>.
 - 9. Pottorff.
 - 10. Ventfabrics, Inc.
 - 11. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2 (7-2M), "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inch (25-by-25-mm)butt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches (460 mm) Square: Continuous and two sash locks.
 - c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Continuous and two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Continuous and two compression latches with outside and inside handles.

4.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and NAIMA's "Fibrous Glass Duct Construction Standards" for fibrous-glass ducts.
- B. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

- C. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- D. Set dampers to fully open position before testing, adjusting, and balancing.
- E. Install volume dampers in lined duct; avoid damage to and erosion of duct liner.
- F. Provide test holes at fan inlet and outlet and elsewhere as indicated.
- G. Install fire dampers according to manufacturer's UL-approved written instructions.
 - 1. Install fusible links in fire dampers.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct electric heater.
 - 2. Upstream from duct filters.
 - 3. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 4. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 5. At each change in direction and at maximum 50-foot (15-m) spacing.
 - 6. Control devices requiring inspection.
 - 7. Elsewhere as indicated.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 - 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).
 - 3. Head and Hand Access: 18 by 10 inches (460 by 250 mm).
 - 4. Head and Shoulders Access: 21 by 14 inches (530 by 355 mm).
 - 5. Body Access: 25 by 14 inches (635 by 355 mm).
 - 6. Body plus Ladder Access: 25 by 17 inches (635 by 430 mm).
- J. Install flexible connectors to connect ducts to equipment.
- K. Label access doors according to Division 23 Section "Mechanical Identification."
- L. Ductwork flexible connectors are not required for internally isolated equipment.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.

- 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
- 4. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300

SECTION 233423.0 - POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Centrifugal roof ventilators.
 - 2. Ceiling-mounting ventilators.
 - 3. In-line centrifugal fans.
 - 4. Propeller fans.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - 3. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

- C. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Roof framing and support members relative to duct penetrations.
 - 2. Size and location of initial access modules for acoustical tile.
- D. Field quality-control test reports.
- E. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- D. UL Standard: Power ventilators shall comply with UL 705.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.
- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories."

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Greenheck.
 - 2. Loren Cook Company.
 - 3. Penn Ventilation.
- B. Description: Direct- or belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor and disconnect switch, drive assembly, curb base, and accessories.
- C. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- D. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- E. Belt-Driven Drive Assembly: Resiliently mounted to housing, with the following features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 4. Fan and motor isolated from exhaust airstream.

F. Accessories:

- 1. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
- 2. Bird Screens: Removable, 1/2-inch (13-mm) mesh, aluminum or brass wire.
- G. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- (40-mm-) thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch (40-mm) wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 12 inches (300 mm).

2.2 CEILING-MOUNTING VENTILATORS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Broan Mfg. Co., Inc.
 - 2. Greenheck.

- 3. Loren Cook Company.
- 4. NuTone Inc.
- 5. Penn Ventilation.
- B. Description: Centrifugal fans designed for installing in ceiling or wall or for concealed in-line applications.
- C. Housing: Steel, lined with acoustical insulation.
- D. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- E. Grille: Plastic, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- F. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- G. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 - 3. Isolation: Rubber-in-shear vibration isolators.
 - 4. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.3 IN-LINE CENTRIFUGAL FANS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Greenheck.
 - 2. Loren Cook Company.
 - 3. Penn Ventilation.
- B. Description: In-line, direct or belt-driven centrifugal fans consisting of housing, wheel, outlet guide vanes, fan shaft, bearings, motor and disconnect switch, drive assembly, mounting brackets, and accessories.
- C. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- D. Direct-Driven Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- E. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- F. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.
- G. Accessories:

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
- 3. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.4 PROPELLER FANS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 - 1. Greenheck.
 - 2. Loren Cook Company.
 - 3. Penn Ventilation.
- B. Description: Direct- or belt-driven propeller fans consisting of fan blades, hub, housing, orifice ring, motor, drive assembly, and accessories.
- C. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.
- D. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- E. Belt-Driven Drive Assembly: Resiliently mounted to housing, statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
 - 1. Service Factor Based on Fan Motor Size: 1.4.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
 - 4. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
 - 5. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 6. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 7. Belt Guards: Fabricate of steel for motors mounted on outside of fan cabinet.

F. Accessories:

- 1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
- 2. Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
- 3. Wall Sleeve: Galvanized steel to match fan and accessory size.
- 4. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.5 MOTORS

- A. Comply with requirements in Division 23 Section "Motors."
- B. Enclosure Type: Totally enclosed, fan cooled.

2.6 SOURCE QUALITY CONTROL

- A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Secure roof-mounting fans to roof curbs with cadmium-plated hardware. Refer to Division 7 Section "Roof Accessories" for installation of roof curbs.
- C. Install units with clearances for service and maintenance.
- D. Label units according to requirements specified in Division 23 Section "Mechanical Identification."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26 Section "Grounding and Bonding."
- D. Connect wiring according to Division 26 Section "Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

- 1. Verify that shipping, blocking, and bracing are removed.
- 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
- 3. Verify that cleaning and adjusting are complete.
- 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
- 5. Adjust belt tension.
- 6. Adjust damper linkages for proper damper operation.
- 7. Verify lubrication for bearings and other moving parts.
- 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Refer to Division 23 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION 23 34 23.0

SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 WORK INCLUDED

- A. Diffusers.
- B. Diffuser boots.
- C. Registers/grilles.

1.2 REFERENCES

- A. ADC 1062 Certification, Rating and Test Manual.
- B. ANSI/NFPA 90A Installation of Air Conditioning and Ventilating Systems.
- C. ARI 650 Air Outlets and Inlets.
- D. ASHRAE 70 Method of Testing for Rating the Air Flow Performance of Outlets and Inlets.
- E. SMACNA Low Pressure Duct Construction Standard.

1.3 QUALITY ASSURANCE

A. Test and rate performance of air outlets and inlets in accordance with ADC Equipment Test Code 1062 and ASHRAE 70.

1.4 REGULATORY REQUIREMENTS

A. Conform to ANSI/NFPA 90A.

1.5 SUBMITTALS

- A. Provide product data for items required for this project.
- B. Submit schedule of outlets and inlets indicating type, size, location, application, and noise level.
- C. Review requirements of outlets and inlets as to size, finish, and type of mounting prior to submitting product data and schedules of outlets and inlets.
- D. Submit manufacturer's installation instructions.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS – DIFFUSERS/REGISTERS GRILLES

- A. Price
- B. Metalaire
- C. Titus

2.2 RECTANGULAR CEILING DIFFUSERS

- A. Rectangular, adjustable pattern, fixed blade, stamped, multicore type diffuser to discharge air in 360 degree pattern with sectorizing baffles where indicated.
- B. Provide surface mount, snap-in, or inverted T-bar type frame. In plaster ceilings, provide plaster frame and ceiling frame.
- C. Fabricate of aluminum with baked enamel off-white finish.

2.3 CEILING EXHAUST AND RETURN REGISTERS/GRILLES

- A. Streamlined aluminum construction, 3/4 inch spacing, 35 degree fixed blades, 1-inch thick filter with \(^{1}\)4 turn fasteners, horizontal face.
- B. Fabricate 1-1/4 inch margin frame with concealed mounting.
- C. Fabricate of aluminum with 20 gage minimum frame, or aluminum extrusions, with factory baked enamel off-white finish.
- D. Where not individually connected to exhaust fans, provide integral, gang-operated opposed blade dampers with removable key operator, operable from face.
- E. All ceiling exhaust and return air register/grilles installed in a room with T-bar drop ceiling shall be T-bar drop in type.

2.4 LINEAR SUPPLY DIFFUSER

- A. The diffuser border shall be heavy extruded aluminum construction with extruded aluminum spacers and mitered end flanges, open ends, flush end caps or angle end caps.
- B. Continuous length units shall be provided with factory assembled corner modules to suit drawings and on site conditions. Joiner strips shall be provided to align continuous slot assemblies.
- C. The diffuser border shall be finished in B12 White Powder Coat. Paint finish shall pass 500 hours of salt spray exposure with no measurable creep in accordance with ASTM D1654 and 1000 hours with no rusting or blistering as per ASTM D610 and ASTM D714.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install items in accordance with manufacturers' instructions.
- B. Check location of outlets and inlets and make necessary adjustments in position to conform with architectural features, symmetry, and lighting arrangement.
- C. Install diffusers to ductwork with air tight connection.
- D. Provide balancing dampers on duct take-off to diffusers, and grilles and registers, regardless of whether dampers are specified as part of the diffuser, or grille and register assembly.
- E. Paint ductwork visible behind air outlets and inlets matte black.
- F. All grilles and diffusers in gyms must be protected by screen guards.
- G. Insulate the top side of all T-bar lay-in grilles and diffusers.
- H. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- I. Form closely fitted joints with exposed connections accurately located and secured.
- J. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- K. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.
- L. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.

END OF SECTION 233713

SECTION 237313 – INDOOR AIR HANDLING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Constant-air-volume, air-handling units.
 - 2. Variable-air-volume, air-handling units.

1.3 REFERENCES

- A. AMCA Publication 99 Standards Handbook.
- B. AMCA Publication 611 Certified Ratings Program Airflow Measurement Performance
- C. AMCA Standard 500-D Laboratory Methods of Testing Dampers for Rating.
- D. ANSI/ABMA Standard 9 Load Ratings and Fatigue Life for Ball Bearings.
- E. ANSI/AMCA Standard 204 Balance Quality and Vibration Levels for Fans.
- F. ANSI/AMCA Standard 610 Laboratory Methods of Testing Airflow Measuring Stations for Rating.
- G. ANSI/AHRI Standard 410 Forced Circulation Air-Cooling and Air-Heating Coils.
- H. ANSI/AHRI Standard 430 Central Station Air Handling Units.
- I. ANSI/AHRI Standard 1060 Rating Air-To-Air Energy Recovery Ventilation Equipment
- J. ANSI/ASHRAE Standard 52.2 Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.
- K. ANSI/ASHARE Standard 62.1 Ventilation for Acceptable Indoor Air Quality.
- L. ANSI/ASHARE Standard 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings.
- M. ANSI/NEMA MG 1 Motors and Generators.
- N. ANSI/UL 900 Standard for Safety Air Filter Units.
- O. AHRI Standard 260 Sound rating of Ducted Air Moving and Conditioning Equipment.

- P. ASHRAE Standard 84 Method of Testing Air-to-Air Heat Exchangers.
- Q. ASHRAE Standard 111 Measurement, Testing, Adjusting, and Balancing of Building HVAC Systems.
- R. ASTM B117 Standard Practice for Operation Salt Spray Apparatus.
- S. ASTM C1071 Thermal and Acoustic Insulation (Mineral Fiber, Duct Lining Material).
- T. ASTM C1338 Standard Test Method for Determining Fungi Resistance of Insulation Material and Facings.
- U. ASTM E477 Standard Test Method for Measure Acoustical and Airflow Performance of Duct Liner Materials and Prefabricated Silencers.
- V. NFPA 70 National Electrical Code®.
- W. NFPA 90A Standard for the Installation of Air Conditioning and Ventilation Systems.
- X. UL 1995 Standard for Safety Heating and Cooling Equipment

1.4 QUALITY ASSURANCE

- A. Air Coils: Certify capacities, pressure drops and selection procedures in accordance with current AHRI Standard 410.
- B. Air handling units with fan sections utilizing single fans shall be rated and certified in accordance with AHRI Standard 430.
- C. Air handling units with fan sections utilizing multiple fans shall be rated in accordance with AHRI Standard 430 for airflow, static pressure, and fan speed performance.
- D. Airflow monitoring station: Certify airflow measurement station performance in accordance with AMCA 611.
- E. ISO 9001 Certification.

1.5 REGULATORY REQUIREMENTS

- A. Agency Listings/Certifications
 - 1. Unit shall be manufactured to conform to UL 1995 and shall be listed by either UL/CUL or ETL. Units shall be provided with listing agency label affixed to the unit. In the event the unit is not UL/CUL or ETL approved, the contractor shall, at his/her expense, provide for a field inspection by a UL/CUL or ETL representative to verify conformance. If necessary, contractor shall perform modifications to the unit to comply with UL/CUL or ETL as directed by the representative, at no additional expense to the owner.
 - 2. Certify air handling units in accordance with AHRI Standard 430. Units shall be provided with certification label affixed to the unit. If air handling units are not certified in accordance with AHRI Standard 430, contractor shall be responsible for expenses

- associated with testing of units after installation to verify performance of fan(s). Any costs incurred to adjust fans to meet scheduled capacities shall be the sole responsibility of the contractor.
- 3. Certify air handling coils in accordance with AHRI Standard 410. Units shall be provided with certification label affixed to the unit. If air handling coils are not certified in accordance with AHRI Standard 410, contractor shall be responsible for expenses associated with testing of coils after installation to verify performance of coil(s). Any costs incurred to adjust coils to meet scheduled capacities shall be the sole responsibility of the contractor.
- 4. Certify airflow monitoring stations are tested for differential pressure in accordance with AMCA 611 in an AMCA registered laboratory and comply with the requirements of the AMCA Certified Ratings Program. Airflow monitoring station shall be licensed to bear the AMCA Seal.

1.6 MANUFACTURER SUBMITTALS

- A. No equipment shall be fabricated or delivered until the receipt of approved shop drawings from the Owner or Owner's approved representative.
- B. AHU manufacturer shall provide the following information with each shop drawing/product data submission:
 - 1. Dimensioned arrangement drawings for each AHU including a plan and elevation view of the assembled unit with overall dimensions, lift points, unit shipping split locations and dimensions, installation and operating weights, and installation, operation and service clearances.
 - 2. All electrical, piping, and ductwork requirements, including sizes, connection locations, and connection method recommendations.
 - 3. Each component of the unit shall be identified and mechanical specifications shall be provided for unit and accessories describing construction, components, and options.
 - 4. All performance data, including capacities and airside and waterside pressure drops, for components.
 - 5. Fan curves shall be provided for fans with the design operating points indicated. Data shall be corrected to actual operating conditions, temperatures, and altitudes.
 - 6. For units with multiple fans, a fan curve shall be provided showing the performance of the entire bank of fans at design conditions. In addition, a fan curve shall be provided showing the performance of each individual fan in the bank of fans at design conditions. Finally, a fan curve shall be provide showing the performance of the bank of fans when one fan is down. The percent redundancy of the bank of fans with one fan down shall be noted on the fan curve or in the tabulated fan data.
 - 7. A filter schedule must be provided for each air handling unit supplied by the air handling unit manufacturer. Schedule shall detail unit tag, unit size, corresponding filter section location within the AHU, filter arrangement (e.g. angled/flat), filter depth, filter type (e.g. pleated media), MERV rating, and filter quantity and size.
 - 8. A schedule detailing necessary trap height shall be provided for each air handling unit. Schedule shall detail unit tag, unit size, appropriate trap schematic with recommended trap dimensions, and unit supplied base rail height. Contractor shall be responsible for additional trap height required for trapping and insulation beyond the unit supplied base rail height by adequate housekeeping pad.
 - 9. A coil valve coordination schedule shall be provided for each air handling unit supplied by the air handling unit manufacturer. Schedule shall detail unit tag, coil type and

- corresponding section location within the AHU, valve style (e.g. global, ball), valve type (e.g. electronic 2-way/3-way), valve position (e.g. normally open/closed), size, flow coefficient (CV), and close-off pressure.
- 10. An electrical MCA MOP schedule shall be provided for each electrical circuit to which field-power must be supplied. Schedule to detail unit tag, circuit description, voltage/phase/hertz, Minimum Circuit Ampacity (MCA), and calculated Maximum Overcurrent Protection (MOP).
- 11. Sound data shall be provided using AHRI 260 test methods. Unit discharge, inlet, and radiated sound power levels in dB shall be provided for 63, 125, 250, 500, 1000, 2000, 4000, and 8000 Hz.
- C. The AHU manufacturer shall provide appropriate sets of submittals to the Owner and Contractor as referenced in the General Conditions and Closeout Submittals and shall submit to the Owner electronic copies of the IOM.
- D. The AHU manufacturer shall list any exceptions to the specification.

1.7 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
 - 2. Support location, type, and weight.
 - 3. Field measurements.
- B. Field quality-control reports.

1.8 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include any emergency, operation, and maintenance manuals.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Owner Furnished units will be delivered to site on date(s) coordinated with installing contractor. Installing contractor shall coordinate delivery date and be responsible for receiving, storing AHU in a clean, dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.
- B. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.
- C. Units shall ship fully assembled up to practical shipping and rigging limitations. Units not shipped fully assembled shall have tags and airflow arrows on each section to indicate location and orientation in direction of airflow. Shipping splits shall be clearly defined on submittal drawings. Cost associated with non-conformance to shop drawings shall be the responsibility

of the manufacturer. Each section shall have lifting lugs for field rigging and final placement of AHU sections. Indoor AHUs less than 100 inches wide shall allow for forklift transport for maneuverability on jobsite.

- D. Manufacturer will deliver units to jobsite with fan motor(s), sheave(s), and belt(s) completely assembled and mounted in units.
- E. Indoor air handling units shall be shipped in a clear shrink-wrap or stretch-wrap to protect unit from in-transit rain and debris per ASHRAE 62.1 recommendations.

1.10 START-UP AND OPERATING REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters in place, bearings lubricated (if applicable), condensate properly trapped, piping connections verified and leak-tested, belts aligned and tensioned, all shipping braces removed, bearing set screws torqued, and fan has been test run under observation.

1.11 COORDINATION

- A. Contractor shall coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Contractor shall coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.
- C. Contractor shall coordinate rigging of sections through existing and new openings to mechanical spaces.

1.12 WARRANTY

A. AHU manufacturer shall provide, at no additional cost, a standard parts warranty that covers a period of one year from unit start-up or 18 months from shipment, whichever occurs first. This warrants that all products are free from defects in material and workmanship and shall meet the capacities and ratings set forth in the equipment manufacturer's catalog and bulletins.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Approved manufacturer shall be Trane.

2.2 GENERAL

- A. Unit layout and configuration shall be as defined in project plans and schedule.
- B. Unit manufacturer to provide an integral base frame to support all sections of unit and raise unit for proper trapping. Contractor will be responsible for providing a housekeeping pad when indoor air handling unit base frame is not of sufficient height to properly trap unit. Unit base frames not constructed of galvanized steel shall be chemically cleaned and coated with both a
 - rust-inhibiting primer and finished coat of rust-inhibiting enamel.
- C. Entire indoor air handling unit shall have a full perimeter base rail for structural rigidity and condensate trapping.

2.3 UNIT CASING

- A. Unit manufacturer shall ship separate segments so unit can be broken down for ease of installation in tight spaces. The entire air handler shall be constructed of galvanized steel. Indoor air handling unit casing finish to meet ASTM B117 250-hour salt-spray test. The removal of access panels or access doors shall not affect the structural integrity of the unit. All removable panels shall be gasketed. All doors shall have gasketing around full perimeter to prevent air leakage. Contractor shall be responsible to provide connection flanges and all other framework that is needed to properly support the unit.
- B. Casing performance Casing air leakage shall not exceed leak class 6 (CL = 6) per ASHRAE 111 at specified casing pressure, where maximum casing leakage (cfm/100 ft2 of casing surface area) = CL X P0.65.
- C. Air leakage shall be determined at a casing static pressure of 8 inches w.g. Specified air leakage shall be accomplished without the use of caulk. Total estimated air leakage shall be reported for each unit in CFM, as a percentage of supply air, and as an ASHRAE 111 Leakage Class.
- D. Under 55°F supply air temperature and design conditions on the exterior of the unit of 81°F dry bulb and 73°F wet bulb, condensation shall not form on the casing exterior. The AHU manufacturer shall provide tested casing thermal performance for the scheduled supply air temperature plotted on a psychrometric chart. The design condition on the exterior of the unit shall also be plotted on the chart. If tested casing thermal data is not available, AHU manufacturer shall provide, in writing to the Engineer and Owner, a guarantee against condensation forming on the unit exterior at the stated design conditions above. The guarantee shall note that the AHU manufacturer will cover all expenses associated with modifying units in the field should external condensate form on them. In lieu of AHU manufacturer providing a written guarantee, the installing contractor must provide additional external insulation on AHU to prevent condensation.

- E. Unit casing (wall/floor/pressure bulkhead roof panels and doors) shall be able to withstand up to 1.5 times design static pressure up to +8" w.g. in all positive pressure sections and -8" w.g. in all negative pressure sections, whichever is less, and shall not exceed 0.0042" per inch of panel span (L/240).
- F. Floor panels shall be double-wall construction and designed to support a 300-lb load during maintenance activities and shall deflect no more than 0.0042" per inch of panel span.
- G. Unit casing panels shall be 2" double-wall construction, with solid galvanized exterior and solid galvanized interior, to facilitate cleaning of unit interior.
- H. Unit casing panels (pressure bulkhead roof panels, walls, floor) and doors shall be provided with a minimum thermal resistance (R-value) of 13 Hr*Ft2*°F/BTU.
- I. Unit casing panels (pressure bulkhead roof panels, walls, floor) and external structural frame members shall be completely insulated filling the entire panel cavity in all directions so that no voids exist. Panel insulation shall comply with NFPA 90A.
- J. Structural frame must not extend from air-handling unit interior to exterior. All component and panel support structure must be internal to AHU. Casing panel inner liners must not extend to the exterior of the unit or contact the exterior frame. A mid-span, no-through-metal, internal thermal break shall be provided for all unit casing panels.
- K. Access panels and/or access doors shall be provided in all sections to allow easy access to drain pan, coil(s), motor, drive components and bearings for cleaning, inspection, and maintenance.
- L. Access panels and doors shall be fully removable without the use of specialized tools to allow complete access of interior surfaces.
- M. Treadplate shall be applied to the unit floor to improve the walking surface in those unit sections where the floor is fully accessible, and not impeded by internal structural or functional features.

2.4 Access Doors

- A. Access doors shall be 2" double-wall construction. Interior and exterior shall be of the same construction as the interior and exterior wall panels.
- B. All doors downstream of cooling coils shall be provided with a thermal break construction of door panel and door frame.
- C. Gasketing shall be provided around the full perimeter of the doors to prevent air leakage.
- D. Door hardware shall be surface-mounted to prevent through-cabinet penetrations that could likely weaken the casing leakage and thermal performance.
- E. Handle hardware shall be designed to prevent unintended closure.
- F. Access doors shall be hinged and removable without the use of specialized tools to allow.

- G. Hinges shall be interchangeable with the door handle hardware to allow for alternating door swing in the field to minimize access interference due to unforeseen job site obstructions.
- H. Door handle hardware shall be adjustable and visually indicate locking position of door latch external to the section.
- I. All doors shall be a minimum 60" high when sufficient height is available, or the maximum height allowed by the unit height.
- J. Multiple door handles for indoor air handling units shall be provided for each latching point of the door necessary to maintain the specified air leakage integrity of the unit. See Section 2.26 for outdoor air handling unit requirements.
- K. A shatterproof window shall be provided in fan access doors.

2.5 PRIMARY DRAIN PANS

- A. All cooling coil sections shall be provided with an insulated, double-wall, stainless steel drain pan.
- B. The drain pan shall be designed in accordance with ASHRAE 62.1 being of sufficient size to collect all condensation produced from the coil and sloped in two planes, pitched toward drain connections, promoting positive drainage to eliminate stagnant water conditions when unit is installed level and trapped per manufacturer's requirements. See section 2.07, paragraph F through H for specifications on intermediate drain pans between cooling coils.
- C. The outlet shall be located at the lowest point of the pan and shall be sufficient diameter to preclude drain pan overflow under any normally expected operating condition.
- D. All drain pan threaded connections shall be visible external to the unit. Threaded connections under the unit floor shall not be accepted.
- E. Drain connections shall be of the same material as the primary drain pan and shall extend a minimum 2-1/2" beyond the base to ensure adequate room for field piping of condensate traps.
- F. The installing contractor is responsible to ensure the unit is installed level, trapped in accordance with the manufacturer's requirements, and visually inspected to ensure proper drainage of condensate.
- G. Coil support members inside the drain pan shall be of the same material as the drain pan and coil casing.
- H. Drain pans shall be provided for heating coils, access sections, and mixing sections as indicated in the plans.

2.6 FANS

- A. Fan sections shall have a minimum of one access door located on the drive side of the unit to allow inspection and maintenance of the fan, motor, and drive components. Construct door(s) per Section 2.04.
- B. Provide fans of type and class as specified on the schedule. Fan shafts shall be solid steel, coated with a rust-inhibiting coating, and properly designed so that fan shaft does not pass through first critical speed as unit comes up to rated RPM. All fans shall be statically and dynamically tested by the manufacturer for vibration and alignment as an assembly at the operating RPM to meet design specifications. Fans controlled by variable frequency drives shall be statically and dynamically tested for vibration and alignment at speeds between 25% and 100% of design RPM. If fans are not factory-tested for vibration and alignment, the contractor shall be responsible for cost and labor associated with field balancing and certified vibration performance. Fan wheels shall be keyed to fan shafts to prevent slipping.
- C. Direct-drive plenum fans shall be mounted on spring isolation bases. Internally-mounted motor shall be on the same isolation base. Fan and motor shall be internally isolated with spring isolators. Unit sizes up to nominal 4,000 cfm shall have 1-inch springs. Unit sizes larger than nominal 4,000 cfm shall have 2-inch spring isolators. A flexible connection (e.g. canvas duct) shall be installed between fan and unit casing to ensure complete isolation. Flexible connection shall comply with NFPA 90A and UL 181 requirements. If fans and motors are not internally isolated, then the entire unit shall be externally isolated from the building, including supply and return duct work, piping, and electrical connections. External isolation shall be furnished by the installing contractor in order to avoid transmission of noise and vibration through the ductwork and building structure.
- D. Fan sections containing multiple fans shall be provided as indicated on the schedule and drawings. Each fan shall operate in parallel to each other fan in the array. The fans shall be SWSI plenum type with high efficient AF blades. Fans shall be direct-driven. Fan wheels shall be aluminum. The Hp characteristic of the fans shall be non-overloading.
- E. Fan sections containing multiple fans shall be controlled using a common control signal, such as the duct static control signal, to modulate the fan speed.
- F. Fan airflow measurement systems shall be provided as indicated on the schedule and drawings to measure fan airflow directly or to measure differential pressure that can be used to calculate airflow. The accuracy of the devices shall be no worse than +/- 5 percent when operating within stable fan operating conditions. Devices shall not affect the submitted fan performance and acoustical levels. Devices that obstruct the fan inlet or outlet shall not be acceptable. Devices shall be connected to transducers with a 2-10 VDC output. Signal shall be proportional to air velocity.

2.7 MOTORS AND DRIVES

A. All motors and drives shall be factory-installed and run tested. All motors shall be installed on a slide base to permit adjustment of belt tension. Slide base shall be designed to accept all motor sizes offered by the air-handler manufacturer for that fan size to allow a motor change in the future, should airflow requirements change. Fan sections without factory-installed motors shall have motors field installed by the contractor. The contractor shall be responsible for all costs

- associated with installation of motor and drive, alignment of sheaves and belts, run testing of the motor, and balancing of the assembly.
- B. Motors shall meet or exceed all NEMA Standards Publication MG 1 2006 requirements and comply with NEMA Premium efficiency levels when applicable. Motors shall comply with applicable requirements of NEC and shall be UL Listed.
- C. Fan Motors shall be heavy duty, NEMA Premium efficient ODP, exceeding the EPAct efficiency requirements.
- D. Direct-driven fan sections shall use 2-pole (3600 rpm), 4-pole (1800 rpm), or 6-pole (1200 rpm) motors, NEMA Design B, with Class B insulation to operate continuously at 104°F (40°C) ambient without tripping of overloads. Multiple fan selections utilizing 8-pole (900 rpm) motors are unacceptable due to motor inefficiency, cost, and replacement lead times.
- E. Motors shall have a +/- 10 percent voltage utilization range to protect against voltage variation.

2.8 COILS

- A. Install coils such that headers and return bends are enclosed by unit casing to ensure that if condensate forms on the header or return bends, it is captured by the drain pan under the coil.
- B. Coils shall be manufactured with plate fins to minimize water carryover and maximize airside thermal efficiency. Fin tube holes shall have drawn and belled collars to maintain consistent fin spacing to ensure performance and air pressure drop across the coil as scheduled. Tubes shall be mechanically expanded and bonded to fin collars for maximum thermal conductivity. Use of soldering or tinning during the fin-to-tube bonding process is not acceptable due to the inherent thermal stress and possible loss of bonding at that joint.
- C. Construct coil casings of stainless steel. End supports and tube sheets shall have belled tube holes to minimize wear of the tube wall during thermal expansion and contraction of the tube.
- D. All coils shall be completely cleaned prior to installation into the air handling unit. Complete fin bundle shall be degreased and cleaned to remove any lubricants used in the manufacturing of the fins, or dirt that may have accumulated, in order to minimize the chance for water carryover.
- E. When two or more cooling coils are stacked in the unit, an intermediate drain pan shall be installed between each coil. The intermediate drain pan shall be designed being of sufficient size to collect all condensation produced from the coil and sloped to promote positive drainage to eliminate stagnant water conditions. The intermediate drain pan shall be constructed of the same material as the primary drain pan.
- F. The intermediate drain pan shall begin at the leading face of the water-producing device and be of sufficient length extending downstream to prevent condensate from passing through the air stream of the lower coil.
- G. Intermediate drain pan shall include downspouts to direct condensate to the primary drain pan. The intermediate drain pan outlet shall be located at the lowest point of the pan and shall be

sufficient diameter to preclude drain pan overflow under any normally expected operating condition.

H. Hydronic Coils

- 1. Supply and return header connections shall be clearly labeled on unit exterior such that direction of coil water-flow is counter to direction of unit air-flow.
- 2. Coils shall be proof-tested to 300 psig and leak-tested to 200 psig air pressure under water
- 3. Headers shall be constructed of round copper pipe or cast iron.
- 4. Tubes shall be 1/2 inch O.D., minimum 0.016 inch thick copper. Fins shall be aluminum.
- 5. Tubes shall be 5/8 inch O.D., minimum inch thick copper. Fins shall be aluminum.

2.9 FILTERS

- A. Provide factory-fabricated filter section of the same construction and finish as unit casings. Filter section shall be provided with front-loading filter frames. Filter holding frames shall be constructed of galvanized steel and equipped with foam gaskets to seal filters against filter frames. Frame seams shall be sealed to eliminate air bypass. Access door(s) shall be provided to facilitate filter removal. Construct doors in accordance with Section 2.04. Manufacturer to provide necessary filter clips to lock primary and secondary pre-filters (when specified) tightly to filter frame without the need for special tools, bolts or nuts. Filter holding frames shall be of a universal type to accommodate standard filters of 12x24 and 24x24 nominal size as well as appropriate fasteners.
- B. Filter type, MERV rating, and arrangement shall be provided as defined in project plans and schedule.
- C. Manufacturer shall provide one set of startup filters.
- D. Each filter section shall be provided with a factory-installed, flush-mounted Dwyer dial-type differential pressure gauge piped to both sides of the filter to indicate status. Gauge shall maintain a +/- 5 percent accuracy within operating temperature limits of -20°F to 120°F. Filter sections consisting of pre- and post-filters shall have a gauge for each.

2.10 ACCESS SECTIONS

A. Access sections shall be provided where indicated in the schedule and plans to allow additional access for inspection, cleaning, and maintenance of unit components. The unit shall be installed for proper access. Procedure for proper access, inspection and cleaning of the unit shall be provided in the AHU manufacturer's maintenance manual. Access section doors shall be constructed per Section 2.04.

2.11 DISCHARGE PLENUM SECTIONS

- A. Plenums shall be provided as indicated in the schedule and plans to efficiently turn air and provide acoustical attenuation. Discharge plenum opening types and sizes shall be scaled to meet pressure drop requirements scheduled and align with duct takeoffs.
- B. Discharge plenum panels shall include an acoustical liner where indicated in the schedule and plans to meet acoustical requirements. The liner shall be fabricated from stainless steel perforated material to prevent corrosion and designed to completely encapsulate fiberglass insulation. The perforation spacing and hole size shall be such as to prevent insulation breakaway, flake off, or delamination when tested at 9000 fpm, in accordance with UL 181 or ASTM C1071. Insulation material must be resistant to fungi in accordance with ASTM C1338.

2.12 MARINE LIGHTS

- A. Marine lights shall be provided throughout AHUs as indicated on the schedule and plans. Lights shall be instant-on, light-emitting diode (LED) type to minimize amperage draw and shall produce lumens equivalent to a minimum 75W incandescent bulb (1200 lumens). LED lighting shall provide instant-on, white light and have a minimum 50,000 hr life.
- B. Light fixture shall be weather-resistant, enclosed and gasketed to prevent water and dust intrusion.
- C. Fixtures shall be designed for flexible positioning during maintenance and service activities for best possible location providing full light on work surface of interest and not being blocked by technician.
- D. All lights on a unit shall be wired in the factory to a single on-off switch.
- E. Installing contractor shall be responsible for providing 115V supply to the factory-mounted marine light circuit.

2.13 CONVENIENCE OUTLETS

A. A 15-amp, 115V GFCI convenience outlet shall be provided by the AHU manufacturer. The outlet shall be separate from the load side of the equipment per NEC requirements. Installing contractor shall be responsible for providing 115V supply to the factory-mounted GFCI outlet circuit per NEC (even when single-point power is specified to be provided by AHU manufacturer).

2.14 Variable Frequency Drives (VFDs)

A. Variable frequency drives shall be provided, mounted and wired by the AHU manufacturer as indicated on the schedule and drawings. All standard and optional features shall be included within the VFD enclosure, unless otherwise specified. The VFDs shall be UL listed. The listing shall allow mounting in plenum or other air handling compartments.

- B. The VFD shall convert incoming fixed frequency three-phase AC power into a variable frequency and voltage for controlling the speed of three-phase AC motors. The motor current shall closely approximate a sine wave. Motor voltage shall be varied with frequency to maintain desired motor magnetization current suitable for centrifugal pump and fan control and to eliminate the need for motor derating.
- C. With the motor's rated voltage applied to the VFD input, the VFD shall allow the motor to produce full rated power at rated amps, RMS fundamental volts, and speed without using the motor's service factor. VFDs utilizing sine weighted/coded modulation (with or without 3rd harmonic injection) must provide data verifying that the motors will not draw more than full load current during full load and full speed operation.
- D. The VFD shall include an input full-wave bridge rectifier and maintain a fundamental power factor near unity regardless of speed or load.
- E. The VFD and options shall be tested to ANSI/UL Standard 508. The complete VFD, including all specified options, shall be assembled by the manufacturer, which shall be UL 508 certified for the building and assembly of option panels. Assembly of separate panels with options by a third-party is not acceptable. The appropriate UL stickers shall be applied to both the VFD and option panel, in the case where these are not contained in one panel.
- F. The VFD shall have DC link reactors on both the positive and negative rails of the DC bus to minimize power line harmonics. VFDs without DC link reactors shall provide a minimum 3% impedance line reactor.
- G. The VFDs full load amp rating shall meet or exceed NEC Table 430-150. The VFD shall be able to provide full rated output current continuously, 110% of rated current for 60 seconds and 160% of rated current for up to 0.5 second while starting.
- H. The VFD shall be able to provide full torque at any selected frequency from 28 Hz to base speed to allow driving direct drive fans without derating.
- I. An automatic energy optimization selection feature shall be provided standard in the VFD. This feature shall automatically and continually monitor the motor's speed and load and adjust the applied voltage to maximize energy savings and provide up to an additional 3% to 10% energy savings.
- J. Input and output power circuit switching shall be able to be accomplished without interlocks or damage to the VFD. Switching rate may be up to 1 time per minute on the input and unlimited on the output.
- K. An automatic motor adaptation test algorithm shall measure motor stator resistance and reactance to optimize performance and efficiency. It shall not be necessary to run the motor or de-couple the motor from the load to run the test.
- L. Galvanic and/or optical isolation shall be provided between the VFDs power circuitry and control circuitry to ensure operator safety and to protect connected electronic control equipment from damage caused by voltage spikes, current surges, and ground loop currents. VFDs not including either galvanic or optical isolation on both analog I/O and discrete I/O shall include additional isolation modules.

M. The VFD shall minimize the audible motor noise through the use of an adjustable carrier frequency. The carrier frequency shall be automatically adjusted to optimize motor and VFD efficiencies while reducing motor noise.

N. Protective Features

Protection shall be provided against input transients, loss of AC line phase, output short circuit, output ground fault, overvoltage, undervoltage, VFD overtemperature and motor overtemperature. The VFD shall display all faults as words. Codes are not acceptable.

The VFD shall be protected from sustained power or phase loss. The VFD shall provide full rated output with an input voltage as low as 90% of the nominal. The VFD shall continue to operate with reduced output with an input voltage as low as 164 V AC for 208/230 volt units, 313 V AC for 460 volt units, and 394 volts for 600 volts units.

The VFD shall incorporate a motor preheat circuit to keep the motor warm and prevent condensation build up in the stator.

The VFD package shall include semi-conductor rated input fuses to protect power components.

To prevent breakdown of the motor winding insulation, the VFD shall be designed to comply with IEC

Part 34-17. Otherwise the AHU manufacturer shall ensure that inverter rated motors are supplied.

The VFD shall include a "signal loss detection" circuit to sense the loss of an analog input signal such as 4 to 20 mA or 2 to 10 V DC, and shall be programmable to react as desired in such an instance.

The VFD shall function normally when the keypad is removed while the VFD is running and continue to follow remote commands. No warnings or alarms shall be issued as a result of removing the keypad.

The VFD shall catch a rotating motor operating forward or reverse up to full speed.

The VFD shall be rated for 100,000 amp interrupting capacity (AIC).

The VFD shall include current sensors on all three output phases to detect and report phase loss to the motor. The VFD shall identify which of the output phases is low or lost.

The VFD shall continue to operate without faulting until input voltage reaches 300 V AC on 208/230 volt units, 539 V AC on 460 volt units, and 690 volts on 600 volt units.

O. Interface Features

Hand/Start, Off/Stop and Auto/Start selector switches shall be provided to start and stop the VFD and determine the speed reference. On units with bypass, a VFD/Off/Bypass selector switch shall be provided. The VFD shall be able to be programmed to provide a 24 V DC output signal to indicate that the VFD is in Auto/Remote mode.

The VFD shall provide digital manual speed control. Potentiometers are not acceptable.

A lockable, alphanumeric backlit display keypad shall be provided. The keypad shall be remotely mountable up to 10 feet away using standard 9-pin cable.

The keypads for all sizes of VFDs shall be identical and interchangeable.

To set up multiple VFDs, it shall be possible to upload all setup parameters to the VFDs keypad, place that keypad on all other VFDs in turn and download the setup parameters to each VFD. To facilitate setting up VFDs of various sizes, it shall be possible to download from the keypad only size independent parameters.

The display shall be programmable to display in English, Spanish and French at a minimum.

A red FAULT light, a yellow WARNING light and a green POWER-ON light shall be provided. These indications shall be visible both on the keypad and on the VFD when the keypad is removed.

A quick setup menu with factory preset typical HVAC parameters shall be provided on the VFD eliminating the need for macros.

The VFD shall include a standard EIA-485 communications port and capabilities to be connected at a future date to a Johnson Controls N2 Metasys or Siemens FLN system at no additional cost to the owner. The connection shall be software selectable by the user.

At a minimum, the following points shall be controlled and/or accessible:

VFD Start/Stop

Orange County Convention Center West Building Restroom Renovations

Speed reference Fault diagnostics Meter points Motor power in HP Motor power in kW Motor kW-hr Motor current Motor voltage

2 Feedback signals

DC link voltage

Hours run

Thermal load on motor

Thermal load on VFD

Heatsink temperature

Four additional Form C 230 volt programmable relays shall be available for field installation within the VFD

LonWorks® communication shall be available for factory or field installation within the VFD.

Two set-point control interfaces (PID control) shall be standard in the unit. The VFD shall be able to look at two feedback signals, compare with two set-points and make various process control decisions.

Floating point control interface shall be provided to increase/decrease speed in response to contact closures.

Four simultaneous displays shall be available. They shall include frequency or speed, run time, output amps and output power. VFDs unable to show these four displays simultaneously shall provide panel meters.

Sleep mode shall be provided to automatically stop the VFD when its speed drops below set "sleep" level for a specified time. The VFD shall automatically restart when the speed command exceeds the set "wake" level.

The sleep mode shall be functional in both follower mode and PID mode.

A run permissive circuit shall be provided to accept a "system ready" signal to ensure that the VFD does not start until dampers or other auxiliary equipment are in the proper state for VFD operation. The run permissive circuit shall also be capable of sending an output signal as a start command to actuate external equipment before allowing the VFD to start.

The following displays shall be accessible from the control panel in actual units: Reference Signal Value, Output Frequency in Hz or percent, Output Amps, Motor HP, Motor kW, kWhr, Output Voltage, DC Bus Voltage, VFD Temperature in degrees, and unit CFM.

The display shall be programmed to read in inches of water column (in-wg).

The VFD shall be able to be programmed to sense the loss of load and signal a no load/broken belt warning or fault.

If the temperature of the VFDs heat sink rises to 80°C, the VFD shall automatically reduce its carrier frequency to reduce the heat sink temperature. If the temperature of the heat sink continues to rise the VFD shall automatically reduce its output frequency to the motor. As the VFDs heat sink temperature returns to normal, the VFD shall automatically increase the output frequency to the motor and return the carrier frequency to its normal switching speed.

The VFD shall have temperature controlled cooling fans for quiet operation and minimized losses.

The VFD shall store in memory the last 10 faults and related operational data.

Eight programmable digital inputs shall be provided for interfacing with the systems control and safety interlock circuitry.

Two programmable relay outputs, one Form C 240 V AC, one Form A 30 V AC, shall be provided for remote indication of VFD status.

Three programmable analog inputs shall be provided and shall accept a direct-or-reverse acting signal. Analog reference inputs accepted shall include two voltage (0 to 10 V DC, 2 to 10 V DC) and one current (0 to 20 mA, 4 to 20 mA) input.

Two programmable 0 to 20 mA analog outputs shall be provided for indication of VFD status. These outputs shall be programmable for output speed, frequency, current and power. They shall also be programmable to provide a selected 24V DC status indication.

Under fire mode conditions, the VFD shall be able to be programmed to automatically default to a preset speed.

P. Adjustments

The VFD shall have an adjustable carrier frequency in steps of not less than 0.1 kHz to allow tuning the VFD to the motor.

A minimum of sixteen preset speeds shall be provided.

Four acceleration and four deceleration ramps shall be provided. Accel and decel time shall be adjustable over the range from 0 to 3,600 seconds to base speed. The shape of these curves shall be automatically contoured to ensure no-trip acceleration and deceleration.

Four current limit settings shall be provided.

If the VFD trips on one of the following conditions, the VFD shall be programmable for automatic or manual reset: undervoltage, overvoltage, current limit and inverter overload.

The number of restart attempts shall be selectable from 0 through 20 or infinitely and the time between attempts shall be adjustable from 0 through 600 seconds.

An automatic "on delay" shall be selectable from 0 to 120 seconds.

Q. Service Conditions

VFDs shall provide full output in an ambient temperature from -10 to 50°C (14 to 104°F).

VFDs shall provide full output in a relative humidity from 0 to 95%, non-condensing.

VFDs shall provide full output up to 3,300 feet elevation without derating.

VFDs shall provide full output with an AC line voltage variation from -10 to +10% of nominal voltage.

No side clearance shall be required for cooling of any units. All power and control wiring shall be done from the bottom.

R. Warranty

The VFD shall be warranted by the manufacturer for a period of 42 months from date of shipment, or 36 months from start-up, which ever occurs first. The warranty shall include parts, labor, travel costs and living expenses incurred by the manufacturer to provide factory-authorized on-site service.

2.15 VFD Enclosures

- A. VFDs shall be factory mounted on the drive side of the fan section. VFD may be mounted on the interior of the unit, accessible from the unit exterior through an access door, or on the casing exterior in a NEMA Type 1 enclosure for indoor units. If not mounted on the fan section due to NEC disconnect height limitations or serviceability constraints in the mechanical equipment room, VFD may be mounted in another location other than the fan.
- B. Any welds shall be properly finished with no rough edges. Enclosures shall house circuit breaker disconnects, bypass circuitry, Drive-OFF-Bypass switches, manual speed controls, and control transformers. VFDs and starter/disconnects shall have an external disconnect located on the outside of the access door.

2.16 Factory Wiring of Lights and VFDs

- A. VFDs shall be wired per NEC, UL, and NFPA 90A requirements. Units with factory-mounted controls shall also include power wiring from the VFD or starter/disconnect control transformer to the control system transformers. Units with VFDs and factory-mounted controls shall have a binary start-stop signal and an analog speed signal wired from the direct digital controller to the VFD.
- B. All power wiring for voltages greater than 24V and traveling through multiple unit sections shall be contained in an enclosed, metal, power-wiring raceway or EMT. Sections less than 6' in length may be contained in FMC.

2.17 Factory Commissioning of VFDs

A. After mounting and wiring of VFDs, on the AHUs, trained factory personnel shall ensure proper operation of each VFD, through a thorough factory test. Testing shall include a Hypot test of unit wiring to ensure that no weaknesses exist in wiring or motor. Each VFD shall be energized and the fan run to ensure the VFD will operate throughout the usable range of the drive and that the fan rotation is correct. Each VFD with bypass shall also be tested in the bypass position to ensure the bypass is operational.

2.18 FACTORY-ENGINEERED AUTOMATIC TEMPERATURE CONTROL DEVICES

- A. Devices shall be factory wired to an external terminal stip
- B. Differential pressure gauges shall be provided by the AHU manufacturer. Pressure gauges shall be factory installed across each filter bank for individual filters. The gauge shall be diaphragmactuated dial type.
- C. A momentary push-button reset circuit using a double-pole low limit switch shall be provided by the AHU manufacturer. Low limits shall be factory engineered to maximize coil coverage. Capillary radius clips shall be used at low limit bends to ensure no crimping or wear of low limits. Low limits shall be wired to shut down the fan to protect the unit.
- D. Discharge temperature sensors shall be provided and mounted on the fans by the AHU manufacturer. Temperature sensors mounted within the AHU shall have sensor material selected to integrate with the BAS controller. Sensors shall not be proprietary and shall be readily available for long-term replacement. Sensors not acceptable for AHU installation are 1.8k ohm thermistor, 2.252k ohm thermistor, and 3k ohm thermistor.
- Averaging temperature sensors shall be provided by the AHU manufacturer. Sensors shall be factory engineered to accurately measure mixed air temperatures. Capillary radius clips shall be used at capillary bends to ensure no crimping or wear of the tube. Temperature sensors mounted within the AHU shall have sensor material selected to integrate with the BAS controller. Sensors shall not be proprietary and shall be readily available for long-term replacement. Sensors not acceptable for AHU installation are 1.8k ohm thermistor, 2.252k ohm thermistor, and 3k ohm thermistor.

PART 3 - EXECUTION

3.1 SHIPPING

- A. Paper copies of the IOM shall also be shipped by the manufacturer with each AHU.
- B. The AHU manufacturer shall identify all shipments with the order number. Enough information shall be provided with each shipment to enable the Mechanical Contractor to confirm the receipt of units when they are received. For parts too small to mark individually, the AHU manufacturer shall place them in containers.
- C. To protect equipment during shipment and delivery, all indoor units shall be completely stretch or shrink wrapped. Wrap shall be a minimum of 7 mil plastic. Pipe ends and pipe connection holes in the casing shall be capped or plugged prior to shipment.
- D. After loading the equipment for shipment, the AHU manufacturer shall contact the shipping contact on the order and provide the name of the carrier, description of equipment, order number, shipping point, and date of shipment.

3.2 ON-SITE STORAGE

A. If equipment is to be stored for a period of time prior to installation, the Installing Contractor shall remove all stretch or shrink wrap from units upon receipt to prevent unit corrosion and shall either place the units in a controlled indoor environment or shall cover the units with canvas tarps and place them in a well-drained area. Covering units with plastic tarps shall not be acceptable.

3.3 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.
- D. The Mechanical Contractor shall verify that the mechanical room and/or roof are ready to receive work and the opening dimensions are as indicated on the shop drawings and contract documents.
- E. The Mechanical Contractor shall verify that the proper power supply is available prior to starting of the fans.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 INSTALLATION

- A. The mechanical rooms are located in areas that will require the disassembly and reassembly of the air handling unit. It is the responsibility of the mechanical contractor to disassemble the air handling unit to locate the air handling unit inside the mechanical room. It is the responsibility of the mechanical contractor to reassemble the air handling unit within the air handling unit.
- B. The Mechanical Contractor shall be responsible to coordinate ALL installation requirements with the Owner to ensure that a complete installation for each unit is being provided. Coordination efforts shall include such items as unloading and hoisting requirements, field wiring requirements, field piping requirements, field ductwork requirements, requirements for assembly of field-bolted or -welded joints, and all other installation and assembly requirements.
- C. The AHU manufacturer shall provide all screws and gaskets for joining of sections in the field.
- D. Equipment Mounting: Install air-handling units on concrete bases using elastomeric mounts. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Division 03 Section "Cast-in-Place Concrete." Comply with requirements for vibration isolation devices specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 - 1. Install galvanized-steel plate to equally distribute weight over elastomeric pad.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
- E. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- F. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

3.5 LEVELING

A. The Mechanical Contractor shall level all unit sections in accordance with the unit manufacturer's instructions. The Mechanical Contractor shall provide and install all necessary permanent shim material to ensure individual sections and entire assembled units are level.

3.6 CONNECTIONS

- A. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to air-handling unit to allow service and maintenance.
- C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- D. Chilled-Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

E. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories."

3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.
 - 2. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.8 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that shipping, blocking, and bracing are removed.
 - 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 - 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 - 5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
 - 6. Comb coil fins for parallel orientation.
 - 7. Verify that proper thermal-overload protection is installed for electric coils.
 - 8. Install new, clean filters.
 - 9. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Starting procedures for air-handling units include the following:
 - 1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.9 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.10 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.11 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 237313

SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Electrical equipment coordination and installation.
- 2. Sleeves for raceways and cables.
- 3. Sleeve seals.
- 4. Grout.
- 5. Common electrical installation requirements.
- 6. Commissioning requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 GENERAL REQUIREMENTS

- A. Carefully examine General Conditions, other specification sections, and other drawings (in addition to DIVISION 26), in order to be fully acquainted with their effect on electrical work. Additions to the contract cost will not be allowed due to failure to inspect existing conditions.
- B. Do all work in compliance with 2010 Florida Building Code with 2012 supplements, and the Codes adopted therein, including NFPA 70 (2008 NEC), 2010 Florida Fire Prevention Code and the regulations of the local power utility, cable television and telephone companies. Obtain and pay for any and all required permits, inspections, certificates of inspections and approval, and the like, and deliver such certificates to the Architect/Engineer.
- C. Cooperate and coordinate with all other trades. Perform work in such manner and at such times as not to delay work of other trades. Complete all work as soon as the condition of the structure and installations of equipment will permit. Patch, in a satisfactory manner and by the proper craft, any work damaged by electrical workmen.
- D. Furnish, perform, or otherwise provide all labor (including, but not limited to, all planning, purchasing, transporting, rigging, hoisting, storing, installing, testing, chasing, channeling, cutting, trenching, excavating and backfilling), coordination, field verification, equipment installation, support, and safety, supplies, and materials necessary for the correct installation of

- complete and functional electrical systems (as described or implied by these specifications and the applicable drawings).
- E. Coordinate and verify power and telephone company service requirements prior to bid. Bid to include all work required.
- F. Circuiting and connection of all items using electric power shall be included under this division of the specifications, including necessary wire, conduit, circuit protection, disconnects and accessories. Secure rough-in drawings and connection information for equipment involved to determine the exact requirements. See all divisions of drawings or specifications for electrically operated equipment. If the connection of an item is not shown on the electrical drawings and it is unclear how to provide for the circuiting and connection, notify the engineer of record in writing prior to bidding project. Submission of a bid indicates that the bidder has included these requirements as part of the scope of work.

1.5 DRAWINGS:

- A. Indicate only diagrammatically the extent, general character, and approximate location of work. Where work is indicated, but with minor details omitted, furnish and install it complete and so as to perform its intended functions.
- B. DIVISION 26 work called for under any section of the project specifications, shall be considered as included in this work unless specifically excluded by inclusion in some other branch of the work. This shall include roughing-in for connections and equipment as called for or inferred. Check all drawings and specifications for the project and shall be responsible for the installation of all DIVISION 26 work.
- C. Take finish dimensions at the job site in preference to scale dimensions. Do not scale drawings where specific details and dimensions for DIVISION 26 work are not shown on the drawings, take measurements and make layouts as required for the proper installation of the work and coordination with all drawings and coordination with all other work on the project. In case of any discrepancies between the drawings and the specifications that have not been clarified by addendum prior to bidding, it shall be assumed by the signing of the contract that the higher cost (if any difference in costs) is included in the contract price, and perform the work in accordance with the drawings or with the specifications, as determined and approved by the Architect/ Engineer, and no additional costs shall be allowed to the base contract price.
- D. Carefully check the drawings and specifications of all trades and divisions before installing any of his work. He shall in all cases consider the work of all other trades, and shall coordinate his work with them so that the best arrangements of all equipment, piping, conduit, ducts, rough-in, etc., can be obtained.
- E. Review the specific equipment (such as mechanical, plumbing, kitchen, FFE, etc) minimum circuit ampacity and maximum over current protection requirements of equipment provided by others to confirm it is properly coordinated with the devices being purchased. Notify the AE team immediately upon discovery of discrepancies. This shall be done at the submittal stage prior to purchasing over current protection or installation of conduit, wire, disconnects, breakers, etc. No cost will be allowed for changes to coordinate.

- F. Locations designated for outlets, switches, equipment, etc., are approximate and shall be verified by instruction in these specifications and/or notes on the drawings. Where instructions or notes are insufficient to convey the intent of the design, consult the Architect/Engineer prior to installation.
- G. Obtain manufacturer's data on all equipment, the dimensions of which may affect electrical work. Use this data to coordinate proper service characteristics, entry locations, etc., and to ensure minimum clearances are maintained.

1.6 QUALIFICATIONS OF CONTRACTOR:

- A. DIVISION 26 Contractor shall have had experience of at least the same size and scope as this project, on at least two other projects within the last five years.
- B. Contractor performing any part of this scope of work shall be a State Certified (Type E.C. License) electrical contractor
- C. Provide field superintendent who has had a minimum of four (4) years previous successful experience on projects of comparable size and complexity. Superintendent shall be on the site at all times during construction and must have an active Journeyman's Electrical License.

1.7 SITE VISIT/CONDITIONS

- A. Visit the site of this contract and thoroughly familiarize with all existing field conditions and the proposed work as described or implied by the contract documents. During the course of his site visit, verify every aspect of the proposed work and the existing field conditions in the areas of construction which might affect his work. No compensation or reimbursement for additional expenses incurred due to failure or neglect to make a thorough investigation of the contract documents and the existing site conditions will be permitted.
- B. Install all equipment so that all Code required and Manufacturer recommended servicing clearances are maintained. Coordinate the proper arrangement and installation of all equipment within any designated space. If it is determined that a departure from the Contract Documents is necessary, submit to the A/E, for approval, detailed drawings of the proposed changes with written reasons for the changes. No changes shall be implemented without the issuance of the required drawings, clarifications, and/or change orders.
- C. Submission of a proposal will be construed as evidence that such examination has been made and later claims for labor, equipment or materials required because of difficulties encountered will not be recognized.
- D. Existing conditions and utilities indicated are taken from existing construction documents, surveys, and field investigations. Unforeseen conditions probably exist and existing conditions shown on drawings may differ from the actual existing installation with the result being that new work may not be field located exactly as shown on the drawings. Field verify dimensions of all site utilities, conduit routing, boxes, etc., prior to bidding and include any deviations in the contract. Notify A/E if deviations are found.

- E. All existing electrical is not shown. Become familiar with all existing conditions prior to bidding, and include in the bid the removal of all electrical equipment, wire, conduit, devices, fixtures, etc. that is not being reused, back to it's originating point.
- F. Locate all existing utilities and protect them from damage. Pay for repair or replacement of utilities or other property damaged by operations in conjunction with the completion of this work.
- G. Investigate site thoroughly and reroute all conduit and wiring in area of construction in order to maintain continuity of existing circuitry. Existing conduits indicated in Contract Documents indicate approximate locations. Verify and coordinate existing site conduits and pipes prior to any excavation on site. Bids shall include hand digging and all required rerouting in areas of existing conduits or pipes.
- H. Work is in connection with existing buildings which must remain in operation while work is being performed. Work shall be in accord with the schedule required by the Contract. Schedule work for a minimum outage to Owner. Notify Owner 72 hours in advance of any shut-down of existing systems. Perform work during non-school operating hours unless otherwise accepted by Owner. Protect existing buildings and equipment during construction.

1.8 COMMISSIONING RESPONSIBILITIES

- A. Attend commissioning meetings scheduled by the General Contractor.
- B. Schedule work so that required electrical installations are completed, and system verification checks and functional performance test can be carried out on schedule.
- C. Inspect, check and confirm in writing the proper installation and performance of all electrical services as required by the system verification and functional performance testing requirements of electrical equipment in the commissioning specifications.
- D. Provide qualified personnel to assist and operate electrical system during system verification checks and functional performance testing of HVAC systems as required by the commissioning specifications.
- E. Provide instruction and demonstrations for the Owner's designated operating staff in accordance with the requirements of the commissioning specifications.

1.9 TEMPORARY POWER:

- A. Provide temporary power distribution for the connection of all single phase 120V 20A tools, OSHA work lighting, and testing as required for performance of the project. Provide OSHA required work lighting and task lighting for the project.
- B. Coordinate requirements with the local Utility Company for availability of adequate power. Include all cost associated with any Utility Company charges for connection or upgrades in this bid price.

- C. If power to any of the existing facilities will be interrupted, coordinate the outage with the Owner atleast 72 hours in advance. All power outages will occur outside operational hours as determined by the Owner.
- D. Provide temporary power to any buildings, parking lot lighting, canopy lighting, lift stations, etc that will have power removed during the course of construction temporarily. Additionally, if any new buildings, parking lots, lift stations, etc will need power until the permanent power becomes available, provide temporary power until the permanent power is available.
- E. Provide temporary lighting for all areas that will require lighting for school use as well as construction use during the course of construction. Temporary lighting must comply with all FBC requirements as though it was being installed for permanent use. This includes but is not limited to any temporary canopies, parking lots, walkways or roads. If you are unsure of how to connect or provide this lighting, notify the engineer of record in writing prior to bidding project. Submission of a bid indicates that the bidder has included these requirements as part of the scope of work.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Engineer shall have no responsibility for job site safety and the Contractor shall have full and sole authority for all safety programs and precautions in connection with the Work. Nothing herein shall be interpreted to confer upon the Engineer any duty regarding safety or the prevention of accidents at the jobsite.
- B. Comply with NECA 1.
- C. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- D. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- E. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- F. Right of Way: Give to piping systems installed at a required slope.
- G. All work shall be executed in a workmanship manner and shall present a neat mechanical appearance upon completion.
- H. Care shall be exercised that all items are plumb, straight, level.

- I. Care shall be exercised so that Code clearance is allowed for all panels, controls. etc., requiring it. Do not allow other trades to infringe on this clearance.
- J. Balance load as equally as practicable on all feeders, circuits and panel buses.
- K. The electrical circuits, components and controls for all equipment are selected and sized based on the equipment specified. If substitutions are proposed, furnish all materials and data required to prove equivalence. No additional charges shall be allowed if additional materials, labor, connections or equipment are needed for substituted products.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Coordinate with roofing scope of work for the installation of electrical items which pierce roof. Roof penetrations shall not void warranty. Pitch pockets are not acceptable.
- D. Where work pierces waterproofing, it shall maintain the integrity of the waterproofing. Coordinate roofing materials which pierce roof for compatibility with membrane or other roof types.
- E. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- F. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- G. Cut sleeves to length for mounting flush with both surfaces of walls.
- H. Extend sleeves installed in floors 2 inches above finished floor level.
- I. Size pipe sleeves to provide **1/4-inch** annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- J. Seal space outside of sleeves with grout for penetrations of concrete and masonry
- K. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section "Joint Sealants.".
- L. Fire-Rated-Assembly Penetrations: Firestop penetrations of walls, partitions, ceilings, and floors under Division 07 Section "Firestopping."
- M. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work. The use of pitch pockets is not acceptable.

3.3 CONCRETE PADS

- A. Furnish and install reinforced concrete housekeeping pads for transformers, switchgear, motor
 - control centers, and other free-standing equipment. Unless otherwise noted, pads shall be four (4) inches high and shall exceed dimensions of equipment being set on them, including future sections, by three (3) inches each side, except when equipment is flush against a wall where the side against the wall shall be flush with the equipment.
- B. Provide concrete pad for exterior pad mount transformers as required by power company.
- C. Provide concrete pad for exterior generators as recommended by generator manufacturer and structural engineer (8" minimum).

3.4 MISCELLANEOUS CIRCUITS REQUIRED

- A. Provide 120 volt, 20 amp circuit to fire protection system panel and bell (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer of Record of required circuit so that final circuit information may be provided to the contractor. Re-label circuit breaker accordingly. Provide locking device on breaker. Coordinate location with civil engineer (and drawings/specifications) or fire protection engineer (and drawings/specifications) prior to bid and provide all electrical. Coordinate final location and electrical requirements with panel installer after bid and provide all electrical. Nearest panel to be nearest emergency panel, when building has emergency generator system.
- B. Provide 120 volt, 20 amp circuit to intercom system panel (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer of Record of required circuit so that final circuit information may be added to the drawings. Relabel circuit breaker accordingly. Provide locking device on breaker. Coordinate location with intercom system engineer (and drawings/specifications) prior to bid and provide all electrical. Coordinate final location and electrical requirements with panel installer after bid and provide all electrical. Nearest panel to be nearest emergency panel, when building has emergency generator system.
- C. Provide 120 volt, 20 amp circuit to all fire alarm panels, remote panels, etc (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer of Record of required circuit so that final circuit information may be added to the drawings. Re-label circuit breaker accordingly. Provide locking device on breaker. Coordinate location with fire alarm system engineer (and drawings/specifications) prior to bid and provide all electrical. Coordinate final location and electrical requirements with panel installer after bid and provide all electrical. Nearest panel to be nearest emergency panel, when building has emergency generator system.
- D. Provide 120 volt, 20 amp circuit to fire and smoke dampers (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer (whether shown on drawings or not) Provide locking device on breaker. Coordinate location with fire protection engineer (and drawings/specifications) prior to bid and provide all electrical. Coordinate final location and electrical requirements with damper installer after bid and provide all electrical. Nearest panel to be nearest emergency panel, when building has emergency generator system.

- E. Provide 120 volt, 20 amp circuit to building control panels for HVAC system (whether shown on drawings or not). Connect to spare 20 amp, 1 pole circuit breaker in nearest 120 volt panel. Notify Engineer of Record of required circuit so that final circuit information may be added to the drawings. Re-label circuit breaker accordingly. Coordinate location with drawings or specifications prior to bid and provide all electrical.
- F. Provide circuitry for Light Raise Projection System to coordinate the Presentation Stations and Light Raise Projector to be on the same circuit or circuit phase (whether shown as such on drawings or not). Notify Engineer of Record of required circuit so that final circuit information may be coordinated on the drawings if not indicated correctly. Re-label circuit breakers accordingly.
- G. Provide 120V 20A circuits and receptacles for digital message boards in Kitchens. Verify exact locations with Food Nutritional Services (whether shown on drawings or not). Notify Engineer of Record of required circuit so that final circuit information may be added to the drawings. Relabel circuit breakers accordingly.

END OF SECTION 260500

SECTION 260501 - INVESTIGATION OF EXISTING ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including Contractual conditions and Division 1 Specification sections apply to this section.

1.2 SUMMARY

A. This section includes the requirements for investigation and reporting on conditions of existing electrical systems.

1.3 DESCRIPTION

- A. Test the essential features of existing electrical power, lighting and systems.
- B. Each system shall be tested once only, and after completion of testing, results given to the Owner. Point out any non-operational function noticed during testing.
- C. Document the existing conditions and operation of the existing electrical systems prior to any work.
- D. Contractor shall be responsible for all non-working systems and their components unless non-working status is verified prior to work on system.

1.4 COORDINATION

A. The testing shall be held at a date to be agreed upon in writing by the Owner.

PART 2 - PRODUCTS (not applicable)

PART 3 - EXECUTION

3.1 PERFORMANCE VERIFICATION

A. The contractor shall investigate all existing systems prior to the beginning any work on site. Test the functionality of each system and report only those items that are non-functional to the Owner.

- B. Demonstrate to the Owner the non-functional items to verify the issue. Owner will at its option correct the deficiency immediately or defer to correct until the construction is completed. Provide a written report to clarify the items and the Owners decisions on correction,
- C. Each system shall be retested after completion of renovation to ensure proper operation.
- D. At the completion of construction, the Owner will expect all power, lighting and systems to function for their intended purpose wether new or existing. The contractor will remain responsible for this unless noted otherwise during the intial investigation and documented and demonstrated as such.

3.2 MEMO OF INVESTIGATION (TESTING)

A. Submit Existing Facilities Investigation Memo and advise Owner of all deficiencies in system(s) prior to Work. All systems will be assumed to be fully operational if Memo is not received by Owner prior to work on system.

END OF SECTION 260501

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

RELATED DOCUMENTS 1.1

Drawings and general provisions of the Contract, including General and Supplementary A. Conditions and Division 01 Specification Sections, apply to this Section.

1.2 **SUMMARY**

A. **Section Includes:**

- Building wires and cables rated 600 V and less.
- 2. Connectors, splices, and terminations rated 600 V and less.
- 3. Sleeves and sleeve seals for cables.
- Metal Clad cable, Type MC 4.

1.3 **DEFINITIONS**

- EPDM: Ethylene-propylene-diene terpolymer rubber. A.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 **SUBMITTALS**

- Product Data: For each type of product indicated. Provide type and UL listing of each type of A. conductor, cable, connector and termination to be utilized for the DIVISION 26 scope of work.
- В. Field quality-control test reports.

1.5 **QUALITY ASSURANCE**

- Listing and Labeling: Provide wires and cables specified in this Section that are listed and A. labeled as defined in NFPA 70, Article 100.
- B. Comply with NFPA 70.

1.6 **COORDINATION**

- A. Coordinate layout and installation of cables with other installations.
- Revise locations and elevations from those indicated, as required to suit field conditions and as B. approved by Architect.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alcan Products Corporation; Alcan Cable Division.
 - 2. American Insulated Wire Corp.; a Leviton Company.
 - 3. General Cable Corporation.
 - 4. Senator Wire & Cable Company.
 - 5. Southwire Company.

B. BUILDING WIRES AND CABLES

- 1. CONDUCTOR INSULATION
 - a. Comply with NEMA WC 70 for Types THHN-THWN
 - b. Service Entrance: Type THHN-THWN CU or XHHW-2 Al, single conductors in raceway.
 - c. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway.
 - d. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.
 - e. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway.
 - f. Exposed Branch Circuits, Including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
 - g. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway or Metal-clad cable, Type MC (MC may only be utilized in certain specific installations as described elsewhere in this section).
 - h. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway. Minimum #12.
 - i. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway. Minimum #12.
 - j. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
 - k. Class 1 Control Circuits: Type THHN-THWN, in raceway.
 - 1. Class 2 Control Circuits: Type THHN-THWN, in raceway.

2. Conductor Material:

- a. Copper Conductors: Comply with NEMA WC 70.
- b. All #10 and smaller conductors shall be solid CU. No stranded conductors are permitted for #10 and smaller.
- c. Aluminum conductors may be used for 1/0 and larger panel board feeders if identified as aluminum on the electrical feeder schedule. Aluminum conductors shall be compact stranded aluminum alloy with XHHW-2 insulation, made of an AA-8000 series electrical grade aluminum alloy conductor material.

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. AMP Incorporated
 - 3. Anderson
 - 4. O-Z/Gedney; EGS Electrical Group LLC.
 - 5. 3M; Electrical Products Division.
 - 6. Burndy
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
- C. Aluminum connections shall be made with compression type wire barrels factory prefilled with oxide inhibiting compound. Set screw connectors are not acceptable.

2.3 FLEXIBLE METAL CLAD CABLE

- A. Comply with:
 - 1. NFPA 70
 - 2. ANSI/UL 4/UL 83/UL 1479
 - 3. Fed. Specification J-C-30B
- B. Cable material:
 - 1. Jacket material:
 - a. Galvanized Steel or aluminum, interlocked.
 - 2. Conductor covering: Paper wrap.
 - 3. Conductor Material:
 - a. Copper, Solid, THHN
 - b. Minimum #12 gauge
 - c. Maximum #10 gauge
 - d. 90 degree C, 600 volt.
 - e. Full size insulted grounding conductor, green.
 - f. Conductor color coding to match system voltage. Comply with Division 26 Section "Identification".
- C. Fittings:
 - 1. ANSI/NEMA FB 1
 - 2. ANSI/UL 514B
 - 3. Zinc plated Malleable iron, or steel.
 - a. Direct flexible conduit bearing set screw type not acceptable.
 - b. Install insulated bushings or equivalent protection (i.e. Anti-short) between core conductors and outer jacket.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES IN RACEWAY

- A. No cables shall be installed in raceways until the raceway system is complete from end to end.
- B. Examine raceways and building finishes to confirm compliance with contract requirements for installation tolerances and other conditions affecting installation of wires and cables. Do not proceed with installation until area is ready and any unsatisfactory conditions have been corrected.
- C. Verify that interior of building has been protected from weather.
- D. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- E. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."
- G. All branch circuit wire shall be sized for a maximum voltage drop of 3%. The contractor shall size all cables to comply with this requirement. Below are some guidelines that may be followed to achieve the correct voltage drop in lieu of providing custom calculations for each case.
 - 1. Use conductor not smaller than #12 AWG for all 120V 20A branch circuits less than 60' in length from the source breaker to any device.
 - 2. All 120V branch circuit conductors where the length is 61' to 120' from the source breaker to any device shall utilize #10 minimum throughout the circuit, unless otherwise noted.
 - 3. All 120V branch circuit conductors where the length is 121' to 240' from the source breaker to any device shall utilize # 8 minimum throughout the circuit, unless otherwise noted.
 - 4. All 120V branch circuit conductors where the length is greater than 241' from the source breaker to any device shall utilize # 6 minimum throughout the circuit, unless otherwise noted
 - 5. Use conductor not smaller than #12 AWG for all 277V 20A branch circuits less than 140' in length from the source breaker to any device.
 - 6. All 277V branch circuit conductors where the length is 141' to 220' from the source breaker to any device shall utilize #10 minimum throughout the circuit, unless otherwise noted.
 - 7. All 277V branch circuit conductors where the length is 221' to 340' from the source breaker to any device shall utilize # 8 minimum throughout the circuit, unless otherwise noted.
 - 8. All 277V 20A branch circuit conductors where the length is greater than 341' from the source breaker to any device shall utilize # 6 minimum throughout the circuit, unless otherwise noted.

- H. Provide a dedicated neutral conductor for all dimmer circuits from the load back to the dimmer module or switch.
- I. Provide a dedicated neutral conductor for all computer receptacle circuits from the load back to the branch circuit panel board.
- J. Neatly train and lace wiring inside boxes, equipment, and panelboards.
- K. Conductor sizes indicated on circuit homeruns or in schedules shall be installed over the entire length of the circuit unless noted otherwise on the drawings or in these specifications.
- L. Before installing raceways and pulling wire to any mechanical equipment, verify electrical characteristics with final submittal on equipment to assure proper number and AWG of conductors. (As for multiple speed motors, different motor starter arrangements, etc.).
- M. Coordinate all wire sizes with lug sizes on equipment, devices, etc. Provide/install lugs as required to match wire size.

3.2 INSTALLATION REQUIREMENTS FOR METAL CLAD CABLES

- A. Metal Clad Cables may be used only as specified, where permitted by NEC, and if approved by the Local Inspecting Authority having Jurisdiction.
- B. MC Cable shall not be run to the panel board or electrical room. All final runs to the panelbpard shall be in conduit to a point at least 10' outside the electrical room. No more than 6 current carrying conductors shall be run in any conduit to a junction box outside the electrical room. No junction box shall contain more than 6 current carrying conductors. Wireways are not permitted for the termination of MC cables.
- C. MC cable shall not be used for any other building system wiring (except power and lighting).
- D. MC cables shall not be used for switch legs.
- E. MC cables shall not be used for feeder circuits or for systems.
- F. Utilize the same sizing requirements for 20A branch circuit conductors as listed for conductors in raceways.
- G. Connectors and supporting components shall be UL Listed for such use. Tie wire is not acceptable for supporting MC cable.
- H. Cut cables with UL listed tools intended for such use. Ream smooth and free of sharp and abrasive areas. Install bushing between conductors and outer jacket. The use of slide cutters or dikes to cut cables is not acceptable.
- I. Maintain minimum 1/2 inch separation between each cable and support per NEC. The practice of bundling cables is not acceptable.
- J. Install cables minimum of 1'-0" from communications cables.

- K. Attachment of cables to ceiling system is prohibited.
- L. Attachment of cables to, on, or from mechanical (HVAC) equipment, supports, etc., is not permitted.
- M. Install cables parallel and perpendicular to building structure.
- N. Zigzagging cables through building elements, as method of support is not acceptable.
- O. Cable with outer metal sheath damaged by construction elements and/or improper installation shall be replaced at no additional cost to owner.

3.3 CONNECTIONS

- A. Where oversized conductors are called for (due to voltage drop, etc.) provide/install lugs as required to match conductors, or provide/install splice box, and splice to reduce conductor size to match lug size.
- B. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- C. All aluminum connections shall be made with approved compression connectors before being connected to lugs. Conductors shall be cleaned with a wire brush immediately prior to connecting.
- D. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- E. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
- F. Power and lighting conductors shall be continuous and unspliced where located within conduit. Splices shall occur within troughs, wireways, outlet boxes, or equipment enclosures where sufficient additional room is provided for all splices. No splices shall be made in in-ground pull boxes (without written acceptance of engineer).
- G. Splices in lighting and power outlet boxes, wireway, and troughs shall be kept to a minimum, pull conductors through to equipment, terminal cabinets, and devices.
- H. No splices shall be made in junction box, and outlet boxes (wire No. 8 and larger) without written acceptance of Engineer.
- I. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B. A calibrated torque wrench shall be used for all bolt tightening.
- J. All interior power and lighting taps and splices in No. 8 or smaller shall be fastened together by means of "spring type" connectors. All taps and splices in wire larger than No. 8 shall be made

with compression type connectors and taped to provide insulation equal to wire. Utilize weatherproof connectors for all splices in exterior boxes.

K. No splices are permitted in exterior below grade handhole or pull boxes.

3.4 FIELD QUALITY CONTROL

- A. After feeders are in place, but before being connected to devices and equipment, test for shorts, opens, and for intentional and unintentional grounds.
- B. Cables 600 volts or less in size #1/0 and larger shall be meggered using an industry approved "megger" with 1000 V internal generating voltage. Readings shall be recorded and submitted to the Engineer for acceptance prior to energizing same. If values are less than recommended NETA values notify Engineer. Submit five copies of tabulated megger test values for all cables.
- C. Cables 250 volts or less in size #1/0 and larger shall be meggered using an industry approved "megger" with 500 V internal generating voltage. Readings shall be recorded and submitted to the Engineer, for acceptance prior to energizing same. Submit five copies of tabulated megger test values for all cables.
- D. Perform Insulation resistance test and turns ratio test. Submit five copies to engineer at substantial completion.
- E. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes methods and materials for grounding systems, equipment and common ground bonding with lightning protection system.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.

1.4 QUALITY ASSURANCE

- A. Comply with UL 467 for grounding and bonding materials and equipment.
- B. Test all ground rod locations as described to confirm quality standard intent is attained.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 4 inches in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Lugs: Compression of substantial construction, cast copper or cast bronze, with "ground" (micro-flat) surfaces, twin clamp, two-hole tongue, equal to Burndy or equal by T&B or OZ Gedney. Lightweight and "competitive" devices shall be rejected.
- E. Grounding and Bonding Bushings: Malleable iron, Thomas and Betts (T&B), or equal.
- F. Grounding Screw and Pigtail: Raco No. 983 or equal.
- G. Building Structural Steel, Existing: Thompson 701 Series heavy duty bronze "C" clamp with two-bolt vise-grip cable clamp or equal.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 5/8 inch by 10 feet in diameter.

2.4 GROUNDING WELL COMPONENTS

- A. All Areas:
 - 1. Well: Minimum 12 inch long by 12 inch wide by 18 inches deep with open bottom.
 - 2. Well Cover: Traffic rated for use with "GROUND" embossed on cover.
 - 3. Material: Composolite.
 - 4. Manufacturer: Ouazite.
 - 5. Increase depth, diameter or size as required to provide proper access at installed location.

2.5 GROUNDING BARS/GROUND BUS (INCLUDING 'SYSTEMS' GROUND BUS/BARS AND GROUND BUS BARS)

A. Ground bars shall be copper of the size and description as shown on the drawings. If not sized on drawings, bus bar shall be minimum 1/4" x 4" bus grade copper, spaced from wall on

insulating 2" polyester molded insulator standoff/supports, and be 12" or greater minimum overall length, allowing 2" length per lug connected thereto. Increase overall length as required to facilitate all lugs required while maintaining 2" spacing. Size of bus bar used in main electrical room shall be similar except minimum of 4" high and 24" long.

- B. Provide bolt-tapping lug with two hex head mounting bolts for each terminating ground conductor, sized to match conductors. Mount on bus bar at 2 inches on center spacing. Lugs to be manufactured by Burndy or T&B.
- C. Standoff supports to be 2" polyester as manufactured by Glastic #2015-4C.

PART 3 - EXECUTION

3.1 GROUNDING ELECTRODES

- A. All connections shall be exothermic welded unless otherwise noted herein. All connections above grade and in accessible locations may be by exothermic welding or by braising or clamping with devices UL listed as suitable for use except in locations where exothermic welding is specifically specified in these specifications or called for on drawings.
- B. Each rod shall be die stamped with identification of manufacturer and rod length.
- C. Install rod electrodes at locations indicated and/or as called for in these specifications.
- D. Ground Resistance:
 - 1. Main Electrical Service (to each building) and Generator Locations:
 - a. Grounding resistance measured at each main service electrode system and at each generator electrode system shall not exceed 5 ohms.
 - 2. Other Locations:
 - a. Resistance to ground of all non-current carrying metal parts shall not exceed 5 ohms measured at motors, panels, busses, cabinets, equipment racks, light poles, transformers, and other equipment.
 - 3. Lightning Protection system ground locations shall not exceed 5 ohms for the Franklin system measured at ground electrode.
 - 4. Resistance called for above shall be maximum resistance of each ground electrode prior to connection to grounding electrode conductor. Where ground electrode system being measured consists of two (2) or more ground rod electrodes then the resistance specified above shall be the maximum resistance with two (2) or more rods connected together but not connected to the grounding electrode conductor.
- E. Install additional rod electrodes as required to achieve specified resistance to ground (specified ground resistance is for each ground rod location prior to connection to ground electrode conductor). Depending on soil condition, etc. of ground rod locations it has been found that the ground rod lengths required to achieve the specified resistance may range from the minimum specified length to up to 80 feet or more in length.
- F. Verify that final backfill and compaction has been completed before driving rod electrodes.

G. Install ground rods not less than 1 foot below grade level and not less than 2 feet from structure foundation.

3.2 EQUIPMENT GROUNDING CONDUCTOR

- A. Provide separate, insulated (bare if with feeder in PVC conduit outside of building(s)) conductor within each feeder and branch circuit raceway. Terminate each end on suitable lug, bus, or bushing.
- B. Provide green insulated ground wire for all grounding type receptacles and for equipment of all voltages. In addition to grounding strap connection to metallic outlet boxes, a supplemental grounding wire and screw equal to Raco No. 983 shall be provided to connect receptacle ground terminal to the box.
- C. All plugstrips and metallic surface raceway shall contain a green insulation ground conductor from supply panel ground bus connected to grounding screw on each receptacle in strip and to strip channel. Conductor shall be continuous.
- D. All motors, all heating coil assemblies, and all building equipment requiring flexible connections shall have a green grounding conductor properly connected to the frames and extending continuously inside conduit with circuit conductors to the supply source bus with accepted connectors regardless of conduit size or type. This shall include Food Service equipment, Laundry equipment, and all other "Equipment By Owner" to which an electric conduit is provided under this Division.

3.3 MAIN ELECTRICAL SERVICE

- A. Existing Buildings:
 - 1. Verify that each building's electrical service is properly grounded as required by the NEC.
 - 2. Provide and install electrical service grounding at each building as called for herein for all existing services that do not comply with the grounding specified above.
 - 3. Supplement existing electrical service grounding at each building as required to comply with all requirements in these specifications.
 - 4. If exterior ground rod electrode does not exist at each buildings main electrical service, provide and install these ground rods as called for main electrical service, exterior of building. Connect all counterpoise conductors required elsewhere thereto.
- B. Ground electrodes shall be provided for the main service in sufficient number and configuration to secure resistance specified.
- C. Bond to all of the following when available on site:
 - 1. Ground Rods
 - 2. Metal Water Pipe (Interior and Exterior to Building)
 - 3. Building Metal Frame, Structural Steel and/or Reinforced Structural Concrete
 - 4. All Piping Entering or Leaving All Buildings (Including Chilled Water Piping)
 - 5. Encasing Electrodes
 - 6. Ground Ring

- 7. Site Distribution Counterpoise Ground System
- 8. Lightning Protection System
- D. A main ground, bare copper conductor, sized per applicable table in NEC, but in no case less than #2/0, shall be run in conduit from the main switchgear of <u>each</u> building to the building steel in respective building. This ground conductor shall also be run individually from the main switchgear and be bonded to the main water service ahead of any union in pipe and must be metal pipe of length as acceptable by authorities having jurisdiction. Provide properly sized bonding shunt around water meter and/or dielectric unions in the water pipe. Also required is the same size ground wire to ground rod electrode as called for below:
 - 1. Three 30 ft. ground rods in a delta configuration at no less than 30 ft. spacing driven to a minimum depth of 30 ft. plus 1 below grade.
 - 2. Bond ground rod electrodes together with a bare copper ground conductor that matches size required by applicable table in NEC 250, but in no case less than #2/0.
 - 3. Provide additional rod electrodes as required to achieve specified ground resistance.
- E. Ground/bond neutral per NEC.
- F. Bond grounding electrodes to site counterpoise grounding system and lightning protection system where provided.
- G. Provide and install ground bus bar on wall near main service disconnect/switchboard. Connect to ground bar in disconnect/switchboard bonded to switchboard/disconnect enclosure/neutral with copper grounding conductor sized per applicable table in NEC.

3.4 TRANSFORMER GROUNDING

- A. Ground all transformers and enclosures of 120/208V and 277/480V "separately derived systems" as specified herein.
 - 1. Ground per NEC 250 and these specifications.
 - 2. Bond neutral to transformer frame/enclosure and the equipment grounding conductors of the derived system with copper ground conductor sized per applicable table in NEC.
 - 3. Connect transformer neutral/ground to grounding electrode per NEC with grounding electrode conductor sized per applicable table in NEC.
 - 4. In addition to connection to grounding electrode conductor called for above (i.e. per NEC) provide, install and connect supplemental grounding electrode as follows:
 - a. Where grounding required per NEC is to building steel/structure, supplement this grounding with connection to nearest available effectively grounded metal water pipe.
 - b. Where grounding connection required per NEC is to grounded metal water pipe, supplement this grounding with connection to other electrodes specified in NEC.
 - c. Where supplemental grounding electrodes required above is a ground rod electrode, provide, install and connect two or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
 - 5. Where neither building steel nor water pipe grounding electrodes are available (i.e. exterior locations with no available water pipe electrode) provide two (2) ground connections: each to two (2) or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.

- 6. Where transformer is mounted exterior to building one (1) of the two (2) ground electrodes required shall be ground rod electrode as called for in 5. above. This ground rod electrode shall also be connected to counterpoise system (wherever counterpoise system is available).
- 7. Ground to water system service pipe as required by NEC.
- B. Provide additional ground electrodes as required to achieve specified ground resistance.
- C. Where two or more ground electrodes are used at any one required ground location, they shall be bonded together with a copper ground conductor, sized to meet applicable table in NEC, but in no case less than #2/0.
- D. Provide and install ground bus bar on wall near transformer (or in associated electrical room for exterior mounted transformers). Connect to ground lug in transformer bonded to transformer enclosure/neutral with copper ground conductor sized per applicable table in NEC.

3.5 GENERATOR GROUNDING

- A. Separately derived systems (i.e. systems where generator neutral is not solidly interconnected to service supplied system neutral such as 4 pole switched neutral transfer switch systems).
 - 1. Ground per NEC and these specifications.
 - 2. Bond neutral to transformer frame/enclosure and the equipment grounding conductors of the derived system with copper ground conductor sized per applicable table in NEC.
 - 3. Connect generator neutral/ground to grounding electrodes per NEC with grounding electrode conductor sized per applicable table in NEC.
 - 4. In addition to connection to grounding electrode conductor called for above (i.e. per NEC) provide, install and connect supplemental grounding electrode as follows:
 - a. Where grounding required per NEC is to building steel/structure, supplement this grounding with connection to nearest available effectively grounded metal water pipe.
 - b. Where grounding connection required per NEC is to grounded metal water pipe, supplement this grounding with connection with connection to other electrodes specified in NEC.
 - c. Where supplemental grounding electrodes required above is a ground rod electrode, provide, install and connect two or mote 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
 - 5. Where neither building steel nor water pipe grounding electrodes are available (i.e. exterior locations with no available water pipe electrode) provide two (2) ground connections: each to two (2) or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
 - 6. Where generator is mounted exterior to building one (1) of the two (2) ground electrodes required shall be ground rod electrode as called for in 5. above. This ground rod electrode shall also be connected to counterpoise system.
- B. Non separately derived systems (i.e. systems where generator neutral is solidly interconnected to service supplied system neutral such as 3 pole non-switched neutral transfer switch systems).
 - 1. Do not bond neutral to transformer frame/enclosure or the equipment grounding conductors of the derived system.

- 2. Connect generator frame/enclosures ground to grounding electrode per NEC with grounding electrode conductor sized per applicable table in NEC.
- 3. In addition to connection to grounding electrode conductor called for above (i.e. per NEC) provide, install and connect supplemental grounding electrode as follows:
 - a. Where grounding required per NEC is to building steel/structure, supplement this grounding with connection to nearest available effectively grounded metal water pipe.
 - b. Where grounding connection required per NEC is to grounded metal water pipe, supplement this grounding with connection to other electrodes specified in NEC.
 - c. Where supplemental grounding electrodes required above is a ground rod electrode, provide, install and connect two or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
- 4. Where neither building steel nor water pipe grounding electrodes are available (i.e. exterior locations with no available water pipe electrode) provide two (2) ground connections: each to two (2) or more 30 ft. ground rod electrodes at no less than 30 ft. spacing, driven vertical to a minimum depth of 30 ft. plus 1 below grade.
- 5. Where generator is mounted exterior to building one (1) of the two (2) ground electrodes required shall be ground rod electrode as called for in 5. above. This ground rod electrode shall also be connected to counterpoise system.
- C. Provide additional ground electrodes as required to achieve specified ground resistance.
- D. Where two or more ground electrodes are used at any one required ground location, they shall be bonded together with a copper ground conductor, sized to meet applicable table in NEC, but in no case less than #2/0.

3.6 LIGHTNING PROTECTION SYSTEMS

- A. Ground per applicable section on lightning protection system, NFPA 780, and as specified herein. The most stringent requirements shall govern.
- B. Bond lightning protection system grounds to electrical service system ground, all piping entering or leaving all buildings, and counterpoise system ground where provided.
- C. Lightning protection ground rods shall be 20' in length and should not be driven deeper. If additional rods are required to achieve the required resistance to ground, they should be added in parallel with the first at one rod length separation.

3.7 EXTERIOR GRADE (OR FREE STANDING ABOVE GROUND) MOUNTED EQUIPMENT

A. General:

- 1. All equipment (including chillers, pumps, disconnects, starters, control panels, panels, etc) mounted exterior to building shall have their enclosures grounded directly to a grounding electrode at the equipment location in addition to the building equipment ground connection.
- 2. Bond each equipment enclosure, metal rack support, mounting channels, etc. to ground electrode system at each rack with an insulated copper ground conductor sized to match

the grounding electrode conductor required by applicable table in NEC based on equipment feeder size, but in no case shall conductor be smaller than #6 copper or larger than #2 copper. This connection is in addition to grounding electrode connections required for services.

- B. Main electrical service rack mounted equipment.
 - 1. Ground per "MAIN ELECTRICAL SERVICE".
 - 2. Bond all metal parts as noted above.
- C. Electrical sub service rack mounted equipment.
 - 1. Ground per "MAIN ELECTRICAL SERVICE", except do not bond neutral to ground.
 - 2. Bond all metal parts as noted above.
- D. Electrical equipment connection rack mounted equipment.
 - 1. Bond all metal parts as noted above.
- E. Grounding electrodes (ground electrodes system) shall be:
 - 1. Located at each rack location.
 - 2. For service equipment: Ground electrode required per "MAIN ELECTRICAL SERVICE".
 - 3. For equipment connection equipment: Two or more 30 ft. ground rods at no less than 30 ft. spacing, driven vertical to a minimum depth of 1 ft below grade. Bond the two or more ground rods together with a size to meet applicable table in NEC, but no less than a #2 copper ground conductor. Provide additional rod electrodes as required to achieve specified ground resistance.

3.8 LIGHTING FIXTURES

- A. All new and removed/reinstalled fixtures in building interior, and exterior fixtures shall be provided with green grounding conductor, solidly connected to unit. Individual fixture grounds shall be with lug to fixture body, generally located at point of electrical connection to the fixture unit.
- B. All suspended fixtures and those supplied through flexible metallic conduit shall have green ground conductor from outlet box to fixture. Cord connected fixtures shall contain a separate green ground conductor.
- C. Pole Light Fixtures:
 - 1. Metal Pole Light Fixtures:
 - a. Freestanding pole mounted lighting fixtures shall each have a Class I or Class II lightning protection main copper down conductor connected to grounding electrodes at base of pole.
 - b. Conductor shall be bonded to metal pole via UL Listed ground clamp suitable for use. Locate ground lug opposite to handhole (or adjacent if visible through handhole).
 - 2. Concrete or Non-Metallic Pole:
 - a. Freestanding pole mounted lighting fixtures shall each have a Class I or Class II lightning protection main copper down conductor connected to grounding electrodes at base of pole.

- b. Conductor shall be extended from grounding electrode to top of pole and terminate at the top of pole in a Class I or Class II copper lightning protection air terminal.
- c. Each metal part of light fixture assembly, bracket, ballast cabinet, disconnect, transformer, etc. that is mounted to pole shall be bonded to down conductor.
- 3. Fixtures located on elevated roadway ramps shall be specially provided with a connection to lightning counterpoise grounding system, properly installed.
- 4. Grounding electrode(s) at each pole shall be connected (bonded) to site distribution counterpoise system.
- 5. Grounding Electrodes:
 - a. Two or more 10 ft. ground rods at no less than 10 ft. spacing shall be driven vertically to a minimum depth of 10 ft. plus 1 below grade.
 - b. Bond the two or more ground rod electrodes together with a Class I or Class II lightning protection main copper conductor.
 - c. Provide additional rod electrodes as required to achieve specified ground resistance.
 - d. The two (2) or more grounding rod electrodes shall be installed at each light pole.
- 6. Installation shall exceed minimum requirements of NFPA 780.

3.9 PULLBOX, MANHOLE, HANDHOLE GROUNDING.

- A. One 30 ft. ground rod electrode shall be driven vertically to a minimum depth of 30 ft. plus 1 ft. below grade in each manhole, handhole or pullbox (in ground).
- B. Bond to counterpoise system (whenever counterpoise system is provided.)
- C. Bond grounding electrode to all exposed metal parts of manhole, handhole, and pullbox (including metal cover) with #6 copper ground conductor. Connect to ground rod electrode with exothermic weld. Connect to metal cover with exothermic weld. Connect to other metal parts with exothermic weld or UL accepted grounding clamp. Provide 3 ft. or more slack ground cable on cover connection as required to facilitate removal of cover.

3.10 GROUND RING

- A. Provide complete underground building perimeter ground ring system, completely encircling each building.
- B. Conductor shall be minimum of Class II lightning protection copper conductor (bare).
- C. Install at not less than 2-1/2 feet depth into earth.
- D. Install ground rods 20 ft. long every 150 feet section of ground ring conductor.
- E. Bond ground ring to building steel every 150 feet of building perimeter, bond to any and all electrical and piping systems that cross the ground ring system, bond to lightning protection down conductors and to any lightning or other earth grounding electrodes that may be present on the premises.
- F. Bond to building service and counterpoise ground systems.

3.11 MISCELLANEOUS GROUNDING CONNECTIONS

- A. Provide bonding to meet regulatory requirements.
- B. Required connections to building steel shall be with UL accepted non-reversible crimp type ground lugs exothermically welded to bus bar that is either exothermically welded to steel or bolted to steel in locations where weld will not affect the structural properties of the steel. Required connections to existing building structural steel purlins/I beams shall be with heavy duty bronze "C" clamp with two bolt vise-grip cable clamp.
- C. Grounding conductors shall: be so installed as to permit shortest and most direct path from equipment to ground; be installed in conduit; be bonded to conduit at both ends when conduit is metal; have connections accessible for inspection; and made with accepted solderless connectors brazed (or bolted) to the equipment or to be grounded; in NO case be a current carrying conductor; have a green jacket unless it is bare copper; be run in conduit with power and branch circuit conductors. The main grounding electrode conductor shall be exothermically welded to ground rods, water pipe, and building steel.
- D. All surfaces to which grounding connections are made shall be thoroughly cleaned to maximum conductive condition immediately before connections are made thereto. Metal rustproofing shall be removed at grounding contact surfaces, for 0 ohms by digital Vm. Exposed bare metal at the termination point shall be painted.
- E. All ground connections that are buried or in otherwise inaccessible locations, shall be welded exothermically. The weld shall provide a connection which shall not corrode or loosen and which shall be equal or larger in size than the conductors joined together. The connection shall have the same current carrying capacity as the largest conductor.
- F. Install ground bushings on all metal conduits entering enclosures where the continuity of grounding is broken between the conduit and enclosure (i.e. metal conduit stub-up into a motor control center enclosure or at ground bus bar). Provide an appropriately sized bond jumper from the ground bushing to the respective equipment ground bus or ground bus bar.
- G. Install ground bushings on all metal conduits where the continuity of grounding is broken between the conduit and the electrical distribution system (i.e. metal conduit stub-up from wall outlet box to ceiling space. Provide an appropriately sized bond jumper from the ground bushing to the respective equipment ground bus or ground bus bar.
- H. Each feeder metallic conduit shall be bonded at all discontinuities, including at switchboards and all subdistribution and branch circuit panels with conductors in accordance with applicable table in NEC 250 for parallel return with respective interior grounding conductor.
- I. Grounding provisions shall include double locknuts on all heavywall conduits.
- J. Bond all metal parts of pole light fixtures to ground rod at base.
- K. Install grounding bus in all existing panelboards of remodeled areas, for connection of new grounding conductors, connected to an accepted ground point.
- L. Bond together reinforcing steel and metal accessories in pool and fountain structures.

M. Where reinforced concrete is utilized for building grounding system, proper reinforced bonding shall be provided to secure low resistance to earth with "thermite" type devices, and #10AWG wire ties shall be provided to not less than ten (10) full length rebars which contact the connected rebar.

3.12 GROUNDING BAR/GROUND BUS (INCLUDING 'SYSTEMS' GROUND BUS/BAR ON GROUND BUS/BAR) INSTALLATION

- A. Where indicated on the drawings, provide and install grounding bar/ground bus (bus bar). These bus installations are intended to provide a low-impedance "earthing" path for surge voltages, which are electrically "clamped" and shunted to earth by variable-impedance surge protective devices. Metal sheaths of underground cables are also to be grounded thereto at points of building entrance.
- B. Mount bolt tapping lugs with hex head bolts to bus bar at 2" o.c. spacing, one for each ground conductor.
- C. Mount bus bar to wall using 2" polyester molded insulator stand-off.
- D. Extend a #2/0 (minimum size) or larger THWN insulated copper ground conductor (if larger size is called for on drawings or required by N.E.C. for service ground, etc.) in PVC conduit to accepted service ground installation or ground bus/bar in main service equipment enclosure.
- E. Extend #6 insulated copper ground wire from respective bus/bar to each 'local' ground bus/bar in each cabinet for Section 27 systems.
- F. 'SYSTEMS' grounding bus/bar must be connected with #2/0 insulated copper conductor to grounding electrodes system as defined in NEC "Article 800.

3.13 COUNTERPOISE SYSTEM

- A. Install counterpoise and ground over all sections of underground ductbanks, conduits, or cables outside (exterior) to building.
- B. No. 2 bare stranded copper counterpoise shall be run six (6) inches above all underground duct banks, conduits and cables outside (exterior) to building.
- C. Provide one (1) counterpoise conductor for ductbanks (or conduit groupings) 12 inches wide or less. Provide two (2) counterpoise conductors above outside edge of ductbank (or conduit groupings) over 12 inches wide.
- D. Counterpoise shall run to building and be grounded at each building to the main building electrical service ground rod electrode (exterior to building). Counterpoise shall be bonded to ground rod at all light poles, pullboxes, manholes, handholes and at each building. Provide and install appropriate ground rod every 150 ft. length of counterpoise conductor (see "GROUNDING ELECTRODES"). Counterpoise conductor shall not be run into interior of building. Route counterpoise underground around exterior perimeter of building to main service ground rod installation.

3.14 COMMUNICATIONS SYSTEMS

- A. Provide and install all grounding as required by NEC Article 800 and where available on project: Articles 810 (Radio and Television Equipment); 820 (Community Antenna Television and Radio Distribution Systems); and 830 (Network-Powered Broadband Communications Systems.
- B. Provide and install grounding electrode at point of entry of communication cables and bond to service entrance grounding electrodes per NEC 800. Install ground bus bar at point of entry of communications cable and connect electrode to ground bus. Connect communications cable metal sheath and surge protection devices to ground bar.

3.15 TESTING AND REPORTS

- A. Ground resistance measurements shall be made on each system utilized in the project. The ground resistance measurements shall include building structural steel, driven grounding system, water pipe grounding system and other accepted systems as may be applicable. Ground resistance measurements shall be made in normally dry weather, not less than 24 hours after rainfall, and with the ground under test isolated from other grounds and equipment. Resistances measured shall not exceed specified limits.
- B. Upon completion of testing, the testing conditions and results shall be certified and submitted to the Architect/Engineer.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.
- D. Furnish products listed and classified by Underwriters Laboratories, Inc. as suitable for purpose specified and shown.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Unistrut
 - 2. Straps
 - 3. Clamps
 - 4. Rods

- 5. Hangers
- 6. Anchors
- 7. Attachment Devices
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze hangers. Include Product Data for components.
 - 2. Steel slotted channel systems. Include Product Data for components.
 - 3. Nonmetallic slotted channel systems. Include Product Data for components.
 - 4. Equipment supports.

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.7 COORDINATION

- A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.
- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper B-Line, Inc.; a division of Cooper Industries.
 - b. ERICO International Corporation.
 - c. Thomas & Betts Corporation.
 - d. Unistrut; Tyco International, Ltd.
 - e. Wesanco, Inc.
 - 2. Metallic Coatings: Exterior of the building utilize stainless steel or hot-dip galvanized after fabrication and applied according to MFMA-4. Interior utilize electro-galvanized steel products.
 - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 4. Channel Dimensions: Selected for applicable load criteria.
- B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Cooper B-Line, Inc.; a division of Cooper Industries.
 - b. Fabco Plastics Wholesale Limited.
 - c. T & B/Carlon
 - d. Seasafe, Inc.
- 2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
- 3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
- 4. Rated Strength: Selected to suit applicable load criteria.
- C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- D. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.

- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25percent in future without exceeding specified design load limits.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts, beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or spring-tension clamps.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- F. Do not support conduit or raceway with wire, metal banding material, or perforated pipe straps. Remove wire used for temporary supports
- G. Do not attach conduit or raceway to ceiling support wires.
- H. Conduits or raceways shall not be supported from ceiling grid supports, plumbing pipes, duct systems, heating or air conditioning pipes, or other building systems.
- I. Non-bolted conduit clamps, spring type conduit clamps, and tie wire are not acceptable for supports. All conduits must be supported with bolted hangers listed for the specific installed application.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
 - Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

END OF SECTION 260529

SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. LFMC: Liquidtight flexible metal conduit.
- F. LFNC: Liquidtight flexible nonmetallic conduit.
- G. NBR: Acrylonitrile-butadiene rubber.
- H. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - 2. For handholes and boxes for underground wiring, including the following:
 - a. Duct entry provisions, including locations and duct sizes.
 - b. Frame and cover design.

- c. Grounding details.
- d. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.
- e. Joint details.
- C. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.

1.5 REFERENCES

- A. ANSI C80.1 Rigid Steel Conduit Zinc Coated
- B. ANSI C80.3 Electrical Metallic Tubing Zinc Coated
- C. ANSI C80.5 Aluminum Rigid Conduit (ARC)
- D. ANSI/NEMA FB 1 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
- E. ANSI/NEMA OS 1 Sheet-steel Outlet Boxes, Device Boxes, Covers, and Box Supports.
- F. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum).
- G. ANSI/NFPA 70 National Electrical Code
- H. NECA Standard Practices for Good Workmanship in Electrical Contracting
- I. NEMA RN 1 Polyvinyl Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit.
- J. NEMA TC 2 Electrical Polyvinyl Chloride (PVC) Conduit (EPC 40, EPC 80)
- K. NEMA TC 3 -Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

- 2.1 METAL CONDUIT AND TUBING
 - A. Minimum Trade Size

- 1. All Conduit (except switch legs) 3/4"c.
- 2. Switch legs 1/2"c.

B. RIGID METALLIC CONDUIT

- 1. Comply with:
 - a. ANSI C80.1
 - b. UL Spec No. 6
 - c. NEC 344
- 2. Conduit material:
 - a. Zinc coated or hot dipped galvanized steel.
- 3. Fittings:
 - a. Threaded.
 - b. Insulated bushings shall be used on all rigid steel conduits terminating in panels, boxes, wire gutters, or cabinets, and shall be impact resistant plastic molded in an irregular shape at the top to provide smooth insulating surface at top and inner edge. Material in these bushings must not melt or support flame.
 - c. Zinc plated or hot dipped galvanized malleable iron or steel.
- 4. Conduit Bodies:
 - a. Comply with ANSI/NEMA FB 1.
 - b. Threaded hubs.
 - c. Zinc plated or hot-dipped galvanized malleable iron.

C. RIGID ALUMINUM CONDUIT

- 1. Comply with:
 - a. ANSI C80.5
 - b. UL 6
 - c. NEC 344
- 2. Conduit material: Aluminum.
- 3. Fittings:
 - a. Threaded.
 - b. Aluminum.
 - c. Insulated bushings on terminations.
- 4. Conduit bodies:
 - a. Comply with ANSI/NEMA FB 1.
 - b. Threaded hubs.
 - c. Aluminum.
- D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with:
 - a. UL 6
 - b. ANSI C80.1
 - c. NEC. 344
 - d. NEMA RN1
 - 2. Conduit material: Hot-dipped galvanized rigid steel with external PVC coating, 20 mil. thick.
 - 3. Fittings:
 - a. Threaded.
 - b. Insulated bushings on terminations.
 - c. Zinc plated or hot-dipped galvanized malleable iron or steel with external PVC coating, 20 mil. thick.

- 4. Conduit bodies:
 - a. Comply with:
 - b. ANSI/NEMA FB 1
 - c. Threaded hubs
 - d. Zinc plated or hot-dipped galvanized malleable iron with external PVC coating 20 mil thick.
- E. EMT: ANSI C80.3.
 - 1. Comply with:
 - a. UL 797
 - b. ANSI C80.3
 - c. NEC 358
 - d. ANSI/UL797
 - 2. Conduit material: Galvanized steel tubing.
 - 3. Fittings:
 - a. ANSI/NEMA FB 1
 - b. Set screw, Die Cast for Interior Dry locations
 - c. Compression, Steel for all damp locations
- F. FMC: Zinc-coated steel or aluminum.
 - 1. Comply with:
 - a. NEC 348
 - b. ANSI/UL 1
 - 2. Conduit material: Steel or aluminum, interlocked.
 - 3. Fittings:
 - a. ANSI/NEMA FB 1
 - b. ANSI/UL 514B
 - c. Die Cast
 - d. Threaded rigid conduit to flexible conduit coupling.
 - e. Direct flexible conduit bearing set screw type not acceptable.
- G. LFMC: Flexible steel conduit with PVC jacket.
 - 1. Comply with:
 - a. NEC 350
 - b. ANSI/UL 360
 - 2. Conduit material:
 - a. Flexible hot-dipped galvanized steel core, interlocked.
 - b. Continuous copper ground built into core up to 1-1/4" size.
 - c. Extruded polyvinyl gray jacket.
 - 3. Fittings:
 - a. Threaded for rigid conduit connections.
 - b. Accepted for hazardous locations where so installed.
 - c. Provide sealing washer in wet/damp locations.
 - d. Compression type.
 - e. ANSI/NEMA FB 1.
 - f. ANSI/UL 5148.
 - g. Zinc plated malleable iron or steel.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Minimum Trade Size $-\frac{3}{4}$ "

- B. RNC: NEMA TC 2, Schedule-40-PVC, unless otherwise indicated.
 - 1. Comply with:
 - a. NEMA TC-2
 - b. UL 651
 - c. NEC 352
 - 2. Conduit material:
 - a. Shall be high impact PVC tensile strength 55 PSI, flexural strength 11000 PSI.
 - 3. Fittings:
 - a. Comply with: NEMA TC-3 and UL 514.

2.3 EXPANSION FITTINGS

- A. Expansion fittings shall be:
 - 1. UL Listed, hot dipped galvanized inside and outside providing a 4" expansion chamber when used with rigid conduit and electrical metallic conduit, or:
 - 2. Be polyvinyl chloride and shall meet the requirements of and as specified elsewhere for non-metallic conduit and shall provide a 6" expansion chamber.
 - 3. Hot dipped galvanized expansion fitting shall be provided with an external braided grounding and bonding jumper with accepted clamps, UL Listed for the application.
 - 4. Expansion fitting, UL Listed for the application and in compliance with the National Electrical Code without the necessity of an external bonding jumper may be considered. Submit fitting with manufacturer's data and UL Listing for acceptance prior to installation.

2.4 METAL WIREWAYS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type.
- E. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Thomas & Betts Corporation.
 - b. Walker Systems, Inc.; Wiremold Company (The).
 - c. Wiremold Company (The); Electrical Sales Division.
 - d. Mono-Systems, Inc.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. O-Z/Gedney; a unit of General Signal.
 - 7. RACO; a Hubbell Company.
 - 8. Robroy Industries, Inc.; Enclosure Division.
 - 9. Scott Fetzer Co.; Adalet Division.
 - 10. Spring City Electrical Manufacturing Company.
 - 11. Thomas & Betts Corporation.
 - 12. Walker Systems, Inc.; Wiremold Company (The).
 - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
 - 1. Luminaire and Equipment Supporting Boxes: Rated for weight of equipment supported; include 1/2 inch (13 mm) male fixture studs where required.
 - 2. Concrete Ceiling Boxes: Concrete type.
 - 3. Interior flush outlet boxes shall be one piece galvanized steel constructed with stamped knockouts in back and sides, and threaded holes with screws for securing box coverplates or wiring devices.
 - 4. Ceiling outlet boxes shall be 4" octagonal or 4" square X 1 1/2" deep or larger as required for number and size of conductors and arrangement, size and number of conduits terminating at them.
 - 5. Switch, wall receptacle, telephone and other recessed wall outlet boxes in drywall shall be a minimum of 4" square X 1 1/2" deep. For recessing in exposed masonry, provide one piece 4" square x 1 1/2" deep wall boxes with appropriate 4" square cut tile wall covers. For recessing in furred-out block walls, provide 4" square box with required extension for block depth and required extension for drywall depth.
 - 6. Boxes shall be of such form and dimensions as to be adapted to the specific use and location, type of device or fixtures to be used, and number and size of conductors and arrangement, size and number of conduits connecting thereto.
 - 7. Handy boxes shall not be used for any purpose.
 - 8. Where a box is used as the sole support for a ceiling paddle fan, the box must be listed for this purpose and the weight of the fan.

- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.
 - 1. Interior surface outlet boxes and conduit bodies installed from 0" AFF to 90" AFF (including fire alarm device backbox) shall be the heavy cast aluminum or iron with external threaded hubs for power devices and threaded parts for low voltage devices.
 - 2. Trim rings shall also be of one-piece construction.
 - 3. Weatherproof outlet boxes shall be constructed of corrosion-resistant cast metal suited to each application and having threaded conduit hubs, cast metal faceplate with spring-hinged waterproof cap suitable configured, gasket, and corrosion-proof fasteners.
 - 4. Freestanding cast boxes are to be type FSY (with flange). Other cast zinc boxes are not acceptable.

D. Floor Boxes:

- 1. For all slab on grade areas except wet locations and wooden floors: Cast iron or steel with epoxy paint, fully adjustable before and after the concrete pour. The cover shall provide protection from water, dirt and debris. The cover will be flanged die cast aluminum with brushed aluminum finish that will accept carpet or tile cutouts to match flooring. The box shall be capable of adapting to most power and communications needs. Provide all activations, barriers and brackets required for the particular installation. Design Selection is Wiremold RFB 4 (based on required outlets) or equal.
- 2. Wood Floors: Cast iron or steel fully adjustable, rectangular, multi-gang box. The cover shall provide protection from water, dirt and debris. The cover will be brass flip lids with appropriate multi gang ring to set flush with wood flooring. The box shall be capable of adapting to most power and communications needs.
- 3. Poke Thru's for all floor boxes in elevated slabs: Flush style round poke thru with combination power (2 duplex) and data (6 Cat6 outlets). Poke Thru shall be UL scrub water exclusion for tile and carpeted floors. Poke thru shall be maintains UL fire rated for up to 2 hour rated floors. Poke thru shall meet FBC and ADA accessibility guidelines.
- E. Sheet Metal Pull and Junction Boxes: NEMA OS 1.
 - 1. Pull and junction boxes (not in-ground type) larger than 25 square inches shall be hinged cover type with flush latches operated with screwdriver.
 - 2. Large Pull Boxes: Boxes larger than 400 cubic inches in volume or 20 inches in any dimension:
 - a. Use continuous hinged enclosures with locking handle.
 - 3. Exterior, damp location and wet location pull and junction boxes shall be Nema 4x stainless steel.
- F. Cabinets (Control and Systems):
 - 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Metal barriers to separate wiring of different systems and voltage.
 - 4. Accessory feet where required for freestanding equipment.

2.7 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. Description: Concrete ring with Nema 6P box inside (All Areas)
 - 1. Color of Frame and Cover: Gray.
 - 2. Configuration: Concrete ring shall be designed for flush burial and have open bottom, unless otherwise indicated.
 - 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural traffic load rating consistent with enclosure.
 - 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 - 5. Cover Legend: Molded lettering, "ELECTRIC.", "TELEPHONE." or as indicated for each service.
 - 6. Nema 6P box rated for direct burial enclosure shall be located inside the concrete ring for termination of conduits.
 - 7. Handholes 36 inches wide by 36 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

PART 3 - EXECUTION

3.1 RACEWAY LOCATION INSTALLATION REQUIREMENTS

A. Underground Installations:

- 1. Use rigid non-metallic conduit (PVC) only unless local authority having jurisdiction or applicable codes/utility requirements, etc. require rigid steel conduit.
- 2. All conduits or elbows entering, or leaving the ground shall be rigid steel conduit coated with asphaltic paint.
- 3. All underground raceways (with exception of raceways installed under floor slab) shall be installed in accordance with the NEC except that the minimum cover for any conduit shall be two feet. Included under this Section shall be the responsibility for verifying finished lines in areas where raceways will be installed underground before the grading is complete.
- 4. Where rigid metallic conduit is installed underground as noted above it shall be coated with waterproofing black mastic before installation, and all joints shall be re-coated after installation.
- 5. Utilize rigid steel 90° elbows at each riser and at each change in direction. Elbows shall be coated with black mastic or PVC coating. Bond all metal elbows per NEC.
- 6. All underground service lateral raceways shall be protected as required by the NEC including requirements for installation of warning tape.

B. In Slab Above or on Grade:

- 1. Use coated rigid steel conduit or rigid non-metallic conduit.
- 2. Coating of metallic conduit to be black asphaltic or PVC.

C. Penetration of Slab:

- 1. Exposed Location subject to damage:
 - a. Where penetrating a floor in an exposed location subject to damage from underground or in slab, a black mastic coated or PVC coated galvanized rigid steel conduit shall be used.

- 2. Interior Location not subject to damage:
 - a. Where penetrating a floor in a location concealed in block wall and acceptable by applicable codes, rigid non-metallic conduit may be used up to first outlet box, provided outlet box is at a maximum height of 40" above finished floor.
 - b. Where penetrating a floor in location other than that above, transition to metallic conduit at the floor.

D. Outdoor Location:

- 1. Above Grade:
 - a. Where penetrating the finished grade, black mastic coated or PVC coated galvanized rigid steel conduit shall be used.
 - b. In general all exterior conduit runs shall be rigid steel conduit and threaded connectors as specified elsewhere.
 - c. Electrical metallic tubing (thin wall) is permitted under roof, overhangs, etc. provided it is not subjected to physical damage and is not in direct contact or directly subject to exterior elements including sunlight.
- 2. Metal Canopies:

a.

b. Conduit runs except for canopy lighting raceways are not to be run on (top or bottom) of metal canopies roof systems. All new conduit shown on or at these areas is to be run underground. Clamp back spacers shall be used on all canopies to prevent galvanic action from dissimilar metals. Conduits installed exposed from Building structure to Metal Canopies will not be permitted.

3. Roofs:

- a. Conduit is not to be installed on roofs, without written authorization by A/E and the Owner for specific conditions.
- b. When accepted by written authorization conduit shall comply with the following:
 - 1) Be PVC coated rigid galvanized metal conduit.
 - 2) All fittings, etc. are to be PVC coated.
 - 3) Conduit shall be supported above roof at least 6 inches using accepted conduit supporting devices. Refer to applicable sections of specifications on roofing, etc.
 - 4) Supports to be fastened to roof using roofing adhesive or means compatible with roofing. Confirm the method used will not void the roofing warranty. The use of pitch pockets is not acceptable.

E. Interior Dry Locations:

- 1. Concealed: Use rigid galvanized steel conduit and electrical metallic tubing. Rigid non-metallic conduit may be used inside block walls up to first outlet to a maximum of 40" A.F.F. except where prohibited by the NEC (places of assembly, etc.).
- 2. Exposed: Use rigid galvanized steel or electrical metallic tubing. EMT may only be used where not subject to damage, which is interpreted by this specification to be above 90" AFF
- 3. Concealed or exposed flexible conduit:
 - a. Concealed flexible steel conduit or seal tight flexible steel conduit in lengths not longer than six (6) feet in length with a ground conductor installed in the conduit or an equipment ground conductor firmly attached to the terminating fitting at the extreme end of the flex. Exposed flexible steel conduit or seal tight flexible steel conduit shall not exceed two (2) feet in length, unless written authorization by A/E for specific conditions is granted.

- F. Interior Wet and Damp Locations:
 - 1. Use rigid galvanized steel conduit.
- G. Concrete Columns or Poured in-place Concrete Wall Locations:
 - 1. Use rigid non-metallic conduit. Penetration shall be by accepted metal raceway (i.e. metal conduit as required elsewhere in these specifications).

3.2 RACEWAY INSTALLATION

- A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
- B. All bending, cutting, and reaming shall be completed with tools specifically designed for the specific use.
- C. Expansion fittings shall be installed in the following cases:
 - 1. In each conduit run wherever it crosses an expansion joint in the concrete structure; on one side of joint with its sliding sleeve end flush with joint, and with a length of bonding jumper in expansion equal to at least three times the normal width of joints.
 - 2. In each conduit run which mechanically attached to separate structures to relieve strain caused by shift on one structure in relation to the other.
 - 3. In straight conduit run above ground which is more than one hundred feet long and interval between expansion fittings in such runs shall not be greater than 100 feet.
- D. Arrange conduit to maintain headroom and present neat appearance.
- E. Provide rigid steel long radius 90 degree sweeps (bend radius of 10 times the conduit trade size diameter) for all changes in direction (vertical and horizontal) for utility conduits. Comply with all installation requirements of the utility to utilize the conduits.
- F. Utility conduits shall be buried a minimum of 36" deep to the top of the conduit.
- G. Route conduit installed above accessible ceilings or exposed to view parallel or perpendicular to walls. Do not run from point to point.
- H. Do not cross conduits in slab.
- I. Use conduit hubs to fasten conduit to sheet metal boxes in damp and wet locations and to cast boxes.
- J. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- K. Complete raceway installation before starting conductor installation.
- L. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
- M. Arrange stub-ups so curved portions of bends are not visible above the finished slab.

- N. Install no more than equivalent of three 90-degree bends between boxes. Use conduit bodies to make sharp changes in direction, as around beams. Use factory elbows for bends in metal conduit larger than 2 inch (50 mm) size.
- O. Provide continuous fiber polyline 1000 lb. minimum tensile strength pull string in each empty conduit except sleeves and nipples. This includes all raceways which do not have conductors furnished under this Division of the specifications. Pull cord must be fastened to prevent accidental removal.
- P. Use suitable caps to protect installed conduit against entrance of dirt and moisture.
- Q. Rigid steel box connections shall be made with double locknuts and bushings.
- R. Spare conduit stubs shall be capped and location and use marked with concrete marker set flush with finish grade. Marker shall be 6" round x 6" deep with appropriate symbol embedded into top to indicate use. Also, tag conduits in panels where originating.
- S. Spare conduit stubs shall be capped with a UL listed and accepted cap or plug for the specific intended use and identified with ink markers as to source and labeled "Spare."
- T. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- U. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- V. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
- W. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.
- X. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.
- Z. All raceway runs in masonry shall be installed at the same time as the masonry so that no face cutting is required, except to accommodate boxes.
- AA. Raceways shall not be routed through stairwells, elevator shafts, elevator machine rooms or fire pump rooms unless the conduit is for use within that space.

- BB. Raceways installed in hazardous locations shall be installed in accordance with the appropriate provisions of NEC chapter 5 for that location. Confirm the appropriate space rating with life safety plans.
- CC. All raceway runs, whether terminated in boxes or not, shall be capped during the course of construction and until wires are pulled in, and covers are in place. No conductors shall be pulled into raceways until construction work which might damage the raceways has been completed.
- DD. Electrical raceways shall be supported independently of all other systems and supports, and shall in every case avoid proximity to other systems which might cause confusion with such systems or might provide a chance of electrolytic actions, contact with live parts or excessive induced heat.
- EE. Excavate trench bottom to provide firm and uniform support for conduit installed underground. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter. Install backfill as specified in Division 31 Section "Earth Moving."
- FF. After installing underground conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."

3.3 BOX INSTALLATION

- A. Set metal floor boxes level and flush with finished floor surface.
- B. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.
- C. Install electrical boxes as shown on drawings, and as required for splices, taps, wire pulling, equipment connections and compliance with regulatory requirements.
- D. Install electrical boxes to maintain headroom and to present neat mechanical appearance.
- E. Inaccessible Ceiling Areas: Install outlet and junction boxes no more than 6 inches (150 mm) from ceiling access panel or from removable recessed luminaire.
- F. Install boxes to preserve fire resistance rating of partitions and other elements.
- G. Align adjacent wall-mounted outlet boxes for switches, thermostats, and similar devices with each other.
- H. Outlets for 120V clocks shall be recessed so that the clock will hang flush with the finished surface of the wall.
- I. Use flush mounting outlet boxes in finished areas.

- J. Do not install flush mounting boxes back-to-back in walls; provide minimum 6 inch (150 mm) separation. Provide minimum 24 inches (600 mm) separation in acoustic and fire rated walls.
- K. Secure flush mounting box to interior wall and partition studs. Accurately position to allow for surface finish thickness.
- L. Use stamped steel bridges to fasten flush mounting outlet box between studs.
- M. Install flush mounting box without damaging wall insulation or reducing its effectiveness.
- N. Support all outlet boxes from structure with minimum of one (1) 3/8" all-thread rod hangers. Boxes larger than 25 square inches shall be supported with two (2) all-thread rod hangers, minimum.
- O. Do not fasten boxes to ceiling support wires.
- P. Use multi-gang box where more than one device is mounted together. Do not use sectional box.
- Q. Boxes in exterior walls shall be flush mounted. Use cast outlet box in exterior locations and wet locations where flush mounting is not possible.
- R. Install outlets in the locations shown on the drawings; however, the Owner shall have the right to make, prior to rough-in, slight changes in locations to reflect room furniture layouts.
- S. Coordinate work with all divisions so that each electrical box is the type suitable for the wall or ceiling construction provided and suitable fireproofing is inbuilt into fire rated walls.
- T. All boxes shall be installed in a flush rigid manner with box lines at perpendicular and parallel angles to finished surfaces. Boxes shall be supported by appropriate hardware selected for the type of surface from which the box shall be supported. For example, provide metal screws for metal, wood screws for wood, and expansion devices for masonry or concrete.
- U. For locations exposed to weather or moisture (interior or exterior), provide weatherproof boxes and accessories.
- V. As a minimum, provide pull boxes in all raceways over 150 feet long. The pull box shall be located near the midpoint of the raceway length.
- W. Provide knockout closures to cap unused knockout holes where blanks have been removed, and plugs for unused threaded hubs.
- X. Provide conduit locknuts and bushings of the type and size to suit each respective use and installation.
- Y. Boxes and conduit bodies shall be located so that all electrical wiring is accessible.
- Z. Avoid using round boxes where conduit must enter box through side of box, which would result in a difficult and insecure connection with a locknut or bushing on the rounded surface.

- AA. All flush outlets shall be mounted so that covers and plates will finish flush with finished surfaces without the use of shims, mats or other devices not submitted or accepted for the purpose. Add-a-Depth rings or switch box extension rings are <u>not</u> acceptable. Plates shall not support wiring devices. Gang switches with common plate where two or more are indicated in the same location. Wall-mounted devices of different systems (switches, thermostats, etc.) shall be coordinated for symmetry when located near each other on the same wall. Outlets on each side of walls shall have separate boxes. Through-wall type boxes shall not be permitted. Back-to-back mounting shall not be permitted. Trim rings shall be extended to within 1/8" of finish wall surface.
- BB. Outlet boxes mounted in metal stud walls, are to be supported to studs with two (2) screws inside of outlet box to a horizontal stud brace between vertical studs or one side of outlet box supported to stud with opposite side mounted to section of stud or device to prevent movement of outlet box after wall finished.
- CC. All outlet boxes that do not receive devices in this contract are to have blank plates installed matching wiring device plates.
- DD. Height of wall outlets to bottom above finished floors shall be as follows, unless specifically noted otherwise, or unless otherwise required by applicable codes including ADA. Verify with the Architectural plans and shop drawings for installing.

1. Switches 4'-0" AFF to top

- 2. Receptacles 1'-4" AFF to bottom
- 3. Lighting Panels 6'-6" AFF to centerline of highest breaker/fuse
- 4. Phone outlets

1'-4" AFF to bottom

5. Intercom Call-in

4'-0"AFF to top

6. Fire Alarm Pull Stations

4'-0" AFF to top

- 7. Fire Alarm Strobe Lights Lens is not less than 80" AFF and not more than 96" AFF
- 8. Fire Alarm Audible Only Not less than 90" and not less than 6" below ceiling.
- EE. Bottoms of outlets above counter tops or base cabinets shall be minimum 2" above counter top or backsplash, whichever is highest. Outlets may be raised so that bottom rests on top of concrete block course, but all outlets above counters in same area shall be at same height. It is the responsibility of this Division to secure cabinet drawings and coordinate outlet locations in relation to all cabinets as shown on Architectural plans, prior to rough-in, regardless of height shown on Division 26 drawings.
- FF. Height of wall-mounted fixtures shall be as shown on the drawings or as required by Architectural plans and conditions. Fixture outlet boxes shall be equipped with fixture studs when supporting fixtures.
- GG. Locate special purpose outlets as indicated on the drawings for the equipment served. Location and type of outlets shall be coordinated with appropriate trades involved. The securing of complete information for proper electrical roughing-in shall be included as work required under this section of specifications. Provide plug for each outlet.
- HH. Electrical outlet boxes may be installed in vertical fire resistive assemblies classified as fire/smoke and smoke partitions without affecting the fire classification, <u>provided</u> such openings occur on one side only within a 24" wall space and that openings do not exceed 16 sq. inches.

All clearances between such outlet boxes and the gypsum board must be completely filled with joint compound.

II. Fire-Barrier Penetrations: Firestop penetrations under division 07 Section "Firestopping".

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In all areas, set so cover surface will be flush with finished grade.

3.5 INSTALLATION OF WIREWAYS

- A. Do not install wireways as a substitute for proper coordination and layout of conduit stub ups to panels. Prior authorization from the engineer is required prior to installation of any wireways.
- B. Do not make splices in wireways. All wires must be pulled through without splice or termination.
- C. Install wireway to maintain headroom and to present neat mechanical appearance.
- D. Support wireway independently of conduit.
- E. Wireway shall be located so that all electrical wiring is accessible.

END OF SECTION 260533

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Identification for raceway and metal-clad cable.
- 2. Identification for conductors and communication and control cable.
- 3. Underground-line warning tape.
- 4. Warning labels and signs.
- 5. Instruction signs.
- 6. Equipment identification labels.
- 7. Miscellaneous identification products.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
- C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.145.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY, BOX AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

- A. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- B. Primed and Painted band 4" in length.

2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

- A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.
- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 UNDERGROUND-LINE WARNING TAPE

- A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches (150 mm) wide by 4 mils (0.102 mm) thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 7 by 10 inches (180 by 250 mm).
- C. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch (6.4-mm) grommets in corners for mounting. Nominal size, 10 by 14 inches (250 by 360 mm).

- D. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EOUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.5 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 EQUIPMENT IDENTIFICATION LABELS

- A. Safety Signs: Comply with 29 CFR, 1910.145.
- B. Nameplates shall be laminated phenolic plastic, chamfer edges.
 - 1. For 120/208 Volt System:
 - a. Black front and back with white core, with lettering etched through the outer covering. White engraved letters on Black background.
 - 2. For 277/480 Volt System:
 - a. Orange front and back with white core with lettering etched through the outer covering. White engraved letters on Orange background.
 - 3. For Emergency System:
 - a. Red front and back with white core with lettering etched through the outer covering. White engraved letters on red background.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength: 50 lb (22.6 kg), minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.
- B. Paint: Paint materials and application requirements are specified in Division 09 painting Sections.
- C. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Identification Materials and Devices: Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- B. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.
- C. Sequence of Work: If identification is applied to surfaces that require finish, install identification after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before applying.
- E. Install painted identification according to manufacturer's written instructions and as follows:
 - 1. Clean surfaces of dust, loose material, and oily films before painting.
 - 2. Prime surfaces using type of primer specified for surface.
 - 3. Apply one intermediate and one finish coat of enamel.
- F. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressuresensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.
- G. Circuit Identification Labels on Boxes: Install labels externally.
 - 1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on cover.
 - 2. Concealed Boxes: Plasticized card-stock tags.
 - 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.
- H. Paths of Underground Electrical Lines: During trench backfilling, for exterior underground power, control, signal, and communication lines, install continuous underground line marker located directly above line at 6 to 8 inches below finished grade. Where width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches overall, use a single line marker. Install line marker for underground wiring, both direct-buried cables and cables in raceway.
- I. Secondary Service, Feeder, and Branch-Circuit Conductors: Color-code throughout the secondary electrical system.
 - Color-code 208/120-V system as follows:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - d. Neutral: White.
 - e. Ground: Green.
 - f. Switchlegs(load side of contactor or relay is not considered a switchleg): Purple
 - 2. Color-code 480/277-V system as follows:
 - a. Phase A: Brown
 - b. Phase B: Orange

- c. Phase C: Yellow
- d. Neutral: White with a colored stripe or gray.
- e. Ground: Green.
- f. Switchleg(load side of contactor or relay is not considered a switchleg): Pink
- 3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 6 AWG:
 - a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inch wide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
- J. Power-Circuit Identification: Metal tags or aluminum, wraparound marker bands for cables, feeders, and power circuits in vaults, pull and junction boxes, manholes, and switchboard rooms.
 - 1. Legend: 1/4-inch steel letter and number stamping or embossing with legend corresponding to indicated circuit designations.
 - 2. Tag Fasteners: Nylon cable ties.
 - 3. Band Fasteners: Integral ears.
- K. Apply identification to conductors as follows:
 - 1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
 - 2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.
 - 3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, color-coding, or cable marking tape.
- L. Apply warning, caution, and instruction signs as follows:
 - 1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
 - 2. Emergency Operation: Install engraved laminated signs with white legend on red background with minimum 3/8-inch high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.
- M. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- N. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
 - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

- O. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where 2 lines of text are required, use labels 2 inches (50 mm) high.
 - b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled: Include as a minimum the equipment identification (first line ½"): voltage rating and amperage rating (second line 3/8"): where it is fed from (third line 3/8"). (Example :Panel CP1 (Line 1), 208/120V 3ph, 4w, 225A(line 2), fed from swbd MDP-1 (Line 3))
 - a. Panelboards, electrical cabinets, and enclosures.
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - d. Transformers.
 - e. Electrical substations.
 - f. Emergency system boxes and enclosures.
 - g. Motor-control centers.
 - h. Disconnect switches.
 - i. Enclosed circuit breakers.
 - j. Motor starters.
 - k. Push-button stations.
 - 1. Power transfer equipment.
 - m. Contactors.
 - n. Remote-controlled switches, dimmer modules, and control devices.
 - o. Battery inverter units.
 - p. Battery racks.
 - q. Power-generating units.
 - r. Voice and data cable terminal equipment.
 - s. Master clock and program equipment.
 - t. Intercommunication and call system master and staff stations.
 - u. Television/audio components, racks, and controls.
 - v. Fire-alarm control panel and annunciators.
 - w. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks.
 - x. Monitoring and control equipment.
 - y. Uninterruptible power supply equipment.
 - z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions.

3.2 SWITCHGEAR BREAKERS

A. Provide labels for each breaker to identify the load served.

3.3 CONDUIT/JUNCTION BOX COLOR CODE

A. All conduit system junction boxes (except those subject to view in public areas) shall be color coded as listed below:

B.	Color	Codo	for	Junction	Povoc
D.	COIOI	Code	IOI	Junction	Doxes

1.	System Emergency 277/480 volt	Orange/Brown
2.	System Emergency 120/208 volt	Orange/Black
3.	Fire Alarm	Red
4.	Normal Power 277/480 volt	Brown
5.	Normal Power 120/208 volt	Black
6.	Fiber Optics	Purple
7.	Sound System	Yellow
8.	Clock	Light Blue
9.	Intercom	Blue
10.	Computer/Data	Gold
11.	TV	White
12.	Security/CCTV	Beige
13.	Ground	Fluorescent Green
14.	Telephone	Clover Green

- C. Conduits (not subject to public view) longer than 20 feet shall be painted with above color paint band 30 ft. on center. Paint band shall be 4" in length. Where conduits are parallel and on conduit racking, the paint bands shall be evenly aligned. Paint shall be neatly applied and uniformed. Paint boxes and raceways prior to installation or tape conduits and surrounding surfaces to avoid overspray. Paint overspray shall be removed.
- D. All new and existing junction boxes/cover plates for power, lighting and systems (except those installed in public areas) shall adequately describe it's associated panel and circuit reference number(s) within, (i.e. ELRW-2, 4, 6) or systems within (i.e. fire alarm, intercom. Etc.). Identification shall be by means of black permanent marker. (Paint ½ cover plate with appropriate color as noted in 2.3 above, and mark other ½ with associated panel/circuit or system description as described).

END OF SECTION 260553

SECTION 260923 – STAND ALONE LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following stand alone lighting control devices:
 - 1. Time switches.
 - 2. Outdoor photoelectric switches.
 - 3. Indoor occupancy sensors.
 - 4. Lighting contactors.
 - 5. Emergency shunt relays.
- B. Related Sections include the following:
 - 1. Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 DEFINITIONS

- A. LED: Light-emitting diode.
- B. PIR: Passive infrared.

1.4 SUBMITTALS

- A. Product Data: Include dimensions and data on features, components, options, NRTL listings, wiring diagrams, and electrical ratings for each type of product to be utilized.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
- C. Field quality-control test reports.
- D. Operation and Maintenance Data: For each type of product to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression system, and partition assemblies.
- B. Coordinate features of devices specified in this Section with systems and components specified in other Sections to form an integrated system of compatible components. Match components and interconnections for optimum performance of specified functions

1.7 SPECIAL WARRANTIES

A. Occupancy Sensors shall be provided with a 5 year extended warranty.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Intermatic, Inc.
 - 2. Paragon Electric Co.; Invensys Climate Controls.
 - 3. TORK
- B. Electromechanical-Dial Time Switches: Type complying with UL 917.
 - 1. Contact Configuration: DPST.
 - 2. Contact Rating: 40-A Tungsten, resistive and general purpose ballast load, 120-277V ac.
 - 3. 24 Hour Program: With skip-a-day mode.
 - 4. Wound-spring reserve carryover mechanism to keep time during power failures, minimum of 16 hours.
 - 5. Provide in NEMA 1 enclosure for indoor timers and NEMA 3R non-metallic for exterior locations.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Intermatic, Inc.
 - 2. Paragon Electric Co.; Invensys Climate Controls.
 - 3. TORK.
- B. Description: Solid state, with SPST dry contacts rated for 2000-W tungsten or 1800VA ballast, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Light-Level Monitoring Range: 1.5 to 15 fc (16.14 to 162 lx), with an adjustment for turn-on and turn-off levels within that range, and a sliding light level selector in front of photocell to prevent fixed light sources from causing turn-off.
 - 2. Time Delay: Up to 2 minutes to prevent false operation.

- 3. Mounting: ½" conduit or box mounting as required to direct sensor to the north sky exposure.
- 4. Temperature Range: -40 Deg F to +140 Deg F (-40 Deg C to +60 Deg C)
- 5. Heavy-duty die cast zinc, gasket for maximum weather protection.

2.3 INDOOR OCCUPANCY SENSORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Hubbell Lighting.
 - 2. Leviton Mfg. Company Inc.
 - 3. Watt Stopper (The).
- B. Line Voltage: Wall or ceiling-mounting, solid-state units with an integral relay unit.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 30 minutes.
 - 2. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 3. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 4. Bypass Switch: Override the on function in case of sensor failure or fail safe in the on position.
 - 5. Sensor: Dual-Technology Type, wall or ceiling mounting; detect occupancy by using a of PIR detection and retain detection with microphonic or ultrasonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.
 - 6. Sensitivity Adjustment: Separate for each sensing technology.
 - 7. Detection Coverage (Standard Room): Detect occupancy anywhere within area of installation at a minimum. See drawings for type of detector to be utilized.
- C. Low Voltage Sensors with Power Pack: Wall or ceiling-mounting, solid-state units with a separate relay unit (Power Pack).
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit. Up to 14 sensors may control 1 relay unit.
 - 3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70 for up to 14 sensors.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure or fail safe in the on position.
- 7. Sensor: Dual-Technology Type, wall or ceiling mounting; detect occupancy by using a PIR detector and retain detection with microphonic detection methods in area of coverage. Particular technology or combination of technologies that controls on-off functions shall be selectable in the field by operating controls on unit.
- 8. Sensitivity Adjustment: Separate for each sensing technology.
- 9. Detection Coverage (Standard Room): Detect occupancy anywhere within area of installation at a minimum. See drawings for type of detector to be utilized.

2.4 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Allen-Bradley/Rockwell Automation.
 - 2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
 - 3. Eaton Electrical Inc.; Cutler-Hammer Products.
 - 4. GE Industrial Systems; Total Lighting Control.
 - 5. Grasslin Controls Corporation; a GE Industrial Systems Company.
 - 6. Square D; Schneider Electric.
 - 7. Siemens
- B. Description: Electrically operated and mechanically held complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current). Provide 20A minimum rating for all contacts
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure or as specified.
 - 5. Control Coil Voltage: Match control power source.
 - 6. When multiple contactors are installed with a single enclosure, the assembly shall be UL 508A listed as a control assembly.

2.5 EMERGENCY SHUNT RELAY

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Lighting Control and Design, Inc.
 - 2. Integrated Lighting Control
- B. Description: Normally closed, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts. Device shall be UL 924 listed.
 - 1. Coil Rating: 120 or 277 V.

2.6 EMERGENCY SWITCHING RELAY

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. LVS Controls Inc
- B. Description: Automatically connects emergency loads upon utility power interruption regardless of switch position and switches lights with the normal lighting switch under normal conditions (no emergency lighting switch is required). Device shall be UL 924 listed and 20A rated contacts. Coil Rating: 120 or 277 V.
- C. Include an automatic diagnostic which is initiated when the room switch is turned off. This test procedure will turn the emergency luminaires on for at least 2 seconds, indicating that an emergency power source is available & that the device, ballast, & lamp are all functioning correctly. Automatic diagnostic shall be approved to meet periodic testing requirements (NEC 700.3 NFPA 101 7.9.3
- D. Unit shall have regular power indicator LED indicating utility power status.
- E. Unit accepts separate phases on the constant hot & switched hot inputs.
- F. 5 year manufacturers warranty
- G. Basis of design is LVS EPC-A-1

2.7 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION

- A. Install equipment level and plumb and according to manufacturer's written instructions.
- B. Mount lighting control devices according to manufacturer's written instructions and requirements in Division 26 Section "Basic Electrical Materials and Methods."
- C. Mounting heights indicated are to bottom of unit for suspended devices and to center of unit for wall-mounting devices.

STAND ALONE LIGHTING CONTROL DEVICES SECTION 260923

- D. Connections: Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A
- E. Bundle, train, and support wiring in enclosures.
- F. Ground equipment.

3.2 SENSOR INSTALLATION

- A. Install and aim sensors in locations to achieve not less than 95 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
- B. Install in accordance with manufacturers recommendations, which shall determine final sensor location. All sensors shall have non-adjustable factory calibrated sensitivity for maximum performance. Set all time delays for 30 min to avoid nuisance turn off's.

3.3 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION

- A. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- B. Size conductors according to lighting control device manufacturer's written instructions, unless otherwise indicated.
- C. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

- A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.
- C. Provide warning labels on all equipment with more than one source of power located within the enclosure in accordance with Division 26 Section "Identification for Electrical Systems".

3.6 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.
 - 2. Operational Test: Verify operation of each lighting control device, and adjust time delays.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 DEMONSTRATION

A. Demonstrate products specified in this Section to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 260923

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Receptacles, receptacles with integral GFCI, and associated device plates.
- 2. Twist-locking receptacles.
- 3. Isolated-ground receptacles.
- 4. Snap switches and wall-box dimmers.
- 5. Solid-state fan speed controls.
- 6. Pendant cord-connector devices.
- 7. Cord and plug sets.
- 8. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

B. Related Sections include the following:

1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. Comply with NEMA WD 1.

1.6 COORDINATION

- A. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

1.7 ALLOWANCES

A. Provide for twenty additional receptacles as directed in field. Allowance includes purchase, delivery and installation of box, receptacle cover plate, wire and 100 feet of conduit for each receptacle.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 2. Leviton Mfg. Company Inc. (Leviton).
 - 3. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following for standard convenience outlets:
 - a. Hubbell; HBL5361 (single), HBL5352 (duplex).
 - b. Leviton; 5351 (single), 5352 (duplex).
 - c. Pass & Seymour; 5361 (single), 5352 (duplex).

- 2. Black Computer Power Duplex Receptacle:
 - a. Pass & Seymour Model PS5352-Black
 - b. Hubbell Model HBL5362-Black
 - c. Leviton Model 5362-Black

2.3 GFCI RECEPTACLES

- A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and trip button to indicate when device is tripped. Face will not have power if reverse wired. Visual indication for device has lost capability to provide protection.
- B. Outdoor locations provide weather resistant GFCI convenience receptacles, 125V, 20A Black
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell #GFR5362WR
 - b. Pass & Seymour; 2095DSWRBK.
 - c. Leviton #W7899-E
- C. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell #GFR5362
 - b. Pass & Seymour; 2095.
 - c. Leviton #6898

2.4 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

- A. Wiring Devices for Hazardous (Classified) Locations: Comply with NEMA FB 11 and UL 1010.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cooper Crouse-Hinds.
 - b. EGS/Appleton Electric.
 - c. Killark; a division of Hubbell Inc.

2.5 TWIST-LOCKING RECEPTACLES

- A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell: HBL2310.
 - b. Leviton; 2310.
 - c. Pass & Seymour; L520-R.

2.6 PENDANT CORD-CONNECTOR DEVICES

A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-20P and L5-20R, heavy-duty grade.

WIRING DEVICES 262726 - 3 HHCP 3767.00 PERMIT AND BID SET

- 1. Body: Nylon with screw-open cable-gripping jaws and provision for attaching external cable grip.
- 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.7 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.8 SNAP SWITCHES

- A. Comply with NEMA WD 1 and UL 20.
- B. Snap switches for general use shall be maintained contact types, and shall be single-pole, double-pole, three-way, or four-way as required for the specific switching arrangements shown on the drawings. They shall be quiet tumbler operation types, having silver alloy contacts, and meeting all NEMA performance standards.
- C. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1221 (single pole), HBL1222 (two pole), HBL1223 (three way), HBL1224 (four way).
 - b. Leviton; 1221 (single pole), 1222 (two pole), 1223 (three way), 1224 (four way).
 - c. Pass & Seymour; PS20AC1 (single pole), PS20AC2 (two pole), PS20AC3 (three way), PS20AC4 (four way).
- D. Pilot Light Switches, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HPL1221PL for 120 V and 277 V.
 - b. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 - c. Pass & Seymour; PS20AC1RPL for 120 V.
 - 2. Description: Single pole, with neon-lighted handle, illuminated when switch is "off." Provide red handle for switches connected to emergency power.
- E. Key-Operated Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1221L.
 - b. Leviton; 1221L.
 - c. Pass & Seymour; PS20AC1-L.
 - 2. Description: Single pole, with factory-supplied key in lieu of switch handle. All key operated switches shall be keyed alike.

- F. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1557.
 - b. Leviton; 1257.
 - c. Pass & Seymour; 1251.
- G. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle. All keyed switches shall be keyed alike.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Hubbell; HBL1557L.
 - b. Leviton; 1257L.
 - c. Pass & Seymour; 1251L.

2.9 WALL-BOX DIMMERS

- A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
- B. Control: Continuously adjustable toggle switch; with single-pole or three-way switching. Comply with UL 1472.
- C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 - 1. 600 W; dimmers shall require no derating when ganged with other devices.
- D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.10 FAN SPEED CONTROLS

- A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.
 - 1. Continuously adjustable toggle switch, 5 A.
 - 2. Three-speed adjustable slider, 1.5 A.

2.11 WALL PLATES

- A. Single and combination types to match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. All wiring devices shall be provided with standard size one-piece cover plates of suitable configuration for the number and type of devices to be covered.
 - 3. Metallic cover plates shall be used in interior spaces, except as noted below, and shall be fabricated of corrosion-resistant #302 stainless steel, having a nominal thickness of .04", and a brushed finish. Screws securing the plates shall have flush (when installed) heads

- with finish to match plates. Metallic cover plates shall meet all requirements of the National Electrical Code and Federal Specifications.
- 4. Cover plates for switches located in corrosive atmospheres (where vaporproof is not indicated) shall be equal to Hubbell #17CM81/#17CM82/#17CM83/#17CM84 one piece neoprene with matching presswitch.
- 5. Cover plate engraving, where required, shall be accomplished by cover plate manufacturer in accordance with instructions given on the drawings. Metallic plates shall be engraved with black fill. Red plates shall be engraved with white fill.
- 6. Material for Unfinished Spaces: Galvanized steel.
- B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant, die-cast aluminum with lockable "in use" cover. Cover plates for exterior receptacles shall be gasketed covers with hinge allowing plug and cord to be plugged in and activated with cover closed.

2.12 MULTIOUTLET ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.
 - 2. Wiremold Company (The).
 - 3. Mono-systems, Inc.
- B. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
- C. Raceway Material: Metal, with manufacturer's standard finish.
- D. Wire: No. 12 AWG.

2.13 SERVICE POLES

- A. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
 - 1. Poles: Nominal 2.5-inch- (65-mm-) square cross section, with height adequate to extend from floor to at least 6 inches (150 mm) above ceiling, and with separate channels for power wiring and voice and data communication cabling.
 - 2. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
 - 3. Finishes: Manufacturer's standard painted finish and trim combination.
 - 4. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, 4-pair, Category 3 or 5 voice and data communication cables.
 - 5. Power Receptacles: Two duplex, 20-A, heavy-duty, NEMA WD 6 configuration 5-20R units.
 - 6. Voice and Data Communication Outlets: Four RJ-45 Category 6 jacks.

2.14 FINISHES

- A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: Gray, unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Receptacle devices for computer power shall be black color.
 - 3. Wiring Devices Connected to Emergency Power System: Red.
 - 4. Modify any given catalog numbers as required to procure devices and plates of the proper color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordination with Other Trades:
 - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- B. Install products in accordance with manufacturer's instructions.
- C. Install devices plumb and level.
- D. Install switches with OFF position down.
- E. Provide device coverplates for every device installed. Cover plates shall be installed so that they appear straight with no gaps between plate edges and the wall. Maintain vertical and horizontal to within 1/16 of an inch
- F. Wiring devices shall not be installed in exposed masonry until cleaning of masonry with acids has been completed.
- G. All receptacles and switches shall be grounded by means of a ground wire from device ground screw to outlet box screw and branch circuit ground conductor. Strap alone will not constitute an acceptable ground.
- H. All devices shall be installed so that only one wire is connected to each terminal.
- I. Connect wiring devices by wrapping conductor around screw terminal.
- J. Install galvanized steel plates on outlet boxes and junction boxes in unfinished areas, above accessible ceilings, and on surface mounted outlets.

K. Install local room area wall switches at door locations on the lock side of the door, approximately four inches from the jamb. Where locations shown on the drawings are in question, provide written request for information to A/E prior to roughin.

L. Conductors:

- 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.

M. Device Installation:

- 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
- N. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

O. Dimmers:

- 1. Install dimmers within terms of their listing.
- 2. Verify that dimmers used for fan speed control are listed for that application.
- 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
- P. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on bottom. Group adjacent switches or receptacles under multigang wall plates. Provide proper NEC barriers in boxes which serve devices for both the Normal and Emergency Systems.
- Q. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 CONNECTIONS

A. Connect wiring device grounding terminal to outlet box with bonding jumper.

- B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
- C. Tighten electrical connectors and terminals according to manufacturers published torquetightening values. If manufacturers torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 NEUTRAL CONDUCTOR CONNECTIONS

A. At each receptacle "in" and "out" phase and neutral conductors shall have an additional conductor for connection to device. The practice of "looping" conductors through receptacle boxes shall not be acceptable. (IE: The device shall not be used to complete the circuit. Pigtails shall be used from the device)

3.4 IDENTIFICATION

- A. Comply with Division 26 Section "Identification for Electrical Systems."
 - 1. Receptacles and Switches: Identify panelboard and circuit number from which served. Use permanent marker to identify on the back of plates or tags within outlet boxes.

3.5 FIELD QUALITY CONTROL

- A. Inspect each wiring device for defects.
- B. Operate each wall switch with circuit energized and verify proper operation.
- C. Verify that each receptacle device is energized.
- D. Test each receptacle device for proper polarity.
- E. Test each GFCI receptacle device for proper operation.

3.6 ADJUSTING

A. Adjust devices and wall plates to be flush and level.

END OF SECTION 262726

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes solid-state, PWM, VFCs for speed control of three-phase, squirrel-cage induction motors.
- B. Related Sections include the following:
 - 1. Division 26 Section "Surge Protection Devices" for low-voltage power, control, and communication surge suppressors.

1.3 DEFINITIONS

- A. BMS: Building management system.
- B. IGBT: Integrated gate bipolar transistor.
- C. LAN: Local area network.
- D. PID: Control action, proportional plus integral plus derivative.
- E. PWM: Pulse-width modulated.
- F. VFC: Variable frequency controller.

1.4 SUBMITTALS

- A. Product Data: For each type of VFC. Include dimensions, mounting arrangements, location for conduit entries, shipping and operating weights, and manufacturer's technical data on features, performance, electrical ratings, characteristics, and finishes.
- B. Shop Drawings: For each VFC.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.

- d. Listed and labeled for series rating of overcurrent protective devices in combination controllers by an NRTL acceptable to authorities having jurisdiction.
- e. Features, characteristics, ratings, and factory settings of each motor-control center unit.
- 2. Wiring Diagrams: Power, signal, and control wiring for VFCs. Provide schematic wiring diagram for each type of VFC.
- C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs where pipe and ducts are prohibited. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.
- D. Operation and Maintenance Data: For VFCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for VFCs and all installed components.
 - 2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- E. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
- F. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain VFCs of a single type through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NFPA 70.
- D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, minimum clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions and clearances.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver VFCs in shipping splits of lengths that can be moved past obstructions in delivery path as indicated.

- B. Store VFCs indoors in clean, dry space with uniform temperature to prevent condensation. Protect VFCs from exposure to dirt, fumes, water, corrosive substances, and physical damage.
- C. If stored in areas subject to weather, cover VFCs to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions, unless otherwise indicated:
 - 1. Ambient Temperature: 0 to 40 deg C.
 - 2. Humidity: Less than 90 percent (noncondensing).
 - 3. Altitude: Not exceeding 3300 feet (1005 m).
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.8 COORDINATION

- A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."
- C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."
- D. Coordinate features of VFCs, installed units, and accessory devices with pilot devices and control circuits to which they connect.
- E. Coordinate features, accessories, and functions of each VFC and each installed unit with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB Power Distribution, Inc.; ABB Control, Inc. Subsidiary.

- 2. Eaton Corporation; Cutler-Hammer Products.
- 3. General Electric Company; GE Industrial Systems.
- 4. Rockwell Automation; Allen-Bradley Co.; Industrial Control Group.
- 5. Siemens Energy and Automation; Industrial Products Division.
- 6. Square D.
- 7. Emerson Electric
- 8. Toshiba International Corporation.
- 9. Trane

2.2 VARIABLE FREQUENCY CONTROLLERS

- A. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, 3-phase induction motor by adjusting output voltage and frequency.
- B. Design and Rating: Match load type such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- C. Unit Operating Requirements:
 - 1. Input ac voltage tolerance of 208 V, plus or minus 5 percent and 380 to 500 V, plus or minus 10 percent.
 - 2. Input frequency tolerance of 50/60 Hz, plus or minus 6 percent.
 - 3. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 4. Minimum Displacement Primary-Side Power Factor: 96 percent.
 - 5. Overload Capability: 1.1 times the base load current for 60 seconds; 2.0 times the base load current for 3 seconds.
 - 6. Starting Torque: 100 percent of rated torque or as indicated.
 - 7. Speed Regulation: Plus or minus 1 percent.
- D. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.
 - 1. Electrical Signal: 4 to 20 mA at 24 V.
- E. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 2 to a minimum of 22 seconds.
 - 4. Deceleration: 2 to a minimum of 22 seconds.
 - 5. Current Limit: 50 to a minimum of 110 percent of maximum rating.
- F. Self-Protection and Reliability Features:
 - 1. Input transient protection by means of surge suppressors.
 - 2. Under- and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
 - 3. Motor Overload Relay: Adjustable and capable of NEMA ICS 2, Class 20 performance.
 - 4. Notch filter to prevent operation of the controller-motor-load combination at a natural frequency of the combination.
 - 5. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 6. Loss-of-phase protection.
 - 7. Reverse-phase protection.
 - 8. Short-circuit protection.

- 9. Motor overtemperature fault.
- G. Memory: Controller shall permanently maintain all input data including but not limited to motor data, trip parameters, time/date, fault log, etc. Battery may be used for time date ride thru of power outage for a minimum of 72hours.
- H. Multiple-Motor Capability: Controller suitable for service to multiple motors and having a separate overload relay and protection for each controlled motor. Overload relay shall shut off controller and motors served by it when overload relay is tripped.
- I. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.
- J. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- K. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- L. Status Lights: Door-mounted LED indicators shall indicate the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
- M. Panel-Mounted Operator Station: Start-stop and auto-manual selector switches with manual speed control potentiometer and elapsed time meter.
- N. Indicating Devices: Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (VDC).
 - 9. Set-point frequency (Hz).
 - 10. Motor output voltage (V).
- O. Control Signal Interface:
 - 1. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.

- 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BMS or other control systems:
 - a. 0 to 10-V dc.
 - b. 0-20 or 4-20 mA.
 - c. Potentiometer using up/down digital inputs.

- d. Fixed frequencies using digital inputs.
- e. RS485
- f. Keypad display for local hand operation.
- 3. Output Signal Interface:
 - a. A minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 - 1) Output frequency (Hz).
 - 2) Output current (load).
 - 3) DC-link voltage (VDC).
 - 4) Motor torque (percent).
 - 5) Motor speed (rpm).
 - 6) Set-point frequency (Hz).
- 4. Remote Indication Interface: A minimum of 2 dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set-point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- P. Line Reactor: Provide drive with UL listed 5% input line reactor to help prevent drive component damage, reduce nuisance tripping caused by utility capacitor switching and provide harmonic mitigation. Reactor shall be TCI KDR high Z or equal.
- Q. Communications: Provide an RS485 interface allowing VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.
- R. Manual Bypass: Magnetic contactor arranged to safely transfer motor between controller output and bypass controller circuit when motor is at zero speed. Controller-off-bypass selector switch sets mode, and indicator lights give indication of mode selected. Unit shall be capable of stable operation (starting, stopping, and running), with motor completely disconnected from controller (no load).
- S. Bypass Controller: NEMA ICS 2, full-voltage, nonreversing enclosed controller with across-the-line starting capability in manual-bypass mode. Provide motor overload protection under both modes of operation with control logic that allows common start-stop capability in either mode.
- T. Integral Disconnecting Means: NEMA AB 1, instantaneous-trip circuit breaker with lockable handle.
- U. Isolating Switch: Non-load-break switch arranged to isolate VFC and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.
- V. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

2.3 ENCLOSURES

- A. Description: Flush- or surface-mounting cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: NEMA 250, Type 4X.
 - 2. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4x.
 - 4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.4 ACCESSORIES

- A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
- B. Push-Button Stations, Pilot Lights, and Selector Switches: NEMA ICS 2, heavy-duty type.
- C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- D. Control Relays: Auxiliary and adjustable time-delay relays.
- E. Standard Displays:
 - 1. Output frequency (Hz).
 - 2. Set-point frequency (Hz).
 - 3. Motor current (amperes).
 - 4. DC-link voltage (VDC).
 - 5. Motor torque (percent).
 - 6. Motor speed (rpm).
 - 7. Motor output voltage (V).
- F. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- G. Current-Sensing, Phase-Failure Relays for Bypass Controller: Solid-state sensing circuit with isolated output contacts for hard-wired connection; arranged to operate on phase failure, phase reversal, current unbalance of from 30 to 40 percent, or loss of supply voltage; with adjustable response delay.

2.5 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested VFCs before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs for compliance with requirements, installation tolerances, and other conditions affecting performance.
- B. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Select features of each VFC to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; and duty cycle of motor, controller, and load.
- B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

- A. Anchor each VFC assembly to steel-channel sills arranged and sized according to manufacturer's written instructions. Attach by bolting. Level and grout sills flush with mounting surface.
- B. Install VFCs larger than 9 cubic feet on concrete bases.
- C. Comply with mounting and anchoring requirements specified in Division 26 Section "Hangers and Supports for Electrical Systems."

3.4 CONCRETE BASES

- A. Coordinate size and location of concrete bases. Verify structural requirements with structural engineer.
- B. Concrete base is specified in Division 26 Section "Common Work Results for Electrical," and concrete materials and installation requirements are specified in Division 03.

3.5 IDENTIFICATION

- A. Identify VFCs, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.6 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.

3.7 CONNECTIONS

- A. Conduit installation requirements are specified in other Division 26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Division 26 "Grounding and Bonding for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to perform the following:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Assist in field testing of equipment including pretesting and adjusting of solid-state controllers.
 - 3. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each visual and mechanical inspection, except optional tests, stated in NETA ATS.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.9 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain variable frequency controllers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 262923

SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Interior lighting fixtures, lamps, and ballasts.
 - 2. Emergency lighting units.
 - 3. Exit signs.
 - 4. Lighting fixture supports.
- B. Related Sections include the following:
 - 1. Division 26 Section "Stand Alone Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 - 2. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

1.3 DEFINITIONS

- A. BF: Ballast factor.
- B. CRI: Color-rendering index.
- C. CU: Coefficient of utilization.
- D. HID: High-intensity discharge.
- E. LER: Luminaire efficacy rating.
- F. Luminaire: Complete lighting fixture, including ballast housing if provided.
- G. RCR: Room cavity ratio.

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Emergency lighting units including battery and charger.
 - 3. Ballast.

- 4. Energy-efficiency data.
- 5. Life, output, and energy-efficiency data for lamps.
- 6. Photometric data, in IESNA format, based on laboratory tests of each lighting fixture type, outfitted with lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.
- B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.
 - 1. Wiring Diagrams: Power and control wiring.
 - 2. Detail wiring for fixtures and differentiate between manufacturer-installed and field-installed wiring.
- C. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Lighting fixtures.
 - 2. Suspended ceiling components.
 - 3. Structural members to which suspension systems for lighting fixtures will be attached.
 - 4. Other items in finished ceiling including the following:
 - a. Air outlets and inlets.
 - b. Speakers.
 - c. Sprinklers.
 - d. Smoke and fire detectors.
 - e. Occupancy sensors.
 - f. Access panels.
 - g. Projectors
 - h. IR Sensors
 - i. Wireless Access Points
- D. Samples for Verification: Interior lighting fixtures designated for sample submission in Interior Lighting Fixture Schedule. Each sample shall include the following:
 - 1. Lamps: Specified units installed.
 - 2. Accessories: Cords and plugs.
- E. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer.
- F. Operation and Maintenance Data: For lighting equipment and fixtures to include in operation, and maintenance manuals.
- G. Warranties: Special warranties specified in this Section.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

- C. FMG Compliance: Lighting fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FMG.
- D. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs and emergency lighting.
- E. Mockups: Provide interior lighting fixtures for room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of fixtures for mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approved fixtures in mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.6 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.7 ADDITIONAL DEVICES FOR JURSDICTION COMPLIANCE

- A. Provide in the GMP bid for ten additional exit signs as directed in field. Allowance includes purchase, delivery and installation of box, exit sign, wire and 50 feet of conduit for each sign.
- B. Provide in the GMP bid for fifteen additional emergency battery units as directed in field. Allowance includes purchase, delivery and installation of box, battery unit, wire and 50 feet of conduit for each emergency battery unit.

1.8 WARRANTY

- A. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Emergency Lighting Unit Batteries: 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining nine years.
 - 2. Warranty Period for Emergency Fluorescent Ballast and Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for the remaining four years.
- B. Special Warranty for Ballasts: Manufacturer's standard form in which ballast manufacturer agrees to repair or replace ballasts that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Electronic Ballasts: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Lighting Fixture Products: Subject to compliance with requirements, products that may be incorporated into the Work include the products indicated in the Lighting Fixture Schedule.
- B. Lamps: Subject to compliance with requirements, products that may be incorporated into the Work include:
 - 1. Osram Sylvania
 - 2. General Electric
 - 3. Philips
- C. Ballast: Subject to compliance with requirements, products that may be incorporated into the Work include:
 - 1. Universal Lighting Technology
 - 2. Advance
 - 3. Osram Sylvania

2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

- A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
- B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.
- C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.
- E. Metal Parts: Free of burrs and sharp corners and edges.
- F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- H. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
 - 4. Laminated Silver Metallized Film: 90 percent.

- I. Plastic Diffusers, Covers, and Globes:
 - 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - a. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless different thickness is indicated.
 - b. UV stabilized.
 - 2. Glass: Annealed crystal glass, unless otherwise indicated.
- J. Electromagnetic-Interference Filters: Factory installed to suppress conducted electromagnetic-interference as required by MIL-STD-461E. Fabricate lighting fixtures with one filter on each ballast indicated to require a filter.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

- A. Electronic Ballasts: Comply with ANSI C82.11; instant-start type, unless otherwise indicated, and designed for type and quantity of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated.
 - 1. Sound Rating: A.
 - 2. Total Harmonic Distortion Rating: Less than 20 percent.
 - 3. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 4. Operating Frequency: 20 kHz or higher.
 - 5. Lamp Current Crest Factor: 1.6 or less.
 - 6. BF: 0.85 or higher.
 - 7. Power Factor: 0.95 or higher.
 - 8. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.
- B. Electronic Programmed-Start Ballasts for T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:
 - 1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.95 or higher.
- C. Electromagnetic Ballasts: Comply with ANSI C82.1; energy saving, high-power factor, Class P, and having automatic-reset thermal protection.
 - 1. Ballast Manufacturer Certification: Indicated by label.
- D. Single Ballasts for Multiple Lighting Fixtures: Factory-wired with ballast arrangements and bundled extension wiring to suit final installation conditions without modification or rewiring in the field.
- E. Ballasts to be in 1, 2, 3 or 4 lamp configuration as required to facilitate switching/circuitry shown on drawings or as called for on drawings. If not specifically called for or noted on

drawings provide minimum of one ballast per two lamp fixture, two ballasts per 3 lamp or 4 lamp fixture.

- F. Ballasts for Low-Temperature Environments:
 - 1. Temperatures 0 Deg F (Minus 17 Deg C) and Higher: Electronic type rated for 0 deg F (minus 17 deg C) starting and operating temperature with indicated lamp types.
 - 2. Temperatures Minus 20 Deg F (Minus 29 Deg C) and Higher: Electromagnetic type designed for use with indicated lamp types.
- G. Ballasts for Low Electromagnetic-Interference Environments: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for consumer equipment.
- H. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.
 - 3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
- I. Ballasts for Bi-Level Controlled Lighting Fixtures: Electronic type.
 - 1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.
 - b. Low-Level Operation: 50 percent of rated lamp lumens.
 - 2. Ballast shall provide equal current to each lamp in each operating mode.
 - 3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

2.4 BALLASTS FOR COMPACT FLUORESCENT LAMPS

- A. Description: Electronic programmed rapid-start type, complying with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: A.
 - 4. Total Harmonic Distortion Rating: Less than 20 percent.
 - 5. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. BF: 0.95 or higher, unless otherwise indicated.
 - 9. Power Factor: 0.95 or higher.
 - 10. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 - 11. Ballast Case Temperature: 75 deg C, maximum.
- B. Ballasts for Dimmer-Controlled Lighting Fixtures: Electronic type.
 - 1. Dimming Range: 100 to 5 percent of rated lamp lumens.
 - 2. Ballast Input Watts: Can be reduced to 20 percent of normal.

3. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

2.5 EMERGENCY FLUORESCENT POWER UNIT

- A. Internal Type: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924.
 - 1. Emergency Connection: Operate fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 - 2. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 - a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 3. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - 4. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 - 5. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by a flashing red LED. No audible alarm is permitted.

2.6 BALLASTS FOR HID LAMPS

- A. Electromagnetic Ballast for Metal-Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features, unless otherwise indicated:
 - 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 - 2. Minimum Starting Temperature: Minus 22 deg F (Minus 30 deg C) for single-lamp ballasts.
 - 3. Normal Ambient Operating Temperature: 104 deg F (40 deg C).
 - 4. Open-circuit operation that will not reduce average life.
 - 5. Low-Noise Ballasts: Manufacturers' standard epoxy-encapsulated models designed to minimize audible fixture noise.
- B. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Sound Rating: A.
 - 3. Total Harmonic Distortion Rating: Less than 15 percent.
 - 4. Transient Voltage Protection: IEEE C62.41, Category A or better.
 - 5. Lamp Current Crest Factor: 1.5 or less.
 - 6. Power Factor: .90 or higher.
 - 7. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 - 8. Protection: Class P thermal cutout.
 - 9. Bi-Level Dimming Ballast: Ballast circuit and leads provide for remote control of the light output of the associated fixture between high- and low-level and off.
 - a. High-Level Operation: 100 percent of rated lamp lumens.

- b. Low-Level Operation: 50 percent of rated lamp lumens.
- c. Compatibility: Certified by ballast manufacturer for use with specific bi-level control system and lamp type indicated. Certified by lamp manufacturer that ballast operating modes are free from negative effect on lamp life and colorrendering capability.
- 10. Continuous Dimming Ballast: Dimming range shall be from 100 to 35 percent of rated lamp lumens without flicker.
 - a. Ballast Input Watts: Reduced to a maximum of 50 percent of normal at lowest dimming setting.
 - b. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated. Certified by lamp manufacturer that ballast operating modes are free from negative effect on lamp life and color-rendering capability.
- C. Auxiliary Instant-On Quartz System: Factory-installed feature automatically switches quartz lamp on when fixture is initially energized and when power outages occur. System automatically turns quartz lamp off when HID lamp reaches approximately 60 percent light output.
- D. High-Pressure Sodium Ballasts: Electromagnetic type, with solid-state igniter/starter. Igniter-starter shall have an average life in pulsing mode of 10,000 hours at an igniter/starter-case temperature of 90 deg C.
 - 1. Instant-Restrike Device: Integral with ballast, or solid-state potted module, factory installed within fixture and compatible with lamps, ballasts, and mogul sockets up to 150 W.
 - a. Restrike Range: 105- to 130-V ac.
 - b. Maximum Voltage: 250-V peak or 150-V ac RMS.
 - 2. Minimum Starting Temperature: Minus 40 deg F (Minus 40 deg C).
 - 3. Open-circuit operation shall not reduce average lamp life.

2.7 EXIT SIGNS

- A. Description: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: Fluorescent, 2 for each fixture, 20,000 hours of rated lamp life.
 - 2. Lamps for AC Operation: LEDs, 70,000 hours minimum rated lamp life.
 - 3. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 - a. Battery: Sealed, maintenance-free, nickel-cadmium type.
 - b. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - c. Operation: Relay automatically energizes lamp from battery when circuit voltage drops to 80 percent of nominal voltage or below. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - d. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

- e. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
- f. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

2.8 EMERGENCY LIGHTING UNITS

- A. Description: Self-contained units complying with UL 924.
 - 1. Battery: Sealed, maintenance-free, lead-acid type.
 - 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 - 3. Operation: Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 - 4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 - 5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 - 6. Integral Self-Test: Factory-installed electronic device automatically initiates coderequired test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and flashing red LED.

2.9 FLUORESCENT LAMPS

- A. Low-Mercury Lamps: Comply with EPA's toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.
- B. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches (1220 mm), 2800 initial lumens (minimum), CRI 80, color temperature 4100 K, and average rated life 20,000 hours, unless otherwise indicated.
- C. T8 rapid-start lamps, rated 17 W maximum, nominal length of 24 inches (610 mm), 1300 initial lumens (minimum), CRI 75 (minimum), color temperature 4100 K, and average rated life of 20,000 hours, unless otherwise indicated.
- D. T5 rapid-start lamps, rated 28 W maximum, nominal length of 45.2 inches (1150 mm), 2900 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours, unless otherwise indicated.
- E. T5HO rapid-start, high-output lamps, rated 54 W maximum, nominal length of 45.2 inches (1150 mm), 5000 initial lumens (minimum), CRI 85 (minimum), color temperature 4100 K, and average rated life of 20,000 hours, unless otherwise indicated.
- F. Compact Fluorescent Lamps: 4-Pin, CRI 80 (minimum), color temperature 4100 K, average rated life of 10,000 hours at 3 hours operation per start, and suitable for use with dimming ballasts, unless otherwise indicated.
 - 1. 13 W: T4, double or triple tube, rated 900 initial lumens (minimum).

- 2. 18 W: T4, double or triple tube, rated 1200 initial lumens (minimum).
- 3. 26 W: T4, double or triple tube, rated 1800 initial lumens (minimum).
- 4. 32 W: T4, triple tube, rated 2400 initial lumens (minimum).
- 5. 42 W: T4, triple tube, rated 3200 initial lumens (minimum).
- 6. 55 W: T4, triple tube, rated 4300 initial lumens (minimum).

2.10 HID LAMPS

- A. High-Pressure Sodium Lamps: ANSI C78.42, CRI 21 (minimum), color temperature 1900 K, and average rated life of 24,000 hours, minimum.
 - 1. Dual-Arc Tube Lamps: Arranged so only one of two arc tubes is lighted at one time and, when power is restored after an outage, the cooler arc tube, with lower internal pressure, lights instantly, providing an immediate 8 to 15 percent of normal light output.
- B. Metal-Halide Lamps: ANSI C78.1372, with a minimum CRI 65, and color temperature 4000 K.

2.11 LIGHTING FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel-and angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
- D. Wires: Stainless Steel aircraft cable 1/16" minimum.
- E. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- F. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.

2.12 SAFETY REQUIREMENTS FOR INDIVIDUAL LIGHTING FIXTURES

- A. Fixtures located overhead shall have at least 1 redundant point of support. That is if one support fails the fixture shall not be capable of falling to the ground. Provide aircraft cable with nico press crimps for redundant support of fixtures with only 1 point of connection.
- B. Fluorescent fixtures with lamps exposed shall have wire guards and clear tube guards to prevent the lamps or glass from falling.
- C. All exit and emergency fixtures located in Gymnasium or locker room areas shall be equipped with a wire cage to prevent damage.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.
- B. Support for Lighting Fixtures in or on Grid-Type Suspended Ceilings: Use grid as a support element.
 - 1. Install a minimum of two ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from lighting fixture corners.
 - 2. Fixtures of Sizes Less Than Ceiling Grid: Install as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.
 - 3. Fixtures supported by suspended ceiling systems shall be securely fastened to the ceiling framing member by mechanical means, such as bolts, screws, or rivets. Ceiling framing members must be securely attached to each other and to the building structure as required by all applicable codes and standards. Use of integral clips is not permitted.

C. Suspended Lighting Fixture Support:

- 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
- 2. Stem-Mounted, Single-Unit Fixtures: Suspend with twin-stem hangers.
- 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
- 4. Provide redundant support for all suspended lighting fixtures.
- 5. Provide threaded swivel support for fixtures mounted on sloped ceilings.
- D. Adjust aimable lighting fixtures to provide required light intensities.
- E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- F. Install wire guards and clear tube guards on all exposed lamp fluorescent fixtures.

3.2 CONNECTIONS

- A. Ground equipment.
 - 1. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

- A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.
- B. Inspect each installed fixture for damage. Replace damaged fixtures and components.

- C. Advance Notice: Give dates and times for field tests.
- D. Provide instruments to make and record test results.
- E. Tests: As follows:
 - 1. Verify normal operation of each fixture after installation.
 - 2. Emergency Lighting: Interrupt electrical supply to demonstrate proper operation.
 - 3. Verify normal transfer to battery source and retransfer to normal.
 - 4. Report results in writing.
- F. Malfunctioning Fixtures and Components: Replace or repair, then retest. Repeat procedure until units operate properly.
- G. Corrosive Fixtures: Replace during warranty

3.4 CLEANING

A. Clean fixtures internally and externally after installation. Use methods and materials recommended by manufacturer.

3.5 TRAINING

A. Instruct Owner on testing and maintenance responsibilities required by NFPA 101 related to normal egress lighting, emergency battery units and exit fixtures.

END OF SECTION 265100