PROJECT MANUAL

FOR

ORANGE COUNTY COURTHOUSE SWING CHILLER ADDITION

FOR

ORANGE COUNTY GOVERNMENT FACILITIES

PREPARED BY:

1059 Maitland Center Commons Boulevard Suite 200 Maitland, Florida 32751 (407) 659-0553 FAX # (407) 659-0609

CONTRACT DOCUMENTS (BID DOCUMENTS) August 17, 2012

PROJECT MANUAL INDEX

ORANGE COUNTY COURTHOUSE SWING CHILLER ADDITION

FOR

ORANGE COUNTY Orlando, Florida

PREPARED BY:

1059 Maitland Center Commons Boulevard Suite 200 Maitland, Florida 32751 (407) 659-0553 FAX # (407) 659-0609

GRAEF Project No.: 2011-4114.00

INDICES

Section 00003	Project Manual Index
Section 00004	Project Drawing Index

DIVISION 1 - GENERAL REQUIREMENTS

Section 01010 Summary of Work Applications for Payment Section 01027 **Coordination and Meetings** Section 01039 Section 01045 Cutting and Patching **Reference Standards** Section 01090 Section 01300 Submittals Section 01400 Quality Control **Construction Facilities and Temporary Controls** Section 01500 Section 01600 Material and Equipment Section 01631 **Product Substitutions** Section 01700 **Contract Closeout**

DIVISION 15 – MECHANICAL

Section 15010 Section 15011	Basic Mechanical Requirements Identification for HVAC Piping and Equipment
Section 15100	Valves
Section 15140	Supports and Anchors
Section 15240	Mechanical Sound and Vibration Control
Section 15250	Mechanical System Insulation
Section 15510	Hydronic Piping
Section 15684	Centrifugal Water Chillers
Section 15715	HVAC Water Treatment
Section 15910	Refrigerant Detection and Alarm
Section 15990	Test and Balance

DIVISIONS 16 – ELECTRICAL

Section 16050	Basic Electrical Materials and Methods
Section 16060	Grounding and Bonding
Section 16072	Electrical Supports and Seismic Restraints
Section 16075	Electrical Identification
Section 16120	Conductors and Cables
Section 16124	Medium-Voltage Cables
Section 16130	Raceway and Boxes
Section 16410	Enclosed Switches and Circuit Breakers
Section 16420	Enclosed Controllers
Section 16442	Panelboards
Section 16491	Fuses

The Contractor shall check the pages with the index completeness prior to bid. If any pages are missing or illegible, request replacements.

PROJECT MANUAL INDEX

ORANGE COUNTY COURTHOUSE SWING CHILLER ADDITION

FOR

ORANGE COUNTY Orlando, Florida

PREPARED BY:

1059 Maitland Center Commons Boulevard Suite 200 Maitland, Florida 32751 (407) 659-0553 FAX # (407) 659-0609

GRAEF Project No.: <u>2011-4114.00</u>

PLANS	DRAWING
Cover	0.00
MECHANICAL Mechanical Notes, Legend, and Abbreviations Mechanical Demolition Plan Building E Level 2 and Level 3 Mechanical Renovation Plan Building E Level 2 and Level 3 Chiller Room Isometric Mechanical Flow Schematic Mechanical Details Mechanical Schedules Mechanical Controls	M0.01 M2.01 M3.01 M3.02 M4.01 M5.01 M6.01 M8.01
ELECTRICAL Electrical Notes, Legend, and Abbreviations Electrical Demolition Plan Building E Level 2 and Level 3 Electrical Renovation Plan Building E Level 2 and Level 3 Partial Single Line Diagram - Demolition Partial Existing Single Line Diagram – Renovation	E0.01 E2.01 E3.01 E5.01 E5.02

SECTION 01010 – SUMMARY OF WORK

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Work by Contractor.
 - B. Contractor use of site and premises.
 - C. Owner occupancy.
 - 1.2 WORK BY CONTRACTOR
 - A. The Contractor shall provide all labor and materials to install a complete and operating System as shown on the drawings and as described in the "Project Specification" and construction documents.
 - B. The project includes replacement of the existing (1) 400 ton water cooled chiller with new 1380 ton water cooled chiller and associated piping. Demolishing existing primary and condenser pumps dedicated to 400 ton chiller. Adding new valves for the condenser water by pass loop.
 - C. Unforeseen Major Repairs: Should deteriorated materials of a major nature be uncovered in the course of the Work, it shall be brought to the attention of Owner. Repairs shall be made as directed and an adjustment will be made in the contract price in accordance with the terms of the Agreement.
 - D. Existing Work: Where existing Work is changed or removed, or where new Work adjoins, connects or abuts existing Work, alter the existing and connect as necessary. All new Work shall match, as nearly as practicable, existing adjoining and adjacent similar Work. Conduct operations affecting existing Work with care. Do not damage Work in place. Correct or replace Work damaged without additional expense to the Owner.

1.3 CONTRACTOR SUPPLIED PRODUCTS

- A. Contractor's Responsibilities:
 - 1. Arrange for and deliver Shop Drawings, and Product Data, to Engineer for review.
 - 2. Arrange and pay for Product delivery to site.
 - 3. On delivery, inspect Products jointly with Owner's Representative.
 - 4. Submit claims for transportation damage and replace damaged, defective, or deficient items.
 - 5. Arrange for manufacturers' warranties, inspections, and service.
 - 6. Repair or replace items damaged after receipt.
- 1.4 BUILDING SITE/SECURITY

- A. The building shall be secured from unwarranted entry at the end of each workday.
- B. Contractor Background Checks Orange County will require each employee of the Contractor and his sub-contractors to perform a standard FDLE security background check to work within the Orange County Facilities premises, except those located at Corrections Complex. Results shall be submitted to Orange County Facilities Management Division prior to any individual being approved and allowed in the building. The cost of this check is the responsibility of the Contractor.

1.5 CONTRACTOR USE OF SITE AND PREMISES

- A. Limit use of site and premises to allow:
 - 1. Owner occupancy.
- B. The Contractor may not interrupt Electrical Power or Chilled Water flow to the building without a shut-down plan pre-approved, and signed by the Building Engineer at least two weeks prior to interruption. Allowable interruption times are as followed:
 - 1. Electrical: Not allowed.
 - 2. Central Plant: Weekend, maximum of 12 hrs.

1.6 WORK SEQUENCE

- A. Construct Work in phases to accommodate Owner's occupancy requirements as shown on the plans.
- B. Piping tie-ins and Piping modifications / additions shall be completed prior to equipment delivery.

1.7 OWNER OCCUPANCY

- A. The Owner will occupy the site, premises during the entire period of construction, for the conduct of normal operations. Cooperate with Owner to facilitate Owner's operations.
- B. Schedule the Work to accommodate this requirement.

PART 2 - PRODUCTS

Not Used

PART 3 - EXECUTION

Not Used

SECTION 01027 – APPLICATIONS FOR PAYMENT

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Procedures for preparation and submittal of applications for payment.

1.2 RELATED SECTIONS

- A. Agreement: Contract Sum/Price and unit prices, amounts of progress payments and retainages, time schedule for submittals.
- B. General Conditions: Progress payments and final payment.
- C. Section 01300 Submittals: Submittal procedures.
- D. Section 01700 Contract Closeout: Final payment.
- 1.3 FORMAT
 - A. AIA G702 Application and Certificate for Payment and AIA G703 Continuation Sheet.
 - B. For each item, provide a column for listing each of the following:
 - 1. Item Number.
 - 2. Description of work; broken into sub-categories of labor and materials.
 - 3. Scheduled Values for each sub-category.
 - 4. Previous Applications.
 - 5. Work in Place and Stored Materials under this Application.
 - 6. Authorized Change Orders.
 - 7. Total Completed and Stored to Date of Application.
 - 8. Percentage of Completion.
 - 9. Balance to Finish.
 - 10. Retainage.

1.4 PREPARATION OF APPLICATIONS

- A. Present required information in handwritten form for field verification by the Engineer. Once approved, supply in typewritten form.
- B. At least one of the submittal AIA G702 forms must be a "red type" original: the others may be copies. A computer generated facsimile which organizes and compiles all the project data in the same format as the AIA G703 is acceptable as the Continuation Sheet(s) in lieu of the typewritten original form.
- C. Submit a fully completed Project Rain Day Form and revised project schedule with each Application for Payment. Each Half Rain Day claimed must be certified by the designated on-site representative for the Owner,

as well as the Contractor. The Application for Payment will not be processed without submission of these records.

- D. Execute certification by signature of authorized officer.
- E. Use data from approved Schedule of Values. Provide dollar value in each column for each line item for portion of work performed and for stored Products.
- F. List each authorized Change Order as an extension on AIA G703 -Continuation Sheet, listing Change Order number and dollar amount as for an original item of Work.
- G. Prepare Application for Final Payment as specified in Section 01700.
- 1.5 SUBMITTAL PROCEDURES
 - A. Submit five copies of each Application for Payment.
 - B. Submit an updated construction schedule with each Application for Payment.
 - C. Payment Period: Submit on the 25th of each month.
 - D. Submit with transmittal letter as specified for Submittals in Section 01300.
 - E. Submit waivers and release of liens with each pay application.
- 1.6 SUBSTANTIATING DATA
 - A. When Engineer requires substantiating information, submit data justifying dollar amounts in question.
 - B. Provide one copy of data with cover letter for each copy of submittal. Show application number and date, and line item by number and description.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

SECTION 01039 - COORDINATION AND MEETINGS

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Coordination.
 - B. Preconstruction meeting.
 - 1.2 RELATED SECTIONS
 - A. Section 01045 Cutting and Patching.
 - 1.3 COORDINATION
 - A. Coordinate scheduling, submittals, and Work of the various sections of the Project Manual to assure efficient and orderly sequence of installation of interdependent construction elements.
 - B. Verify utility requirements and characteristics of operating equipment are compatible with building utilities. Coordinate work of various sections having interdependent responsibilities for installing, connecting to, and placing in service, such equipment.
 - C. Coordinate space requirements and installation of mechanical and electrical work which are indicated diagrammatically on Drawings. Follow routing shown for pipes, ducts, and conduit, as closely as practicable; place runs parallel with line of building. Utilize spaces efficiently to maximize accessibility for other installations, for maintenance, and for repairs.
 - D. In finished areas conceal pipes, ducts, and wiring within the construction. Coordinate locations of fixtures and outlets with finish elements.
 - E. Coordinate completion and clean up of Work of separate sections in preparation for Substantial Completion
 - F. After Owner occupancy of premises, coordinate access to site for correction of defective Work and Work not in accordance with Contract Documents, to minimize disruption of Owner's activities.

1.4 PRECONSTRUCTION MEETING

- A. Engineer will schedule a meeting after Notice of Award.
- B. Attendance Required: Owner, Engineer and Contractor.
- C. Agenda:
 - 1. Execution of Owner-Contractor Agreement.

- 2. Submission of executed bonds and insurance certificates.
- 3. Distribution of Contract Documents.
- 4. Submission of list of Subcontractors, list of Products, schedule of values, and progress schedule.
- 5. Designation of personnel representing the parties in Contract, and the Architect/Engineer.
- 6. Procedures and processing of field decisions, submittals, substitutions, applications for payments, proposal request, Change Orders, and Contract closeout procedures.
- 7. Scheduling.
- D. Record minutes and distribute copies within two days after meeting to participants, with two copies to Engineer, Owner, participants, and those affected by decisions made.
- 1.5 PROGRESS MEETINGS
 - A. Schedule and administer meetings throughout progress of the Work at maximum bi-monthly intervals.
 - B. Make arrangements for meetings, prepare agenda with copies for participants, preside at meetings.
 - C. Attendance Required: Job superintendent, major Subcontractors and suppliers, Owner, Engineer, as appropriate to agenda topics for each meeting.
 - D. Agenda:
 - 1. Review minutes of previous meetings.
 - 2. Review of Work progress.
 - 3. Field observations, problems, and decisions.
 - 4. Identification of problems which impede planned progress.
 - 5. Review of submittals schedule and status of submittals.
 - 6. Review of off-site fabrication and delivery schedules.
 - 7. Maintenance of progress schedule.
 - 8. Corrective measures to regain projected schedules.
 - 9. Planned progress during succeeding work period.
 - 10. Coordination of projected progress.
 - 11. Maintenance of quality and work standards.
 - 12. Effect of proposed changes on progress schedule and coordination.
 - 13. Other business relating to Work.
 - E. The A/E will record minutes and distribute copies within two days after meeting to participants, with two copies to Owner, participants, and those affected by decisions made.
- 2. PART 2 PRODUCTS

Not Used

3. PART 1 EXECUTION

Not Used

SECTION 01045 - CUTTING AND PATCHING

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Requirements and limitations for cutting and patching of Work.

1.2 RELATED SECTIONS

- A. Section 01010 Summary of Work.
- B. Section 01300 Submittals.
- C. Section 01631 Materials and Equipment: Product options and substitutions.
- D. Individual Product Specification Sections:
 - 1. Cutting and patching incidental to work of the section.
 - 2. Advance notification to other sections of openings required in work of those sections.
 - 3. Limitations on cutting structural members.

1.3 SUBMITTALS

- A. Submit written request in advance of cutting or alteration which affects:
 - 1. Structural integrity of any element of Project.
 - 2. Integrity of weather exposed or moisture resistant element.
 - 3. Efficiency, maintenance, or safety of any operational element.
 - 4. Visual qualities of sight exposed elements.
 - 5. Work of Owner or separate contractor.
- B. Include in request:
 - 1. Identification of Project.
 - 2. Location and description of affected Work.
 - 3. Necessity for cutting or alteration.
 - 4. Description of proposed Work and Products to be used.
 - 5. Alternatives to cutting and patching.
 - 6. Effect on work of Owner or separate contractor.
 - 7. Written permission of affected separate contractor.
 - 8. Date and time work will be executed.
- 2. PART 2 PRODUCTS
 - 2.1 MATERIALS
 - A. Primary Products: Those required for original installation.

3. PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine existing conditions prior to commencing Work, including elements subject to damage or movement during cutting and patching.
- B. After uncovering existing Work, assess conditions affecting performance of work.
- C. Beginning of cutting or patching means acceptance of existing conditions.

3.2 PREPARATION

- A. Provide temporary supports to ensure structural integrity of the Work. Provide devices and methods to protect other portions of Project from damage.
- B. Provide protection from elements for areas which may be exposed by uncovering work.
- C. Maintain excavations free of water.

3.3 CUTTING

- A. Execute cutting and fitting [including excavation and fill] to complete the Work.
- B. Uncover work to install improperly sequenced work.
- C. Remove and replace defective or non-conforming work.
- D. Remove samples of installed work for testing when requested.
- E. Provide openings in the Work for penetration of mechanical and electrical work.
- F. Employ original installer to perform cutting for weather exposed and moisture resistant elements, and sight-exposed surfaces.
- G. Cut rigid materials using masonry saw or core drill. Pneumatic tools not allowed without prior approval.

3.4 PATCHING

- A. Execute patching to complement adjacent Work.
- B. Fit Products together to integrate with other Work.
- C. Execute work by methods to avoid damage to other Work, and which will provide appropriate surfaces to receive patching and finishing.

- D. Employ original installer to perform patching for weather exposed and moisture resistant elements, and sight-exposed surfaces.
- E. Restore work with new Products in accordance with requirements of Contract Documents.
- F. Fit work airtight to pipes, sleeves, ducts, conduit, and other penetrations through surfaces.
- G. At penetrations of fire rated walls, partitions, ceiling, or floor construction, completely seal voids with fire rated material to full thickness of the penetrated element.
- H. Refinish surfaces to match adjacent finish. For continuous surfaces, refinish to nearest intersection or natural break. For an assembly, refinish entire unit.

SECTION 01090 - REFERENCE STANDARDS

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Quality assurance.
 - 1.2 RELATED SECTIONS
 - A. General Conditions: Reference standards.
 - 1.3 QUALITY ASSURANCE
 - A. For Products or workmanship specified by association, trade, or other consensus standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
 - B. Conform to reference standard by date of issue current on date of Contract Documents.
 - C. Obtain copies of standards when required by the Contract Documents.
 - D. Maintain copy at project site during submittals, planning, and progress of the specific work, until Substantial Completion.
 - E. Should specified reference standards conflict with Contract Documents, request clarification from the Engineer before proceeding.
 - F. The contractual relationship, duties, and responsibilities of the parties in Contract nor those of the Engineer shall not be altered from the Contract Documents by mention or inference otherwise in any reference document.
 - G. All work performed as shall meet or exceed the requirements of the Florida Building Code (2009).
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

SECTION 01300 - SUBMITTALS

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Submittal procedures.
 - B. Construction progress schedules.
 - C. Shop Drawings.
 - D. Product Data.
 - E. Samples.
 - F. Manufacturer's installation instructions.
 - G. Manufacturers' certificates.
 - H. Schedule of Values

1.2 RELATED SECTIONS

- A. Section 01027 Application for Payment: Schedule of Values associated with application for payment.
- B. Section 01400 Quality Control: Manufacturers' field services and reports.
- C. Section 01700 Contract Closeout: Contract warranties, bonds, manufacturers' certificates, and closeout submittals.

1.3 SUBMITTAL PROCEDURES

- A. Transmit each submittal with AIA Form G810.
- B. Sequentially number the transmittal form. Revise submittals with original number and a sequential alphabetic suffix.
- C. Identify Project, Contractor, Subcontractor or supplier; pertinent drawing and detail number, and specification section number, as appropriate.
- D. Apply Contractor's stamp, signed or initialed certifying that review, verification of Products required, field dimensions, adjacent construction Work, and coordination of information, is in accordance with the requirements of the Work and Contract Documents.
- E. Schedule submittals to expedite the Project, and deliver to Engineer. Coordinate submission of related items.

- F. For each submittal for review, allow 15 days excluding delivery time to and from the contractor.
- G. Identify variations from Contract Documents and Product or system limitations which may be detrimental to successful performance of the completed Work.
- H. Provide space for Contractor and Engineer review stamps.
- I. Revise and resubmit, identify all changes made since previous submission.
- J. Distribute copies of reviewed submittals as appropriate. Instruct parties to promptly report any inability to comply with provisions.
- K. Submittals not requested will not be recognized or processed.

1.4 CONSTRUCTION PROGRESS SCHEDULES

- A. Submit initial schedule in duplicate within 15 days after date of Owner-Contractor Agreement.
- B. Revise and resubmit as required.
- C. Submit revised schedules with each Application for Payment, identifying changes since previous version.
- D. Submit a computer generated horizontal bar chart with separate line for each major section of Work or operation, identifying first workday of each week.
- E. Show complete sequence of construction by activity, identifying Work of separate stages and other logically grouped activities. Indicate the early and late start, early and late finish, float dates, and duration.
- F. Indicate estimated percentage of completion for each item of Work at each submission.
- G. Indicate submittal dates required for shop drawings, product data, samples, and product delivery dates, including those furnished by Owner and required by Allowances.
- 1.5 SHOP DRAWINGS
 - A. Submit in the form of one reproducible transparency and six opaque reproductions.
 - B. Shop Drawings: Submit 1/8" scale plans for review. After review, produce copies and distribute in accordance with the SUBMITTAL PROCEDURES article above and for record documents purposes described in Section 01700 CONTRACT CLOSEOUT.

C. Indicate special utility and electrical characteristics, utility connection requirements, and location of utility outlets for service for functional equipment and appliances.

1.6 PRODUCT DATA

- A. Submit the number of copies which the Contractor requires, plus two copies which will be retained by the Engineer.
- B. Mark each copy to identify applicable products, models, options, and other data. Supplement manufacturers' standard data to provide information unique to this Project.
- C. Indicate Product utility and electrical characteristics, utility connection requirements, and location of utility outlets for service for functional equipment and appliances.
- D. After review distribute in accordance with the Submittal Procedures article above and provide copies for record documents described in Section 01700 CONTRACT CLOSEOUT.
- 1.7 SAMPLES
 - A. Submit samples to illustrate functional and aesthetic characteristics of the Product, with integral parts and attachment devices. Coordinate sample submittals for interfacing work.
 - B. Include identification on each sample, with full Project information.
 - C. Submit the number of samples specified in individual specification sections; one of which will be retained by Engineer.
 - D. Reviewed samples which may be used in the Work are indicated in individual specification sections.

1.8 MANUFACTURER INSTALLATION INSTRUCTIONS

- A. When specified in individual specification sections, submit printed instructions for delivery, storage, assembly, installation, start-up, adjusting, and finishing, to Engineer in quantities specified for Product Data.
- B. Indicate special procedures, perimeter conditions requiring special attention, and special environmental criteria required for application or installation.

1.9 MANUFACTURER CERTIFICATES

A. When specified in individual specification sections, submit certification by manufacturer to Engineer, in quantities specified for Product Data.

- B. Indicate material or Product conforms to or exceeds specified requirements. Submit supporting reference data, affidavits, and certifications as appropriate.
- C. Certificates may be recent or previous test results on material or Product, but must be acceptable to Engineer.

1.10 SCHEDULE OF VALUES

- A. Submit typed schedule of AIA Form G703.
- B. Format: Table of Contents of this Project Manual. Identify each line item with number and title of the major Specification sections. Divide line item into subcategories of labor and materials.
- C. Include in each line item a directly proportional amount of Contractor's overhead and profit.
- D. Revise schedule to list change orders, for each application for payment.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

SECTION 01400 - QUALITY CONTROL

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Quality assurance control of installation.
 - B. Tolerances
 - C. References.
 - D. Mockup.
 - E. Inspecting and testing laboratory services.
 - F. Manufacturers' field services and reports.

1.2 RELATED SECTIONS

- A. Section 01090 Reference Standards.
- B. Section 01300 Submittals: Submission of manufacturers' instructions and certificates.
- C. Section 01631 Material and Equipment: Requirements for material and product quality.

1.3 QUALITY ASSURANCE - CONTROL OF INSTALLATION

- A. Monitor quality control over suppliers, manufacturers, Products, services, site conditions, and workmanship, to produce Work of specified quality.
- B. Comply with manufacturers' instructions, including each step in sequence.
- C. Should manufacturers' instructions conflict with Contract Documents, request clarification from Engineer before proceeding.
- D. Comply with specified standards as minimum quality for the Work except where more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
- E. Perform work by persons qualified to produce workmanship of specified quality.
- F. Secure Products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion, or disfigurement.

1.4 TOLERANCES

A. Monitor tolerance control of installed Products to produce acceptable

QUALITY CONTROL

Work. Do not permit tolerances to accumulate.

- B. Comply with manufacturers' tolerances. Should manufacturers' tolerances conflict with Contract Documents, request clarification from Engineer before proceeding.
- C. Adjust Products to appropriate dimensions; position before securing Products in place.

1.5 REFERENCES

- A. For Products or workmanship specified by association, trade, or other consensus standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
- B. Conform to reference standard by date of issue current on date of Owner-Contractor Agreement except where a specific date is established by code.
- C. Obtain copies of standards where required by product specification sections.
- D. The contractual relationship, duties, and responsibilities of the parties in Contract nor those of the Engineer shall not be altered from the Contract Documents by mention or inference otherwise in any reference document.
- 1.6 MOCK-UP
 - A. Tests will be performed under provisions identified in this section and identified in the respective product specification sections.
 - B. Assemble and erect specified items with specified attachment and anchorage devices, flashing, seals, and finishes.
 - C. Accepted mock-ups are representative of the quality required for the Work.
 - D. Where mock-up has been accepted by Engineer and is specified in product specification sections to be removed; remove mock-up and clear area when directed to do so.

1.7 INSPECTING AND TESTING LABORATORY SERVICES

- A. Owner will appoint and employ services of an independent firm to perform inspecting and testing. Contractor shall pay for services.
- B. The independent firm will perform inspections, tests, and other services specified in individual specification sections and as required by the Engineer or the Owner.

- C. Inspecting, testing, and source quality control may occur on or off the project site. Perform off-site inspecting or testing as required by the Engineer or the Owner.
- D. Reports will be submitted by the independent firm to the Engineer and Contractor, in duplicate, indicating observations and results of tests and indicating compliance or non-compliance with Contract Documents.
- E. Cooperate with independent firm; furnish samples of materials, design mix, equipment, tools, storage, safe access, and assistance by incidental labor as requested.
 - 1. Notify Engineer and independent firm 24 hours prior to expected time for operations requiring services.
 - 2. Make arrangements with independent firm and pay for additional samples and tests required for Contractor's use.
- F. Testing or inspecting does not relieve Contractor to perform Work to contract requirements.
- G. Retesting required because of non-conformance to specified requirements shall be performed by the same independent firm on instructions by the Engineer. Payment for retesting will be charged to the Contractor by deducting inspecting or testing charges from the Contract Sum/Price.

1.8 MANUFACTURERS' FIELD SERVICES AND REPORTS

- A. When specified in individual specification sections, require material or Product suppliers or manufacturers to provide qualified staff personnel to observe site conditions, conditions of surfaces and installation, quality of workmanship, start-up of equipment, test, adjust and balance of equipment as applicable, and to initiate instructions when necessary.
- B. Submit qualifications of observer to Engineer 10 days in advance of required observations. Observer subject to approval of Engineer.
- C. Report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.
- D. Submit report in duplicate within 5 days of observation to Engineer for information.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

QUALITY CONTROL

Not Used

Y-11-814-EZ OC COURTHOUSE SWING CHILLER ADDITION 17 AUGUST 12

SECTION 01500 – CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS

1. PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Temporary Utilities: Electricity, lighting, heat and air conditioning, ventilation, telephone service, water, and sanitary facilities.
- B. Temporary Controls: Barriers, enclosures and fencing, protection of the Work, and water control.
- C. Construction Facilities: Parking, progress cleaning, project signage, and temporary buildings.
- 1.2 RELATED SECTIONS
 - A. Section 01700 Contract Closeout: Final cleaning.

1.3 TEMPORARY ELECTRICITY

- A. Cost: By Contractor; provide and pay for power service required from utility source.
- B. Provide temporary electric from existing building(s) electrical service at location as directed. Do not disrupt Owner's need for continuous service.
- C. Complement existing power service capacity and characteristics as required.
- D. Provide power outlets for construction operations, with branch wiring and distribution boxes located as required. Provide flexible power cords as required.
- E. Provide main service disconnect and overcurrent protection at convenient location.
- F. Permanent convenience receptacles may be utilized during construction.
- G. Provide adequate distribution equipment, wiring, and outlets to provide single-phase branch circuits for power and lighting.
- H. Provide 20-ampere duplex outlets, single-phase circuits for power tools and lighting.
- 1.4 TEMPORARY LIGHTING FOR CONSTRUCTION PURPOSES
 - A. Provide and maintain lighting for construction operations.
 - B. Provide branch wiring from power source to distribution boxes with lighting conductors, pigtails, and lamps as required.

- C. Maintain lighting and provide routine repairs.
- D. Permanent building lighting may not be utilized during construction.

1.5 TEMPORARY HEATING AND COOLING

- A. When required by documents, provide heating and cooling devices needed to maintain existing conditions in building(s). Owner will pay cost of energy used. Exercise measures to conserve energy.
- B. Prior to operation of permanent equipment for temporary heating and cooling purposes, verify that installation is approved for operation, equipment is lubricated and filters are in place. Provide and pay for operation, maintenance, and regular replacement of filters and worn or consumed parts.
- C. Maintain minimum ambient temperature of 74 degrees F in occupied areas unless indicated otherwise in specifications.

1.6 TEMPORARY VENTILATION

- A. Ventilate enclosed areas to assist cure of materials, to dissipate humidity, and to prevent accumulation of dust, fumes, vapors, or gases.
- B. Utilize existing ventilation equipment. Extend and supplement equipment with temporary fan units as required to maintain clean air for construction operations.

1.7 TELEPHONE SERVICE

A. Provide, maintain and pay for telephone service.

1.8 TEMPORARY SANITARY FACILITIES

A. Provide and maintain required facilities and enclosures. Existing facility use is not permitted.

1.9 BARRIERS

- A. Provide barriers to prevent unauthorized entry to construction areas and to protect existing facilities and adjacent properties from damage from construction operations and demolition.
- B. Provide barricades and covered walkways required by governing authorities for public rights-of-way
- C. Provide protection for plant life designated to remain. Replace damaged plant life.
- D. Protect non-owned vehicular traffic, stored materials, site, and structures

from damage.

1.10 FENCING

- A. Construction: Commercial grade chain link fence.
- B. Provide 6' high fence around construction staging areas and storage locations. Equip with vehicular or pedestrian gates with locks.

1.11 WATER CONTROL

A. Grade site to drain. Maintain site drainage affected by the work.

1.12 PROTECTION OF INSTALLED WORK

- A. Protect installed Work and provide special protection where specified in individual specification sections.
- B. Install temporary and removable protection for installed Products. Control activity in immediate work area to prevent damage.
- C. Install protective coverings at walls.
- D. Protect finished floors, stairs, and other surfaces from traffic, dirt, wear, damage, or movement of heavy objects, by protecting with durable sheet materials.
- E. Prohibit traffic or storage upon waterproofed or roofed surfaces. If traffic or activity is necessary, obtain recommendations for protection from waterproofing or roofing material manufacturer.
- F. Prohibit traffic from landscaped areas.

1.13 SECURITY

- A. Provide security and facilities to protect Work, and Owner's operations from unauthorized entry, vandalism, or theft.
- B. Coordinate with Owner's security program.

1.14 FIRE PROTECTION & TEMPORARY CONTROLS

A. Facilities, or portions of facilities, shall not be occupied during construction unless exists, fire detection and early warning systems, fire protection, and safety barriers are continuously maintained and clearly marked at all times. Comply with requirements of Florida Building Code – Building Chapter 423.6.1.

1.15 ACCESS ROADS

A. Maintain temporary roads accessing public thoroughfares to serve

construction area.

- B. Extend and relocate as Work progress requires. Provide detours necessary for unimpeded traffic flow.
- C. Provide and maintain access to fire hydrants, free of obstructions.

1.16 PARKING

- A. Arrange for temporary with Owner parking areas to accommodate construction personnel.
- B. When site space is not adequate, provide additional off-site parking.
- 1.17 PROGRESS CLEANING AND WASTE REMOVAL
 - A. Maintain areas free of waste materials, debris, and rubbish. Maintain site in a clean and orderly condition.
 - B. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces, and other closed or remote spaces, prior to enclosing the space.
 - C. Broom and vacuum clean interior areas dirtied by construction work.
 - D. Collect and remove waste materials, debris, and rubbish from site daily and dispose off-site.
 - E. Open free-fall chutes not permitted. Terminate closed chutes into appropriate containers with lids.

1.18 PROJECT IDENTIFICATION

- A. At Owner's option, Contractor shall provide 4 feet by 8 feet project sign of exterior grade plywood and wood frame construction, painted, with exhibit lettering by professional sign painter or die cut vinyl, self-adhesive letters and self-adhesive corporate logo, to Engineer design and colors.
- B. List title of Project, names of Owner, Engineer, professional sub-consultants, Contractor, and major Subcontractors.
- C. Erect on site at location established by Owner.
- D. No other signs are allowed without Owner permission except those required by law.

1.19 FIELD OFFICES, TRAILERS AND SHEDS

A. Office: Weather tight, with lighting, electrical outlets, heating, cooling and ventilating equipment, and equipped with sturdy furniture and drawing display table.

- B. Coordinate with Owner at pre-construction meeting, location of office(s), trailers and sheds. When possible, maintain a minimum distance of 30 feet from existing structures.
- 1.20 REMOVAL OF UTILITIES, FACILITIES, AND CONTROLS
 - A. Remove temporary utilities, equipment, facilities, and materials, prior to Substantial Completion inspection.
 - B. Clean and repair damage caused by installation or use of temporary work.
 - C. Restore existing facilities used during construction to original condition. Restore permanent facilities used during construction to specified condition.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

SECTION 01600 – MATERIAL AND EQUIPMENT

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Products.
 - B. Transportation and handling.
 - C. Storage and protection.
 - D. Product options.
 - 1.2 RELATED SECTIONS
 - A. Section 01400 Quality Control: Product quality monitoring.
 - 1.3 PRODUCTS
 - A. Do not use materials and equipment removed from existing premises, except as specifically permitted by the Contract Documents.
 - B. Provide interchangeable components of the same manufacture, for components being replaced.
 - 1.4 TRANSPORTATION AND HANDLING
 - A. Transport and handle Products in accordance with manufacturer's instructions.
 - B. Promptly inspect shipments to ensure that Products comply with requirements, quantities are correct, and Products are undamaged.
 - C. Provide equipment and personnel to handle Products by methods to prevent soiling, disfigurement, or damage.

1.5 STORAGE AND PROTECTION

- A. Store and protect Products in accordance with manufacturers' instructions, with seals and labels intact and legible.
- B. Store sensitive Products in weather tight, climate controlled enclosures.
- C. For exterior storage of fabricated Products, place on sloped supports, above ground.
- D. Cover Products subject to deterioration with impervious sheet covering. Provide ventilation to avoid condensation or potential degradation of Product.

- E. Store loose granular materials on solid flat surfaces in a well-drained area. Prevent mixing with foreign matter.
- F. Provide equipment and personnel to store Products by methods to prevent soiling, disfigurement, or damage.
- G. Arrange storage of Products to permit access for inspection. Periodically inspect to verify Products are undamaged and are maintained in acceptable condition.
- 1.6 PRODUCT OPTIONS
 - A. Products Specified by Reference Standards or by Description Only: Any Product meeting those standards or description.
 - B. Products Specified by Naming One or More Manufacturers: Products of manufacturers named and meeting specifications, no options or substitutions allowed.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

SECTION 01631 - PRODUCTS SUBSTITUTIONS

- 1. PART 1 GENERAL
- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of Contract, including General and Supplementary conditions and other Division-1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section specifies administrative and procedural requirements for handling request for substitutions made during bidding and after award of the Contract.
- B. The Contractor's Installation Schedule and the Schedule of Submittals are included under Section "Submittals".
- C. Standards: Refer to Section "Definitions and Standards" for applicability of industry standards to products specified.
- D. Procedural requirements governing the Contractor's selection of products and product options are included under Section "Materials and Equipment".

1.3 DEFINITIONS

- A. Definitions used in this Article are not intended to change or modify the meaning of other terms used in the Contract Documents.
- B. Substitutions: The Contract will be awarded based on the design, methods, materials and/or equipment as addressed in the Contract Drawings and/or described in the Contract Specifications, without any consideration for substitution or "or-equal" replacement. Addressing, describing or naming an item is intended to establish the type, function, characteristics and quality required in order to establish a base for bidding.
 - 1. Within thirty (30) days after Contract award, the Contractor may submit for approval substitutes for any equipment and/or material. In addition to the product documents, a written certification shall accompany the documentation indicating that the proposed substitute will have the same characteristics, will perform in accordance with the design requirements and that complies with all the requirements set for in the Contract. Any additional information required by the Owner or County Representative shall be provided by the Contractor. Rejection of any proposed substitute will be considered final and the Contractor shall not get into any agreement with manufacturers or providers until the submittal has been finally approved.
 - 2. The submission of this documentation shall follow the requirements set for by this Contract Specifications for this purpose.

1.4 SUBMITTALS

- A. Substitution Request Submittal: Request for substitution will be considered if received within thirty (30) days after contract award. As long as this time allowance will not impact the construction schedule.
 - 1. Submit three (3) copies of each request for substitution for consideration. Submit requests in the form and in accordance with procedures required for Change Order proposals.
 - 2. Identify the product, or the fabrication or installation method to be replaced in each request. Include related Specification Section and Drawing numbers. Provide complete documentation showing compliance with the requirements for substitution, and the following information, as appropriate:
 - a. Product Data, including Drawings, and descriptions of products, fabrication and installation procedures.
 - b. Samples, where applicable or requested.
 - c. A detailed comparison of significant qualities of the proposed substitution with those of the Work specified. Significant qualities may include elements such as size, weight, durability, performance and visual effect.
 - d. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by the Owner and separate Contractors that will become necessary to accommodate the proposed substitution.
 - e. A statement indicating the substitution's effect on the Contractor's construction schedule compared to the schedule without approval of the substitution. Indicate the effect of the proposed substitution on overall Contract Time.
 - f. Cost information, including a proposal of the net change, if any in the Contract Sum.
 - g. Certification by the Contractor that the Substitution proposed is equal-to or better in every significant respect to that required by the Contract Documents, and that it will perform adequately in the application indicated. Include the contractor's waiver of rights to additional payment or time that may subsequently become necessary because of the failure of the substitution to perform adequately.
 - 3. Engineer's Action: Within two weeks of receipt of the request for substitution, the Engineer will request additional information or documentation necessary for evaluation of the request if needed. Within

two (2) weeks of receipt of the request, or one week of receipt of the additional information or documentation, whichever is later, the Engineer will notify the Contractor of acceptance or rejection of the proposed substitution. If a decision on use of a proposed substitute cannot be made or obtained within the time allocated, use the project specified by name. Decision on the use of a product substitution or its rejection by the Engineer is considered final. Acceptance will be in the form of a Change Order.

2. PART 2 – PRODUCTS

- A. Conditions: The Contractor's substitution request will be received and considered by the Engineer when one or more of the following conditions are satisfied, as determined by the Engineer; otherwise request will be returned without action except to record noncompliance with these requirements.
 - 1. Extensive revisions to Contract Documents are not required.
 - 2. Proposed changes are in keeping with the general intent of Contract Documents.
 - 3. The request is timely, fully documented and properly submitted.
 - 4. The specified product or method of construction cannot be provided within the Contract Time. The request will not be considered if the product or method cannot be provided as a result of failure to pursue the work promptly or coordinate activities properly.
 - 5. The specified product or method of construction cannot receive necessary approval by a governing authority, and the requested substitution can be approved.
 - 6. A substantial advantage is offered to the Owner, in terms of cost, time, energy conservation or other considerations of merit, after deducting offsetting responsibilities the Owner may be required to bear. Additional responsibilities for the Owner may include additional compensation to the Engineer for redesign and evaluation services, increased cost of other construction by the Owner or separate Contractors, and similar consideration.
 - 7. The specified product or method of construction cannot be provided in a manner that is compatible with other materials, and where the Contractor certifies that the substitution will overcome the incompatibility.
 - 8. The specified product or method of construction cannot be coordinated with other materials, and where the Contractor certifies that the proposed substitution can be coordinated.

- 9. The specified product or method of construction cannot provide a warranty required by the Contract Documents and where the Contractor certifies that the proposed substitution provide the required warranty.
- B. The Contractor's submittal and Project Manager's acceptance of Shop Drawings, Product Data or Samples that relate to construction activities not complying with the Contract Documents does not constitute an acceptable or valid request for substitution, nor does it constitute approval.
- C. Substitution request constitutes a representation that the Contractor:
 - Has investigated proposed product and determined that it meets or exceeds, in all respects, specified product.
 - 2. Will provide the same warranty for substitution as for specified product.
 - 3. Will coordinate installation and make other changes which may be required for work to be complete in all respects.
 - 4. Waives claims for additional costs which may subsequently become apparent. All costs associated with the substitution will be paid by the Contractor regardless of approvals given, and regardless of subsequent difficulties experienced as a result of substitutions.

3. PART 3 - EXECUTION

Not Used

SECTION 01700 - CONTRACT CLOSEOUT

- 1. PART 1 GENERAL
 - 1.1 SECTION INCLUDES
 - A. Closeout procedures.
 - B. Final cleaning.
 - C. Adjusting.
 - D. Project record documents.
 - E. Operation and maintenance data.
 - F. Warranties.
 - G. Spare parts and maintenance materials.

1.2 RELATED SECTIONS

- A. Section 01500 Construction Facilities and Temporary Controls: Progress cleaning.
- 1.3 CLOSEOUT PROCEDURES
 - A. Submit written certification that Contract Documents have been reviewed, Work has been inspected, and that Work is complete in accordance with Contract Documents and ready for Engineer's review.
 - B. Provide submittals to Engineer that are required by governing or other authorities.
 - C. Submit final Application for Payment identifying total adjusted Contract Sum, previous payments, and sum remaining due.
 - D. Owner will occupy all of the building as specified in Section 01010.
- 1.4 FINAL CLEANING
 - A. Execute final cleaning prior to final project assessment.
 - B. Clean interior and exterior surfaces and finishes soiled by construction work. Replace any materials or finishes unable to be cleaned to its original condition.
 - C. Clean equipment and fixtures to a sanitary condition with cleaning materials appropriate to the surface and material being cleaned.
 - D. Clean debris from roofs, gutters, downspouts, and drainage systems.
- E. Clean site; sweep paved areas, rake clean landscaped surfaces.
- F. Remove waste and surplus materials, rubbish, and construction facilities from the site.

1.5 FINAL CONSTRUCTION CLEANING

- A. All Contractors must have completed a concentrated course of study in the product knowledge and demonstration techniques and be certified to that effect by S.C. Johnson Professional. Any personnel working for or with the Contractor must be trained to the specifications of S.C. Johnson Professional as well.
- B. The stripping and recoating service will be performed after hours.
- C. Remove all furniture and equipment from classrooms or other rooms.
- D. Sweep corners and tight areas with broom and then dust mop the entire floor and remove all foreign objects. (Stickers, gum, etc.)
- E. Post "WET FLOOR" signs to advise building occupants of slippery conditions. Mix "Pro Strip" stripper according to label directions. One (1) part "Pro Strip" to four (4) parts cool water.
- F. Apply stripping solution liberally to floor allowing solution to soak for ten to fifteen minutes. Agitate with mop to loosen old floor finish.
- G. Scrub floor with black pads or dura-grit brushes using autoscrubber or similar machine making overlapping passes so as not to miss any areas. Scrub edges and corners or any areas that are not accessible to machine with a doodlebug or hand scraper.
- H. Pick up all of the solution with an autoscrubber or wet/dry vacuum.
- I. Check floor for any wax that was not removed. If necessary, repeat steps D, E, and F again.
- J. Rinse floor two (2) times with clean mop and clear water making sure that there are no "track marks" left by autoscrubber or wet/dry vacuum. Clean baseboards should any chemical splash onto them. Allow floor to dry thoroughly.
- K. Using a clean rayon mop, apply four (4) coats of "Premia" floor finish allowing a minimum of one (1) hour drying time between coats. Do not apply more than four (4) coats of floor finish in a 24-hour period.
- L. As a total of six (6) coats of floor finish are required, the additional two (2) coats may be applied the next night/day after lightly scrubbing and rinsing the floor.

- M. Upon completion of work, all furniture and equipment must be returned to its original position.
- N. Do not burnish for twelve (12) hours.

1.6 ADJUSTING

A. Adjust operating Products and equipment to ensure smooth and unhindered operation.

1.7 PROJECT RECORD DOCUMENTS

- A. Maintain on site, one set of the following record documents; record actual revisions to the Work:
 - 1. Drawings.
 - 2. Specifications.
 - 3. Addenda.
 - 4. Change Orders and other modifications to the Contract.
 - 5. Reviewed Shop Drawings, Product Data, and Samples.
 - 6. Manufacturer's instruction for assembly, installation, and adjusting.
- B. Ensure entries are complete and accurate, enabling future reference by Owner.
- C. Store record documents separate from documents used for construction.
- D. Record information concurrent with construction progress.
- E. Specifications: Legibly mark and record at each Product section description of actual Products installed, including the following:
 - 1. Manufacturer's name and product model and number.
 - 2. Product substitutions or alternates utilized.
 - 3. Changes made by Addenda and modifications.
- F. Record Documents and Shop Drawings: Legibly mark each item to record actual construction including:
 - 1. Measured depths of foundations in relation to finish main floor datum.
 - 2. Measured horizontal and vertical locations of underground utilities and appurtenances, referenced to permanent surface improvements.
 - 3. Measured locations of internal utilities and appurtenances concealed in construction, referenced to visible and accessible features of the Work.
 - 4. Field changes of dimension and detail.
 - 5. Details not on original Contract drawings.
- G. Remove Engineer seal from all documents.
- H. Submit documents to Engineer with claim for final Application for Payment.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data bound in 8-1/2 x 11 inch (216 x 279 mm) text pages, three D side ring binders with durable plastic covers.
- B. Prepare binder cover with printed title "OPERATION AND MAINTENANCE INSTRUCTIONS", title of project and subject matter of binder when multiple binders are required.
- C. Internally subdivide the binder contents with permanent page dividers, logically organized as described below; with tab titling clearly printed under reinforced laminated plastic tabs.
- D. Contents: Prepare a Table of Contents for each volume, with each Product or system description identified, typed on 30 pound white paper, in three parts as follows:
 - 1. Part 1: Directory, listing names, addresses, and telephone numbers of Engineer, Contractor, Subcontractors, and major equipment suppliers.
 - 2. Part 2: Operation and maintenance instructions, arranged by system and subdivided by specification section. For each category, identify names, addresses, and telephone numbers of Subcontractors and suppliers. Identify the following:
 - a. Significant design criteria.
 - b. List of equipment.
 - c. Parts list for each component.
 - d. Operating instructions.
 - e. Maintenance instructions for equipment and systems.
 - f. Maintenance instructions for *[special]* finishes, including recommended cleaning methods and materials, and special precautions identifying detrimental agents.
 - 3. Part 3: Project documents and certificates, including the following:
 - a. Shop drawings and product data.
 - b. Certificates.
 - c. Photocopies of warranties and bonds.
- E. Submit two sets of volumes, within 10 days after final inspection.

1.9 WARRANTIES

- A. Provide duplicate notarized copies.
- B. Execute and assemble transferable warranty documents from Subcontractors, suppliers, and manufacturers.
- C. Submit prior to final Application for Payment.
- D. For items of Work delayed beyond date of Substantial Completion, provide updated submittal within 10 days after acceptance, listing date of acceptance as start of warranty period.

1.10 SPARE PARTS AND MAINTENANCE MATERIALS

- A. Provide products, spare parts, maintenance and extra materials in quantities specified in individual specification sections.
- B. Deliver to Project site and place in location as directed; obtain receipt prior to final payment.
- 2. PART 2 PRODUCTS

Not Used

3. PART 3 - EXECUTION

Not Used

END OF SECTION 01700

SECTION 15010 – BASIC MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. RELATED DOCUMENTS:
 - 1. The Work of this Division affects and is affected by the Work of other Divisions. Review each portion of the Contract Documents including General and Supplementary Conditions, Addenda, Drawings and all Divisions Sections to determine the extent of the Work of this Division and the work of the various Division 15 Sections.
- B. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Sleeves.
 - 5. Escutcheons.
 - 6. Grout.
 - 7. HVAC demolition.
 - 8. Equipment installation requirements common to equipment sections.
 - 9. Supports and anchorages.
 - 10. Emergency and service access

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

- 1.3 SUBMITTALS
 - A. Welding certificates.
 - B. Mechanical sleeve seals.
 - C. Firestop Materials.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300psig (1035- or 2070-kPa) minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc: Innerlynx. (www.apsonline.com/innerlynx.html)
 - b. Calpico, Inc.(<u>http://www.drshannonco.com/calpico.htm</u>
 - c. Metraflex Co: Metraseal.
 - (http://www.metraflex.com/pipingproducts/metraseal/index.html)
 - d. Pipeline Seal and Insulator, Inc: Linkseak. (<u>http://www.linkseal.com</u>)
- B. Sealing Elements: Interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe. Select sealing element material to suit project conditions recommended by manufacturer's instructions.
- C. Pressure Plates: Plastic or Stainless steel. Include two for each sealing element.

- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.
- E. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening. Provide polished chrome plated escutcheons in exposed exterior areas and exposed interior finished areas. Rough brass finish is acceptable in mechanical rooms and in concealed areas.
- B. One-Piece, Cast-Brass or Deep-Pattern Type: With set screw. For ODs 4" and smaller.
- C. Split-Casting, Cast-Brass Type: With concealed hinge and set screw. For ODs larger than 4".

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

2.8 EMERGENCY AND SERVICE ACCESS

- A. General: Where floors, walls, ceilings or ductwork must be penetrated for emergency or service access to mechanical work, provide types of access doors indicated, including floor doors if any. Furnish sizes indicated or, where not otherwise indicated, furnish adequate size for intended and necessary access. Furnish manufacturer's complete units, of type recommended for application in indicated substrate construction, in each case, complete with anchorages and hardware. Access doors required in walls, ceilings, or other areas of the structure are furnished as a part of this Division. Installation shall be by other Divisions.
- B. Duct Access Doors: Access doors shall be complete with steel butt hinges window type sashlock and sheet metal reinforcing plate. Access door shall be insulated and have sheet metal on both sides.
- C. Wall/Ceiling Access Door Construction: Fabricate wall/ceiling door unit of stainless steel Type 304 construction with welds ground smooth; 16-gauge frames and 14-gauge flush panel doors; 175° swing with concealed spring hinges; flush screwdriver-operated cam locks; factory applied rust-inhibitive prime-coat paint finish.
- D. Removable Access Plates: Where valves, control devices, and similar elements of mechanical work are located within or behind wall, ceiling or floor construction or finishes, or below grade, and are not (cannot be) provided with integral removable access plates as specified in other sections, provide manufacturer's standard frameless round formed stainless steel plate cover, with single exposed flush screen anchor, with bright finish.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

- A. Refer to other Divisions for Cutting and Patching, Selective Structure Demolition , and for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.

- 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
- 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and other Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Verify final equipment locations for roughing-in.

O. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and other Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.

- 1. Plain-End Pipe and Fittings: Use butt fusion.
- 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- K. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.6 CLEANING

- A. Ductwork and Equipment: Every possible precaution shall be taken to keep the interior of the duct system and equipment throughout free from dirt and rubbish and other foreign matter. All fan motors, switches, etc., shall also be protected from dirt, rubbish and other foreign matter during building construction. Thoroughly clean all components of the duct work and remove all dirt, scale, oil and other foreign substances which may have accumulated during the installation process. All ductwork openings shall be temporarily capped or sealed with Visqueen during storage and immediately after installation and shall be covered with Visqueen while it is stored on the jobsite.
- B. Water Piping Systems: After the piping systems have been pressure tested and proved tight, thoroughly flush out and clean the various piping systems, using boiler cleaning

compound so as to remove all dirt, scale, oil, grease and other foreign substances which may have accumulated during the installation process.

- C. Equipment: All air handling units, power ventilators, pumps, boilers, and any and all other mechanical equipment provided shall be thoroughly cleaned of all dirt, oil concrete, etc. Any dents, scratches or other visible blemishes shall be corrected and the appearance of the equipment made "like new" and to the satisfaction of the Architect/Engineer.
- D. Upon completion, and before final acceptance of the work, all debris, rubbish, leftover materials, tools and equipment shall be removed from the site.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to other Divisions for Metal Fabrications for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Where allowed by code, cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment. Wood materials shall not be used in return air plenums or fire penetrations.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.9 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 15010

SECTION 15011 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.

1.2 SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Aluminum, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 - 3. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).

- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- 6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11inch (A4) bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch (3.2 mm) thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
- F. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel rivets or self-tapping screws.
- H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- I. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches (38 mm) high.

2.4 DUCT SYSTEM LABELS

- A. Duct System: Provide stencil-painted indentification on ductwork, with lettering size sufficient for reading but not less that ³/₄-inch and including arrows to show direction of flow. Indicate flow direction at fan housings, remote coils, fire and smoke dampers, control dampers, and VAV boxes. On access doors, indicate service and equipment being accessed. Where ducts are concealed behind access doors or removable ceilings, identification may be by plasticized tags in lieu of stencil-painted markers.
- B. Manual Volume Dampers: Spray paint a continuous minimum 6" wide flourescent orange band around entire perimeter of the outside surface of the duct or when externally insulated, on the surface of the duct insulation, at all locations where manual volume air dampes are installed.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten plastic labels on each major item of mechanical equipment located indoors. Install or permanently fasten aluminum labels on each major item of mechanical equipment located outdoors. Indicate TAG (AHU-1) as shown on schedules.

- B. Install or permanently fasten plastic labels on each starter or disconnect installed by this contractor. Indicate Tag, V/Ph, and Electrical Panel number.
- C. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 ft. along each run. Reduce intervals to 25 feet (7.6 m) in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping:
 - a. Background Color: Blue for CHWS and Light Blue for CHWR.
 - b. Letter Color: Black.

3.4 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue for cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 4. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet (15 m) in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 15011

SECTION 15100 - VALVES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following general-duty valves:
 - 1. Copper-alloy ball valves.
 - 2. Ferrous-alloy butterfly valves.
 - 3. Bronze check valves.
 - 4. Gray-iron swing check valves.
 - 5. Spring-loaded, lift-disc check valves.
 - 6. Bronze gate valves.
 - 7. Cast-iron gate valves.
 - 8. Bronze globe valves.
 - 9. Cast-iron globe valves.

1.2 SUBMITTALS

- A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; furnished specialties; and accessories.
- B. Provide a valve schedule with unique tags for each valve. Label shall include equipment it serves (example: V-CH-1-1, V-AHU-1-1, etc.)

1.3 QUALITY ASSURANCE

- A. ASME Compliance: ASME B31.9 for building services piping valves.
- B. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 VALVES, GENERAL

- A. Refer to Part 3 "Valve Applications" Article for applications of valves.
- B. Bronze Valves, NPS 2 (DN 50) and Smaller: Threaded ends, unless otherwise indicated.
- C. Ferrous Valves, NPS 2-1/2 (DN 65) and Larger: Flanged ends, unless otherwise indicated.
- D. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream pipe, unless otherwise indicated.
- F. Valve Actuators:
 - 1. Handwheel: For valves other than quarter-turn types.
 - 2. Lever Handle: For quarter-turn valves NPS 6 (DN 150) and smaller, except plug valves.
- G. Extended Valve Stems: On insulated valves.
- H. Valve Flanges: ASME B16.1 for cast-iron valves, ASME B16.5 for steel valves, and ASME B16.24 for bronze valves.
- I. Solder Joint: With sockets according to ASME B16.18.
 - 1. Caution: Use solder with melting point below 840 deg F (454 deg C) for angle, check, gate, and globe valves; below 421 deg F (216 deg C) for ball valves.
- J. Threaded: With threads according to ASME B1.20.1.
- K. Valve Bypass and Drain Connections: MSS SP-45.

2.3 COPPER-ALLOY BALL VALVES

- A. Manufacturers:
 - a. Crane Co.; Crane Valve Group; Stockham Div.
 - b. Grinnell Corporation.
 - c. Jamesbury, Inc.
 - d. NIBCO INC.
 - e. Watts Industries, Inc.; Water Products Div.
- B. Copper-Alloy Ball Valves, General: MSS SP-110.
- C. Two-Piece, Copper-Alloy Ball Valves: Bronze body with full-port, chrome-plated bronze ball; TFE seats; and 600-psig (4140-kPa) minimum CWP rating and blowout-proof stem.

D. Safety-Exhaust, Copper-Alloy Ball Valves: Two-piece bronze body with exhaust vent opening, chrome-plated ball with vent, blowout-proof stem, locking handle, and working pressure rating of 600-psig (4140-kPa) CWP.

2.4 FERROUS-ALLOY BUTTERFLY VALVES

- A. Manufacturers:
 - a. Bray International, Inc.
 - b. Crane Co.; Crane Valve Group; Stockham Div.
 - c. General Signal; DeZurik Unit.
 - d. Grinnell Corporation.
 - e. Hammond Valve.
 - f. Metraflex Co.
 - g. Mueller Steam Specialty.
 - h. NIBCO INC.
 - i. Tyco International, Ltd.; Tyco Valves & Controls.
 - j. Watts Industries, Inc.; Water Products Div.
- B. Ferrous-Alloy Butterfly Valves, General: MSS SP-67, Type I, for bubble tight shutoff, with disc and lining suitable for potable water, unless otherwise indicated. Valves used for balancing shall have infinite position lever or gear operators with adjustable opening position memory stop.
- C. Flangeless, 200-psig (1380-kPa) CWP Rating, Ferrous-Alloy Butterfly Valves: Wafer type with one- or two-piece stainless steel stem.
- D. Single-Flange, 200-psig (1380-kPa) CWP Rating, Ferrous-Alloy Butterfly Valves: Wafer-lug type with one- or two-piece stem.

2.5 BRONZE CHECK VALVES

- A. Manufacturers:
 - 1. Type 2, Bronze, Horizontal Lift Check Valves with Nonmetallic Disc:
 - a. Cincinnati Valve Co.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Div.
 - e. Walworth Co.
 - 2. Type 2, Bronze, Vertical Lift Check Valves with Nonmetallic Disc:
 - a. Grinnell Corporation.
 - b. Kitz Corporation of America.
 - c. Milwaukee Valve Company.
 - 3. Type 4, Bronze, Swing Check Valves with Nonmetallic Disc:

- a. Cincinnati Valve Co.
- b. Crane Co.; Crane Valve Group; Crane Valves.
- c. Crane Co.; Crane Valve Group; Jenkins Valves.
- d. Crane Co.; Crane Valve Group; Stockham Div.
- e. Grinnell Corporation.
- f. Hammond Valve.
- g. McWane, Inc.; Kennedy Valve Div.
- h. Milwaukee Valve Company.
- i. NIBCO INC.
- j. Red-White Valve Corp.
- k. Walworth Co.
- I. Watts Industries, Inc.; Water Products Div.
- B. Type 4, Class 125, Bronze, Swing Check Valves: Bronze body with nonmetallic disc and bronze seat.
- C. Type 4, Class 200, Bronze, Swing Check Valves: Bronze body with nonmetallic disc and bronze seat. For high pressure steam only.

2.6 BRONZE GATE VALVES

- A. Manufacturers:
 - 1. Type 3, Bronze, Rising-Stem, Split-Wedge Gate Valves:
 - a. Crane Co.; Crane Valve Group; Jenkins Valves.
 - b. Grinnell Corporation.
 - c. NIBCO INC.
- B. Bronze Gate Valves, General: MSS SP-80, with ferrous-alloy handwheel.
- C. Type 3, Class 125, Bronze Gate Valves: Bronze body with rising stem and bronze split wedge and union-ring bonnet, OS & Y. Provide solid wedge for valves 2 ½" and larger.
- D. Type 3, Class 200, Bronze Gate Valves: Bronze body with rising stem and bronze split wedge and union-ring bonnet. For high pressure steam systems.

2.7 BRONZE GLOBE VALVES

- A. Manufacturers:
 - 1. Type 2, Bronze Globe Valves with Nonmetallic Disc:
 - a. Crane Co.; Crane Valve Group; Stockham Div.
 - b. Grinnell Corporation.
 - c. Hammond Valve.
 - d. NIBCO INC.
- B. Bronze Globe Valves, General: MSS SP-80, with ferrous-alloy handwheel.

C. Type 2, Class 125, Bronze Globe Valves: Bronze body with nonmetallic PTFE or TFE disc and union-ring bonnet. Provide OS & Y and renewable seat and disc for valves 2 ½" and larger.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Refer to piping Sections for specific valve applications. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly valves.
 - 2. Throttling Service: Angle, ball, butterfly, or globe valves.
 - 3. Pump Discharge: Spring-loaded, lift-disc check valves. Plug valves for balancing.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.
- C. Chilled-Water: Use the following types of valves:
 - 1. Ball Valves, NPS 2 (DN 50) and Smaller: One-piece, 600-psig (4140-kPa) CWP rating, copper alloy.
 - 2. Ball Valves, NPS 2-1/2 (DN 65) and Larger: Class 150, ferrous alloy.
 - 3. Butterfly Valves, NPS 2-1/2 (DN 65) and Larger: Single-flange, 200-psig (1380kPa) CWP rating, ferrous alloy, with EPDM liner.
 - 4. Lift Check Valves, NPS 2 (DN 50) and Smaller: Type 2, Class 150, horizontal or vertical, bronze.
 - 5. Swing Check Valves, NPS 2 (DN 50) and Smaller: Type 4, Class 150, bronze.
 - 6. Swing Check Valves, NPS 2-1/2 (DN 65) and Larger: Type II, Class 125, gray iron.
 - 7. Spring-Loaded, Lift-Disc Check Valves, NPS 2 (DN 50) and Smaller: Type IV, Class 150.
 - 8. Spring-Loaded, Lift-Disc Check Valves, NPS 2-1/2 (DN 65) and Larger: Type I or II, Class 125, cast iron.
 - 9. Gate Valves, NPS 2 (DN 50) and Smaller: Type 2, Class 125, bronze.
 - 10. Gate Valves, NPS 2-1/2 (DN 65) and Larger: Type I, Class 125, OS&Y, bronzemounted cast iron.
 - 11. Globe Valves, NPS 2 (DN 50) and Smaller: Type 2, Class 150, bronze.
 - 12. Globe Valves, NPS 2-1/2 (DN 65) and Larger: Type I, Class 125, bronzemounted cast iron.
- D. Select valves, except wafer and flangeless types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Solder-joint or threaded ends, except provide valves with threaded ends for condenser water, heating hot water, steam, and steam condensate services.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends.
 - 3. For Copper Tubing, NPS 5 (DN 125) and Larger: Flanged ends.

Y-11-814-EZ OC COURTHOUSE SWING CHILLER ADDITION 17 AUGUST 12

- 4. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
- 5. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends.
- 6. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

3.2 VALVE INSTALLATION

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- C. Locate valves for easy access and provide separate support where necessary.
- D. Install valves in horizontal piping with stem at or above center of pipe.
- E. Install valves in position to allow full stem movement. Insulated valves shall have extended stem.
- F. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Dual-Plate Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 JOINT CONSTRUCTION

A. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.4 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 15100

SECTION 15140 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Equipment supports.

1.2 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. Bergen-Power Pipe Supports.
 - 3. B-Line Systems, Inc.; a division of Cooper Industries.
 - 4. Carpenter & Paterson, Inc.
 - 5. Empire Industries, Inc.
 - 6. ERICO/Michigan Hanger Co.
 - 7. Globe Pipe Hanger Products, Inc.
 - 8. Grinnell Corp.
 - 9. GS Metals Corp.
 - 10. National Pipe Hanger Corporation.
 - 11. PHD Manufacturing, Inc.
 - 12. PHS Industries, Inc.
 - 13. Piping Technology & Products, Inc.
 - 14. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. GS Metals Corp.
 - 4. Power-Strut Div.; Tyco International, Ltd.
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc.
 - 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- (690-kPa-) minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 EQUIPMENT SUPPORTS

- A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.
- 2.8 MISCELLANEOUS MATERIALS
 - A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
 - Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.
 - 8. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN 50 to DN 1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).

- Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb (340 kg).
 - b. Medium (MSS Type 32): 1500 lb (680 kg).
 - c. Heavy (MSS Type 33): 3000 lb (1360 kg).
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).

- 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
- 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.

- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 (DN 65) and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2 (DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 - b. NPS 4 (DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 - c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
 - d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.
 - e. NPS 16 to NPS 24 (DN 400 to DN 600): 24 inches (610 mm) long and 0.105 inch (2.67 mm) thick.
 - 5. Pipes NPS 8 (DN 200) and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 15140

SECTION 15240 – MECHANICAL SOUND AND VIBRATION CONTROL

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Freestanding and restrained spring isolators.
 - 5. Housed spring mounts.
 - 6. Elastomeric hangers.
 - 7. Spring hangers.
 - 8. Spring hangers with vertical-limit stops.
 - 9. Pipe riser resilient supports.
 - 10. Resilient pipe guides.
 - 11. Restraining braces and cables.

1.2 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: 120 MPH. (see FBC)
 - 2. Building Classification Category: See Architectural plans.
 - 3. Minimum 10 lb/sq. ft. (48.8 kg/sq. m) multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

1.3 SUBMITTALS

- A. Product Data: For each product indicated.
- B. Delegated-Design Submittal: For vibration isolation and details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- C. Welding certificates.
- D. Qualification Data: For professional engineer.
- E. Field quality-control test reports.

1.4 ACCEPTABLE NOISE LEVELS

A. Occupied Rooms - Equipment shall be provided so that any occupied space does not exceed a RC-35 noise level. This level will enable normal office conversation to be intelligible. Octave bands are summarized below. These values are maximums and should not be exceeded.

re. 0.002 Microbar dB	60	55	50	45	40	35	30	25
Octave Band Center Hz	31.5	63	125	250	500	1000	2000	4000

B. Mechanical Rooms - Equipment shall be provided so that the space does not exceed an NC 70 noise level. This level will enable workers to be present on an 8-hour shift. Octave bands are summarized below. These values are maximums and should not be exceeded.

re. 0.002 Microbar dB	Х	93	79	75	72	71	69	68
Octave Band Center Hz	31.5	63	125	250	500	1000	2000	4000

C. In the event that noise levels are surpassed in either the Occupied Rooms or Mechanical Rooms, noise suppression techniques shall be provided by the Contractor who installs the offending system. The Contractor shall insure that his system is provided with sound attenuation devices to assure compliance with the above maximum acceptable noise limits.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS (NOT ALL PRODUCTS LISTED ARE USED ON THIS PROJECT)

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ace Mountings Co., Inc.
 - 2. Amber/Booth Company, Inc.
 - 3. California Dynamics Corporation.
 - 4. Isolation Technology, Inc.
 - 5. Kinetics Noise Control.
 - 6. Mason Industries.

- 7. Vibration Eliminator Co., Inc.
- 8. Vibration Isolation.
- 9. Vibration Mountings & Controls, Inc.
- C. Pads: Arranged in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel baseplates, and factory cut to sizes that match requirements of supported equipment.
 - 1. Resilient Material: Oil- and water-resistant rubber.
- D. Mounts Type A: Double-deflection type, with molded, oil-resistant rubber, hermetically sealed compressed fiberglass, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - 2. Neoprene: Shock-absorbing materials compounded according to the standard for bridge-bearing neoprene as defined by AASHTO.
- E. Spring Isolators Type B: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 5. Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- F. Restrained Spring Isolators Type C: Freestanding, steel, open-spring isolators with limit-stop restraint.
 - 1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to weight being removed; factory-drilled baseplate bonded to 1/4-inch- (6-mm-) thick, neoprene or rubber isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
 - 2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- G. Elastomeric Hangers Type: Single or double-deflection type, fitted with molded, oilresistant elastomeric isolator elements bonded to steel housings with threaded connections for hanger rods. Color-code or otherwise identify to indicate capacity range.
- H. Spring Hangers Type D: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.
- I. Type E: Vibration Hanger with precompressed spring and 0.3 inch deflection neoprene or fiberglass element in a series with the following features:
 - 1. Encased in welded hanger bracket.
 - 2. Hanger rod isolation bushing.
 - 3. Minimum of 50 percent additional travel between design operating height and solid height.
 - 4. 30 degree angular rod misalignment capability.
 - 5. Deflection indicated by scale on interior side of hanger box.
 - 6. Acceptable Products
 - a. Kinetics PCSRH or PCSFH
 - b. Korfund PCVX
 - c. Mason Industries PC30N
 - d. Vibration Eliminator PCSR
- J. Type F: Vibration hanger with spring and 0.3 inch deflection neoprene or fiberglass element in series with the following features:
 - 1. Spring rod and housing both have eyebolts for flat steel strap hangers.
 - 2. Encased in welded hanger brackets.
 - 3. Minimum 50 percent additional travel between design operating height and solid height.
 - 4. 30 degree angular rod misalignment capability.
 - 5. Acceptable Products
 - a. Kinetics SRH with Eye bolts
 - b. Korfund WVX
 - c. Mason Industries W30
 - d. Vibration Eliminator SNRC with Eye Bolts
- K. Type G: Rectangular structural steel beam bases with the following features:
 - 1. Designed and supplied by manufacturer for the support of integral equipment.

- 2. Height saving isolator brackets.
- 3. Member height a minimum of:
 - a. 10 percent of the longest span.
 - b. 6 inches.
 - c. As shown.
- 4. Member height a maximum of 14 inches unless specifically recommended by the isolation manufacturer.
- 5. Acceptable Products
 - a. Korfund WFK
 - b. Mason Industries WF
 - c. Vibration Mountings WFB
 - d. Kinetics SFB
 - e. Vibration Eliminator HB
- L. Type H: Structural steel integral rail bases, with the following features:
 - 1. Designed and supplied by manufacturer for support of non-integral equipment or equipment requiring supplementary support.
 - 2. Height saving isolator brackets.
 - 3. Rail thickness a minimum of:
 - a. 10 percent of the longest base dimension.
 - b. As shown.
 - 4. Rails sufficiently rigid to prevent strains in the equipment.
 - 5. Acceptable Products
 - a. Kinetics SBB
 - b. Korfund ISK
 - c. Mason Industries ICS
 - d. Vibration Eliminator HB
- M. Type K: Flexible spherical molded neoprene connectors with the following features:
 - 1. Multiple plies of nylon tire cord fabric and neoprene molded and cured in rubber presses.
 - 2. No steel wire or rings used as pressure reinforcement.
 - 3. Straight connectors shall have two spheres.
 - 4. Pre-extended to prevent additional elongation under pressure.
 - 5. Threaded connections for 2 inch diameter and less.
 - 6. Flanged connections for 2-1/2 inch diameter and greater.
 - 7. For operating pressures and temperature limits of:
 - a. 150 psi @ 220 degrees F.
 - b. 225 psi @ 170 degrees F.
 - 8. Control cables and anchor plates where required.
 - 9. Acceptable Products
 - a. Mason Industries MF
 - b. Flex-Hose NN
 - c. Minnesota Flexible Corp. MF
- N. Type L: Flexible stainless steel hoses with the following features:
 - 1. Stainless steel braid.
 - 2. Carbon steel fittings.
 - 3. Annular corrugated seamless hose body.
 - 4. For operating pressures greater than 150 psi and temperatures greater than 220 degrees F. (Maximum pressures and temperatures depend on pipe size).

- 5. Acceptable Products:
 - a. Flex-Hose SF-15 or SMN
 - b. Mason Industries BSS
 - c. Vibrations MountingsMFP
 - d. Approved Equal
- O. Type N: Fiberglass isolation mounts with the following features:
 - 1. Fiberglass isolation pad.
 - 2. Steel load transfer plate.
 - 3. Formed steel bolt down bracket.
 - 4. 2 inches static deflection.
 - 5. Acceptable Products:
 - a. Kinetics AC
 - b. Mason
 - c. Korfund
- P. Type P: Precompressed 5/16" thick molded neoprene isolation pads with the following features:
 - 1. Neoprene jacketed and stabilized during manufacture.

Ν

- 2. Sized for 40 to 60 pounds per square inch loading.
- 3. Static deflection as required.
- 4. Steel plates bonded to top of pads where required to spread the equipment load.
- 5. Acceptable Products
 - a. Korfund Korpad
 - b. Mason Industries W
 - c. Vibration Mountings Shear-Flex
 - d. Kinetics
 - e. Vibration Eliminator 200 N
- Q. Type X: Horizontal thrust restraints for ductwork consisting of a spring in series with a neoprene pad with the following features:
 - 1. Preset for thrust in factory and field adjustable to allow for a maximum of 1/4 inch movement.
 - 2. Assembly furnished with threaded rod and brackets for attachment to both equipment and ductwork or equipment and structure.
 - 3. Deflection equal to vibration isolation of equipment.
 - 4. Acceptable Products

b.

- a. Korfund VB with Restraint Hardware
 - Mason Industries WB
- c. Kinetics HSR
- d. Vibration Eliminator Horizontal Restraints
- R. Type Z: Same as Type P except double thickness (5/8" minimum)
 - 1. Acceptable Products
 - a. Mason Two (2) W
 - b. Kinetics NGD
 - c. Korfund Two (2) Korpads
 - d. Vibration Eliminator Two (2) 200 N
- S. Pipe Riser Resilient Support: All-directional, acoustical pipe anchor consisting of 2 steel tubes separated by a minimum of 1/2-inch- (13-mm-) thick neoprene. Include

steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions. Design support for a maximum load on the isolation material of 500 psig (3.45 MPa) and for equal resistance in all directions.

T. Resilient Pipe Guides: Telescopic arrangement of 2 steel tubes or post and sleeve arrangement separated by a minimum of 1/2-inch- (13-mm-) thick neoprene. Where clearances are not readily visible, a factory-set guide height with a shear pin to allow vertical motion due to pipe expansion and contraction shall be fitted. Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 VIBRATION-CONTROL INSTALLATION

- A. Equipment Restraints:
 - 1. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch (3.2 mm).
- B. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet (12 m) o.c., and longitudinal supports a maximum of 80 feet (24 m) o.c.
 - 3. Brace a change of direction longer than 12 feet (3.7 m).
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- F. Drilled-in Anchors:

- Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.5 HVAC VIBRATION-CONTROL SCHEDULE

- A. DUCT CONNECTIONS TO EQUIPMENT
 - 1. Where ducts will be connected to air handling units or exhaust fans, flexible duct connections of glass fabric double coated with neoprene rubber shall be used. For exterior applications use a flexible duct connection of glass fabric double coated with Hypalon.
 - Provide Type X horizontal thrust restraints for use with flexible duct connections on air handling or fan units developing 3 inches or more external static pressure.
 a. Mount at centerline of thrust and on two opposite sides of duct.
- B. DUCTWORK VIBRATION ISOLATION
 - 1. Provide hanger vibration isolation units placed in the supports for:
 - a. High-pressure ductwork up to 30 feet each side of high pressure fans. (High pressure is defined according to SMACNA Standards.)
 - 2. Ductwork Isolation Schedule

<u>Ductwork</u>	Type	Min. Deflection
Ceiling Supported	F	0.75 Inch

- C. PIPING VIBRATION ISOLATION
 - 1. Provide Type K or L flexible hose connections at the piping connections of each:
 - a. Base Mounted Pump
 - b. Chiller
 - c. Hose Installation shall be per the manufacturer's written recommendations and as described below.

(1) Type of hose shall be determined by temperature and pressure.

(2) Install hose on equipment side of shut-off valves.

(3) Install hose parallel to equipment shaft in a horizontal or vertical position.

(4) Piping shall be supported on each side of the flexible hose.

(5) No flexible elbows will be permitted.

(6) Hose installed outside shall be painted with two coats of U.V.

resistant paint, type as recommended by hose manufacture.

Provide hanger type vibration isolation units placed in the supporting rods for:
a. Pressurized and pumped lines within a distance of three supports

away from connected mechanical equipment for:

- (1) Low Pressure Steam
- (2) Heating Water
- (3) Chilled Water

(4) Compressed Air

3. Horizontal Piping Isolation Schedule

Pipe Diameter	Тур	<u>e</u>	Min. Deflection
Up to 3 inch	Е	_	0.75 inch
4 inch to 6 inch		Е	1.5 inch
8 inch and greater	Е		2.5 inch
Floor Supported Piping		С	0.75 inch

D. CHILLER ISOLATION -SCREW OR RECIRPROCATING

- 1. Provide Type A isolators in each corner of chiller base and at points indicated by manufacturer.
- E. POWER BASES
 - 1. Provide Type J base and Type C spring isolators with .75 in. deflection for all pumps over 5 horsepower.

END OF SECTION 15640

SECTION 15250 - MECHANICAL SYSTEM INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Insulation Materials:
 - a. Cellular glass.
 - b. Flexible elastomeric.
 - c. Mineral fiber.
 - d. Polyolefin.
 - e. Polystyrene.
 - 2. Fire-rated insulation systems.
 - 3. Insulating cements.
 - 4. Adhesives.
 - 5. Mastics.
 - 6. Sealants.
 - 7. Factory-applied jackets.
 - 8. Field-applied fabric-reinforcing mesh.
 - 9. Field-applied jackets.
 - 10. Tapes.
 - 11. Securements.
 - 12. Corner angles.
- B. Related Sections:
 - 1. See Division 15, Section "Hydronic Piping" for pre-insulated piping systems.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation (where specified)
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties, equipment connections, and access panels.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

- 8. Detail field application for each equipment type.
- C. Field quality-control reports.

1.3 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: Insulation and related materials shall have firetest-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.

PART 2 - PRODUCTS (NOT ALL PRODUCTS ARE USED ON THIS PROJECT)

2.1 INSULATION MATERIALS

- A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Cell-U-Foam Corporation; Ultra-CUF.
 - b. Pittsburgh Corning Corporation; Foamglas Super K.
 - c. Approved equal.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.

- 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
- 6. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
- 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. RBX Corporation; Insul-Sheet 1800 and Insul-Tube 180.
 - d. Rubatex
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; All-Service Duct Wrap.
- I. High-Temperature, Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type V, without factory-applied jacket.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Johns Manville; HTB 23 Spin-Glas.
 - b. Owens Corning; High Temperature Flexible Batt Insulations.
 - c. Certainteed "Universal Blanket"
- J. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. For equipment applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.

- e. Manson Insulation Inc.; AK Board.
- f. Owens Corning; Fiberglas 700 Series.
- K. High-Temperature, Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type III, without factory-applied jacket.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Fibrex Insulations Inc.; FBX.
 - b. Johns Manville; 1000 Series Spin-Glas.
 - c. Owens Corning; High Temperature Industrial Board Insulations.
 - d. Rock Wool Manufacturing Company; Delta Board.
 - e. Roxul Inc.; Roxul RW.
 - f. Thermafiber; Thermafiber Industrial Felt.
- L. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000 Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - 2. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 3. Type II, 1200 deg F (649 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- M. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Knauf Insulation; Permawick Pipe Insulation.
 - b. Owens Corning; VaporWick Pipe Insulation.
 - c. Approved equal.
- N. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to

ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.
- O. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Armacell LLC; Tubolit.
 - b. Nomaco Inc.; IMCOLOCK, IMCOSHEET, NOMALOCK, and NOMAPLY.
 - c. RBX Corporation; Therma-cell.
- P. Polystyrene: Rigid, extruded cellular polystyrene intended for use as thermal insulation. Comply with ASTM C 578, Type IV or Type XIII, except thermal conductivity (k-value) shall not exceed 0.26 Btu x in./h x sq. ft. x deg F (0.038 W/m x K) after 180 days of aging. Fabricate shapes according to ASTM C 450 and ASTM C 585.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); Styrofoam.
 - b. Knauf Insulation; Knauf Polystyrene.
 - c. Approved equal.

2.2 FIRE-RATED INSULATION SYSTEMS

- A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by a NRTL acceptable to authority having jurisdiction.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; FlameChek.
 - b. Johns Manville; Firetemp Wrap.
 - c. Nelson Firestop Products; Nelson FSB Flameshield Blanket.
 - d. Thermal Ceramics; FireMaster Duct Wrap.
 - e. 3M; Fire Barrier Wrap Products.
 - f. Unifrax Corporation; FyreWrap.
 - g. Vesuvius; PYROSCAT FP FASTR Duct Wrap.

2.3 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Insulco, Division of MFS, Inc.; SmoothKote.
 - b. P. K. Insulation Mfg. Co., Inc.; PK No. 127, and Quik-Cote.
 - c. Rock Wool Manufacturing Company; Delta One Shot.

2.4 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass, Phenolic, Polyisocyanurate, and Polystyrene Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F (minus 59 to plus 149 deg C).
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-96.
 - b. Foster Products Corporation, H. B. Fuller Company; 81-33.
 - c. Approved equal.
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA Inc.; Aeroseal.
 - b. Armacell LCC; 520 Adhesive.
 - c. Foster Products Corporation, H. B. Fuller Company; 85-75.
 - d. RBX Corporation; Rubatex Contact Adhesive.
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- E. Polystyrene Adhesive: Solvent- or water-based, synthetic resin adhesive with a service temperature range of minus 20 to plus 140 deg F (29 to plus 60 deg C).
 - 1. Products: Subject to compliance with requirements, provide the following:

- a. Childers Products, Division of ITW; CP-96.
- b. Foster Products Corporation, H. B. Fuller Company; 97-13.
- c. Approved equal.
- F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-82.
 - b. Foster Products Corporation, H. B. Fuller Company; 85-20.
 - c. ITW TACC, Division of Illinois Tool Works; S-90/80.
 - d. Marathon Industries, Inc.; 225.
 - e. Mon-Eco Industries, Inc.; 22-25.
- G. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); 739, Dow Silicone.
 - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - c. P.I.C. Plastics, Inc.; Welding Adhesive.
 - d. Red Devil, Inc.; Celulon Ultra Clear.
 - e. Speedline Corporation; Speedline Vinyl Adhesive.

2.5 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-35.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-90.
 - c. ITW TACC, Division of Illinois Tool Works; CB-50.
 - d. Marathon Industries, Inc.; 590.
 - e. Mon-Eco Industries, Inc.; 55-40.
 - f. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 - 4. Solids Content: ASTM D 1644, 59 percent by volume and 71 percent by weight.
 - 5. Color: White.

- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-10.
 - b. Foster Products Corporation, H. B. Fuller Company; 35-00.
 - c. ITW TACC, Division of Illinois Tool Works; CB-05/15.
 - d. Marathon Industries, Inc.; 550.
 - e. Mon-Eco Industries, Inc.; 55-50.
 - f. Vimasco Corporation; WC-1/WC-5.
 - 2. Water-Vapor Permeance: ASTM F 1249, 3 perms (2 metric perms) at 0.0625inch (1.6-mm) dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 200 deg F (Minus 29 to plus 93 deg C).
 - 4. Solids Content: 63 percent by volume and 73 percent by weight.
 - 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - f. Vimasco Corporation; 750.
 - 2. Joint Sealants for Polystyrene Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-70.
 - b. Foster Products Corporation, H. B. Fuller Company; 30-45/30-46.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
 - 3. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 4. Permanently flexible, elastomeric sealant.
 - 5. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 - 6. Color: White or gray.
- B. FSK and Metal Jacket Flashing Sealants:

- 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-76-8.
 - b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 - c. Marathon Industries, Inc.; 405.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Vimasco Corporation; 750.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
- 5. Color: Aluminum.
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; CP-76.
 - b. Approved equal.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 - 5. Color: White.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto PVC Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: Color-code jackets based on system. Color as selected by Engineer.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

- a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- 5. Factory-fabricated tank heads and tank side panels.
- D. Aluminum Jacket: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products, Division of ITW; Metal Jacketing Systems.
 - b. PABCO Metals Corporation; Surefit.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Sheet and roll stock ready for shop or field sizing or Factory cut and rolled to size.
 - 3. Finish and thickness are indicated in field-applied jacket schedules.
 - 4. Moisture Barrier for Indoor Applications: 1-mil- (0.025-mm-) thick, heat-bonded polyethylene and kraft paper.
 - 5. Moisture Barrier for Outdoor Applications: 3-mil- (0.075-mm-) thick, heat-bonded polyethylene and kraft paper or 2.5-mil- (0.063-mm-) thick Polysurlyn.
 - 6. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Self-Adhesive Outdoor Jacket: 60-mil- (1.5-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Polyguard; Alumaguard 60.
 - b. Approved equal.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

- 1. Products: Subject to compliance with requirements, provide the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835.
 - b. Compac Corp.; 104 and 105.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
- 2. Width: 3 inches (75 mm).
- 3. Thickness: 11.5 mils (0.29 mm).
- 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - b. Compac Corp.; 110 and 111.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK.
 - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches (75 mm).
 - 3. Thickness: 6.5 mils (0.16 mm).
 - 4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555.
 - b. Compac Corp.; 130.
 - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape.
 - d. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches (50 mm).
 - 3. Thickness: 6 mils (0.15 mm).
 - 4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following:

- a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
- b. Compac Corp.; 120.
- c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF.
- d. Venture Tape; 3520 CW.
- 2. Width: 2 inches (50 mm).
- 3. Thickness: 3.7 mils (0.093 mm).
- 4. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); Saran 540 Vapor Retarder Tape.
 - b. Approved equal.
 - 2. Width: 3 inches (75 mm).
 - 3. Film Thickness: 4 mils (0.10 mm).
 - 4. Adhesive Thickness: 1.5 mils (0.04 mm).
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Dow Chemical Company (The); Saran 560 Vapor Retarder Tape.
 - 2. Width: 3 inches (75 mm).
 - 3. Film Thickness: 6 mils (0.15 mm).
 - 4. Adhesive Thickness: 1.5 mils (0.04 mm).
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch (10.1 N/mm) in width.

2.9 SECUREMENTS

- A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 3/4 inch (19 mm) wide with wing or closed seal.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Products; Bands.
 - b. PABCO Metals Corporation; Bands.
 - c. RPR Products, Inc.; Bands.

- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series T.
 - 2) GEMCO; Perforated Base.
 - 3) Midwest Fasteners, Inc.; Spindle.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 - c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) GEMCO; Nylon Hangers.
 - 2) Midwest Fasteners, Inc.; Nylon Insulation Hangers.
 - 3) Approved equal.
 - b. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.
 - c. Spindle: Nylon, 0.106-inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) AGM Industries, Inc.; Tactoo Insul-Hangers, Series TSA.
 - 2) GEMCO; Press and Peel.
 - 3) Midwest Fasteners, Inc.; Self Stick.

- b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
- c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106inch- (2.6-mm-) diameter shank, length to suit depth of insulation indicated.
- d. Adhesive-backed base with a peel-off protective cover.
- 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- (0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) GEMCO.
 - 2) Midwest Fasteners, Inc.
 - 3) Approved equal.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.
- D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.
 - b. Childers Products.
 - c. PABCO Metals Corporation.
 - d. RPR Products, Inc.

2.10 CORNER ANGLES

A. PVC Corner Angles: 30 mils (0.8 mm) thick, minimum 1 by 1 inch (25 by 25 mm), PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch (1.0 mm) thick, minimum 1 by 1 inch (25 by 25 mm), aluminum according to ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105 or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.

- 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 - 4. Seal jacket to wall flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).
 - 1. Comply with requirements in Division 07 Section "Penetration Firestopping" irestopping and fire-resistive joint sealers.
- D. Insulation Installation at Floor Penetrations:
 - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
 - 2. Pipe: Install insulation continuously through floor penetrations.
- E. Insulation Installation on Pumps:
 - Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch (150-mm) centers, starting at corners. Install 3/8-inch- (10-mm-) diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from aluminum, at least 0.050 inch (1.3 mm) thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by

tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches (50 mm) over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 CELLULAR-GLASS INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
- 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.6 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 MINERAL-FIBER INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
 - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.
- E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
- 5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.
- F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

- 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 - b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- (150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.8 POLYOLEFIN INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of polyolefin pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 POLYSTYRENE INSULATION INSTALLATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation with tape or bands and tighten bands without deforming insulation materials. Orient longitudinal joints between half sections in 3 and 9 o'clock positions on the pipe.
 - 2. All insulation shall be tightly butted and free of voids and gaps at all joints. Vapor barrier must be continuous. Before installing jacket material, install vapor-barrier system.
- B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, same thickness of adjacent pipe insulation, not to exceed 1-1/2-inch (38-mm) thickness.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polystyrene block insulation of same thickness as pipe insulation.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed insulation sections of same material as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed section of polystyrene insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.10 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch (38-mm) laps at longitudinal seams and 3-inch- (75-mm-) wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.11 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Division 07 Section "Penetration Firestopping."

3.12 FINISHES

- A. Duct, Equipment, and Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09 painting Sections.
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.
- 3.13 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
 - 2. Inspect field-insulated equipment, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
 - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Engineer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
 - C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.14 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in nonconditioned space.
 - 4. Indoor, exposed return located in nonconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, concealed supply and return.
 - 12. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.15 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply-Air, Return-Air and Outside-Air Sheet Metal Duct and Plenum Insulation: Mineral-fiber blanket, 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density for minimum R-6 insulation value.
- B. Concealed, Exhaust-Air Sheet Metal Duct and Plenum Insulation: Non-insulated except where indicated on plans. Where indicated, mineral-fiber blanket, 1-1/2 inches (38 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- C. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.
- D. Exposed, Supply-Air, Return-Air and Outdoor-Air Sheet Metal Duct and Plenum Insulation (Not required for double-wall ductwork): Mineral-fiber board, 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.
- E. Exposed, Exhaust-Air Duct and Plenum Insulation: Non-insulated except where indicated. Where indicated, mineral-fiber board, 2 inches (50 mm) thick and 0.75-lb/cu. ft. (12-kg/cu. m) nominal density.

- F. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.
- G. All supply and return ductwork (except pre-insulated round or oval ductwork) within 20 feet of the air handling unit or fan connection shall be internally lined with anti-microbial insulation board for acoustic purposes.

3.16 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment in paragraphs below that is not factory insulated.
- C. Heat-Exchanger (Water-to-Water for Heating Service) Insulation: Mineral-fiber pipe and tank, 2 inches (50 mm) thick.
- D. Dual-service heating and cooling pump insulation shall be either of the following:
 - 1. Cellular Glass: 3 inches (75 mm) thick.
 - 2. Closed Cell Phenolic . 2 inches (50 mm) thick

3.17 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.18 INDOOR PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine, above 40 Deg F (5 Deg C): Insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches (50 mm) thick.
 - 2. Flexible Elastomeric (only allowed within 8 ft. of coil): 1 inch (25 mm) thick.
 - 3. Polyolefin: 1 inch (25 mm) thick.
- B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and below: Insulation shall be one of the following:
 - 1. Cellular Glass: 2 inches (50 mm) thick.

- 2. Flexible Elastomeric (only allowed within 8 ft. of coil): 1 inch (25 mm) thick.
- C. Refrigerant Suction and Hot-Gas Piping: Flexible elastomeric, 1 inch (25 mm) thick.
- D. Coil Condensate Piping: Flexible elastometric; 1 inch (25 mm) thick.
 - 1. Cellular Glass: 2 inches (50 mm) thick.

3.19 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Chilled Water and Brine: Insulation shall be one of the following:
 - 1. Cellular Glass in Chiller Yard or Plant Only: 3 inches (75 mm) thick.
 - 2. Pre-insulated piping. See "Hydronic Piping". This contractor shall install fitting kits per manufacturer's instructions.

3.20 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:1. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.
- D. Ducts and Plenums, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Aluminum, Smooth: 0.016 inch (0.41 mm) thick.
- E. Ducts and Plenums, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
 - 1. Painted Aluminum, Smooth with: 0.032 inch (0.81 mm) thick.
- F. Equipment, Exposed, up to 48 Inches (1200 mm) in Diameter or with Flat Surfaces up to 72 Inches (1800 mm):
 - 1. Painted Aluminum, Smooth with Z-Shaped Locking Seam: 0.020 inch (0.51 mm) thick.
- G. Equipment, Exposed, Larger Than 48 Inches (1200 mm) in Diameter or with Flat Surfaces Larger Than 72 Inches (1800 mm):
 - 1. Painted Aluminum, Smooth with 1-1/4-Inch- (32-mm-) Deep Corrugations: 0.032 inch (0.81 mm) thick.
- H. Piping, Concealed:
- 1. None.
- 2. PVC, Color-Coded by System: 20 mils (0.5 mm) thick.
- 3. Aluminum, Smooth: 0.020 inch (0.51 mm) thick.
- I. Piping, Exposed:
 - 1. PVC Color Coded by System: 20 mils (0.5 mm) thick.
 - 2. Aluminum, Smooth: 0.020 inch (0.51 mm) thick.

3.21 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 15250

SECTION 15510 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Makeup-water piping.
 - 3. Safety-valve-inlet and -outlet piping.
- B. See Division 15 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.

1.2 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature:
 - 1. Chilled-Water Piping: Insert psig (kPa) at 200 deg F (93 deg C).
 - 2. Makeup-Water Piping: 80 psig (552 kPa) at 150 deg F (66 deg C).
 - 3. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

1.3 SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Plastic pipe and fittings with solvent cement.
 - 2. Pressure-seal fittings.
 - 3. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 4. Hydronic specialties.
- B. Shop Drawings: Detail, at 1/4 (1:50) scale, the piping layout, fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops.
- C. Field quality-control test reports.
- D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type M (ASTM B 88M, Type C) hard drawn temper.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).
- C. DWV Copper Tubing: ASTM B 306, Type DWV.
- D. Wrought-Copper Fittings: ASME B16.22.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. S. P. Fittings; a division of Star Pipe Products.
 - c. Victaulic Company of America.
 - 2. Grooved-End Copper Fittings: ASTM B 75 (ASTM B 75M), copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern, unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, EPDM gasket rated for minimum 230 deg F (110 deg C) for use with housing, and steel bolts and nuts.
- E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article.

- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- G. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Central Sprinkler Company; a division of Tyco Fire & Building Products.
 - c. National Fittings, Inc.
 - d. Victaulic Company of America.
 - 2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - 3. Couplings: Ductile- or malleable-iron housing and synthetic rubber gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

2.3 PRE-INSULATED PIPING

- A. Pre-Insulated Piping: Interior and underground main chilled water shall include Sch. 40, ASTM A53 black steel carrier piping with factory applied insulation and PVC outer conduit. Pipe, fittings, flanges and couplings shall be wrought-steel buttwelded, with field installed fitting insulation kits.
 - Factory Applied Insulation: ASTM C591, preformed foamed urethane with k factor of 0.12 (BTU/Hr.Sq.Ft./°F per In.) at 75°F and 1.8 lbs. per cubic foot density. Insulation thickness shall be minimum 1-1/2" and shall completely fill the space between the pipe and outer conduit.
 - 2. Factory Applied Outer Conduit:
 - a. Each section shall be machine coated with a continuous multi-directional tension filament-wound fiberglass reinforced resin or high density polyethylene. Jacket thickness shall be 60 mils for 1" through 6" diameter piping. Each section of the piping shall have a resin coating applied to the exposed end sections of the insulation.
 - b. The carrier pipe shall be Sch. 40, ASTM A53 or A106 black steel or copper tube ASTM B88.

- 3. End Seals: The end seals shall be factory fabricated and provide a hermetic seal between the carrier piping and the outer conduit. End seals shall be suitable for use with the temperature limits of the carrier piping. Provide pipe cut at the job site with watertight end seals similar to factory applied end seals.
- 4. Manufacturers:
 - a. Thermacore.
 - b. Ricwil/Permapipe.
 - c. Ravanco.
 - d. Energy Task Force

2.4 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- F. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
- G. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

- A. Plastic-to-Metal Transition Fittings:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
- 3. CPVC and PVC one-piece fitting with one threaded brass or copper insert and one Schedule 80 solvent-cement-joint end.
- B. Plastic-to-Metal Transition Unions:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. IPEX Inc.
 - c. KBi.
 - d. NIBCO INC.
 - 3. MSS SP-107, CPVC and PVC union. Include brass or copper end, Schedule 80 solvent-cement-joint end, rubber gasket, and threaded union.

2.6 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper-alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Central Plastics Company.
 - b. Hart Industries International, Inc.
 - c. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - d. Zurn Plumbing Products Group; AquaSpec Commercial Products Division.
 - 3. Factory-fabricated union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C).
- D. Dielectric Couplings:

- 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Calpico, Inc.
 - b. Lochinvar Corporation.
 - c. Approved equal.
- 3. Galvanized-steel coupling with inert and noncorrosive thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.7 VALVES

- A. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig (860 kPa).
 - 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- B. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Taco.

- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig (860 kPa).
- 11. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Diaphragm-Operated, Pressure-Reducing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Inlet Strainer: Stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- D. Diaphragm-Operated Safety Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump; a division of ITT Industries.
 - d. Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Wetted, Internal Work Parts: Brass and rubber.
 - 8. Inlet Strainer: Stainless steel, removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.

- 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- E. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design Inc.
 - b. Griswold Controls.
 - c. Approved equal.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self cleaning, and removable.
 - 4. Combination Assemblies: Include bonze or brass-alloy ball valve.
 - 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
 - 6. Size: Same as pipe in which installed.
 - 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
 - 8. Minimum CWP Rating: 300 psig (2070 kPa).
 - 9. Maximum Operating Temperature: 200 deg F (93 deg C).

2.8 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig (860 kPa).
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Expansion fittings are specified in Division 23 Section "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Chilled-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:
 - 1. Type M (C), drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- B. Chilled-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be the following:
 - 1. Schedule 40 preinsulated steel pipe, wrought steel fittings and welded joints.
 - 2. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Within 10 feet of chiller connections, schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 - 4. Outlet: Type K (A), annealed-temper copper tubing with soldered or flared joints.
- C. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions.

3.2 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to buildings or floors, and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel and light fixture removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes, free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Install piping to allow application of insulation.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- K. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- L. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- M. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- N. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- O. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."
- P. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- Q. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.

- R. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 (DN 20) nipple and ball valve in blowdown connection of strainers NPS 2 (DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2 (DN 50).
- S. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.4 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor devices are specified in Division 15 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m); minimum rod size, 1/4 inch (6.4 mm).
 - 3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
 - 4. NPS 2 (DN 50): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
 - 5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m); minimum rod size, 3/8 inch (10 mm).
 - 6. NPS 3 (DN 80): Maximum span, 12 feet (3.7 m); minimum rod size, 3/8 inch (10 mm).
 - 7. NPS 4 (DN 100): Maximum span, 14 feet (4.3 m); minimum rod size, 1/2 inch (13 mm).
- D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

- 1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
- 2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
- 3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
- 4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
- 5. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
- 6. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).
- E. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- F. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- H. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
 - 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- I. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
- J. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- C. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 (DN 50) and larger.
- D. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

3.7 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.

- C. 3-way Control Valve Systems: Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 15 Section "Meters and Gages for HVAC Piping."

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.

- 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
- 5. Set temperature controls so all coils are calling for full flow.
- 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
- 7. Verify lubrication of motors and bearings.

END OF SECTION 15510

SECTION 15684 - CENTRIFUGAL WATER CHILLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes packaged, water-cooled, electric-motor-driven, centrifugal water chillers with the following features:
 - 1. Motor controller.
 - 2. Microprocessor-based controls.
- B. See Division 15910 Section "Refrigerant Detection and Alarm" for refrigerant monitors, alarms, supplemental breathing apparatus, and ventilation equipment interlocks.

1.2 SUBMITTALS

- A. Product Data: For each product indicated.
- B. Shop Drawings: Complete set of manufacturer's certified prints of water chiller assemblies, control panels, sections and elevations, and unit isolation.
 - 1. Include wiring diagrams.
- C. Coordination Drawings: Floor plans drawn to scale and coordinated with the following:
 - 1. Structural supports.
 - 2. Piping roughing-in requirements.
 - 3. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
 - 4. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.
- D. Source quality-control test reports.
- E. Startup service reports.
- F. Operation and maintenance data.
- G. Warranties.

1.3 QUALITY ASSURANCE

A. ARI Certification: Signed by manufacturer certifying compliance with requirements in ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle."

- B. ASHRAE Certification: Signed by manufacturer certifying compliance with ASHRAE 15 for safety code for mechanical refrigeration. Comply with ASHRAE Guideline 3 for refrigerant leaks, recovery, and handling and storage requirements.
- C. ASME Compliance: Fabricate and label water chiller heat exchangers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- D. Comply with NFPA 70.
- E. Comply with ASHARE 90.1.
- F. Comply with UL 1995.

1.4 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of water chillers including materials, parts and workmanship/labor for <u>10 years</u> from the date of the official substantial completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier; a United Technologies Company.
 - 2. Trane Company (The).
 - 3. YORK International Corporation.

Note: McQuay is not an approved manufacturer based on previous performance.

2.2 COMPRESSORS

- A. Description: Variable displacement with gear-drive, open motor.
 - 1. Casing: Cast iron, precision ground.
 - 2. Impeller: High strength, cast-aluminum alloy on carbon or forged-steel shaft; dynamically balanced.
- B. Capacity Control: Variable-inlet guide-vane assembly for stable operation that is free of surge, cavitation, or vibration throughout throttling range from 100 to 10 percent of full load.

- C. Oil Lubrication System: Positive-displacement submersible pump with heater, oil filter, and sight glass.
- D. Refrigerant and Oil: HCFC-123, HFC-134a, or HCFC-22.
- E. Refrigerant Compatibility: Seals, O-rings[, motor windings,] and internal water chiller parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.

2.3 HEAT EXCHANGERS

- A. Evaporator:
 - 1. Description: Shell-and-tube design, ASME labeled.
 - 2. Shell Material: Carbon steel.
 - 3. Tube Construction: Individually replaceable, expanded into tube sheets.
 - a. Material: Copper
 - b. Minimum Size: 3/4-inch (19-mm) OD; 0.028-inch (0.71-mm) wall thickness.
 - c. Internal Finish: Enhanced
 - 4. Water Box: Standard, with design working pressure of 150 psig (1035 kPa and having flanged water-nozzle connections with a thermistor-type temperature sensor factory installed in each nozzle.
- B. Condenser:
 - 1. Description: Shell-and-tube design ASME labeled.
 - 2. Shell Material: Carbon steel.
 - 3. Tube Construction: Externally enhanced and individually replaceable, expanded into tube sheets.
 - a. Material: Copper.
 - b. Minimum Size: 3/4-inch (19-mm) OD; 0.028-inch (0.71-mm) wall thickness.
 - c. Internal Finish: Enhanced
 - 4. Water Box: Standard, with design working pressure of 150 psig (1035 kPa, and having flanged water-nozzle connections with a thermistor-type temperature sensor factory installed in each nozzle.

2.4 INSULATION

- A. Cold Surfaces: Closed-cell, flexible elastomeric, thermal insulation complying with ASTM C 534, Type II, for sheet materials.
- B. Provide field applied 1.5" insulation on all cold parts.

2.5 ACCESSORIES

- A. Pressure Relief Rupture Disc: Frangible carbon disc.
- B. Pressure Relief Valve: Single or multiple-reseating-type, spring-loaded relief valve.
- C. Purge System: Factory mounted, air, water, or refrigerant cooled; with operating controls, piping, elapsed-time meter, and refrigerant service valves to isolate the purge unit from the chilling unit.

2.6 CONTROLS

- A. Control Panel: Stand-alone, microprocessor based. Provide DDC network card with BACnet protocol. All listed chiller control points must be discoverable and readable by Johnson control systems with BACnet protocol.
- B. Enclosure: Unit-mounted, NEMA 250, Type 1enclosure, hinged or lockable; factory wired with a single-point power connection and a separate control circuit.
- C. Status Display: Multiple-character liquid-crystal display or light-emitting diodes and keypad. Display the following conditions:
 - 1. Date and time.
 - 2. Operating or alarm status.
 - 3. Operating hours.
 - 4. Outside-air temperature if required for chilled-water reset.
 - 5. Temperature and pressure operating set points.
 - 6. Entering and leaving temperatures of chilled water and condenser water.
 - 7. Refrigerant pressures in evaporator and condenser.
 - 8. Saturation temperature in evaporator and condenser.
 - 9. Oil temperature and pressure.
 - 10. Percent of maximum motor amperage.
 - 11. Current-limit set point.
 - 12. Number of compressor starts.
 - 13. Purge suction temperature if purge system is provided.
 - 14. Purge elapsed time if purge system is provided.
- D. Control Functions:
 - 1. Manual or automatic startup and shutdown time schedule.
 - 2. Entering and leaving chilled-water temperatures, control set points, and motor load limit. Chilled-water temperature shall be reset based on return-water temperature.
 - 3. Current limit and demand limit.
 - 4. Condenser-water temperature.
 - 5. External water chiller emergency stop.
- E. Manually Reset Safety Controls: The following conditions shall shut down water chiller and require manual reset:

- 1. Low evaporator pressure high condenser pressure.
- 2. Low chilled-water temperature.
- 3. Low oil differential pressure.
- 4. High or low oil pressure.
- 5. High oil temperature.
- 6. High compressor-discharge temperature.
- 7. Loss of chilled or condenser-water flow.
- 8. Electrical overload.
- 9. Sensor or detection-circuit fault.
- 10. Processor communication loss.
- 11. Starter fault.
- 12. Extended compressor surge.
- 13. Excessive air-leakage detection.
- 2.7 MOTORS
 - A. Comply with requirements in Section "Common Motor Requirements for HVAC Equipment."
 - 1. Open-drive motors shall have flanged or flexible coupling suitable for direct connection to compressor.
 - 2. Provide factory installed starter.

2.8 MAGNETIC ENCLOSED CONTROLLERS

- A. Enclosure: Unit mounted , with hinged access door with lock and key or padlock and key.
- B. Control Circuit: 120 V; obtained from integral control power transformer with a control power transformer of enough capacity to operate connected pilot and indicating and control devices.
- C. Overload Relay: Shall be sized according to UL 1995 or shall be an integral component of water chiller control microprocessor.
- D. Across-the-Line Controller: NEMA ICS 2, Class A, full voltage, nonreversing; include isolation switch and current-limiting fuses.
- E. Star-Delta Controller: NEMA ICS 2, closed transition.
- F. Autotransformer Reduced-Voltage Controller: NEMA ICS 2, closed transition; include isolation switch and current-limiting fuses.
- G. Solid-State, Reduced-Voltage Controller: NEMA ICS 2.
 - 1. Surge suppressor in solid-state power circuits providing 3-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.

- 2. Light-emitting-diode indicators showing motor and control status, including the following conditions:
 - a. Controller on.
 - b. Overload trip.
 - c. Loss of phase.
 - d. Starter fault.
- H. Accessories: Devices shall be factory installed in controller enclosure, unless otherwise indicated.
 - 1. Push-Button Stations, Pilot Lights, and Selector Switches: NEMA ICS 2, heavyduty type.
 - 2. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
 - 3. Control Relays: Time-delay relays.
 - 4. Phase-Failure and Undervoltage Relays: Solid-state sensing circuit with adjustable undervoltage setting and isolated output contacts for hard-wired connection.
- 2.9 SOURCE QUALITY CONTROL
 - A. Factory test and rate water chillers, before shipping, according to ARI 550/590, "Water Chilling Packages Using the Vapor Compression Cycle." Stamp with ARI label.
 - B. Factory test heat exchangers hydrostatically at 1.50 times the design pressure.
 - C. Factory test and inspect evaporator and water cooled-condenser according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Stamp with ASME label.
 - D. Factory test and inspect water boxes at 150 percent of working pressure.
 - E. Rate sound power level according to ARI 575 procedure.

PART 3 - EXECUTION

3.1 WATER CHILLER INSTALLATION

- A. Install water chillers on concrete base. Concrete base is specified in Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.
- B. Concrete Bases: Anchor chiller mounting frame to concrete base.
 - 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.

- 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
- 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 5. Cast-in-place concrete materials and placement requirements are specified in Division 03.
- C. Vibration Isolation: Rubber pads with a minimum deflection of [0.25 inch (6.35 mm)] Vibration isolation devices and installation requirements are specified in Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- D. Vibration Isolation: Mount water chiller on vibration isolation equipment base as specified in Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
- E. Maintain manufacturer's recommended clearances for service and maintenance.
- F. Charge water chiller with refrigerant if not factory charged.
- G. Install separate devices furnished by manufacturer.

3.2 CONNECTIONS

- A. Chilled and condenser-water piping installation requirements are specified in Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to water chillers to allow service and maintenance.
- C. Evaporator Connections: Connect inlet to evaporator with controller-bulb well, shutoff valve, thermometer, strainer, pressure gage, and union or flange. Connect outlet to evaporator with shutoff valve, flow switch, balancing valve, thermometer, pressure gage, and union or flange.
- D. Condenser Connections: Connect inlet to condenser with shutoff valve, thermometer, plugged tee, and pressure gage. Connect outlet to condenser with shutoff valve, thermometer, drain line and shutoff valve, strainer, and plugged tee.
- E. Install shutoff valves at chilled-water and condenser-water inlet and outlet connections.
- F. Refrigerant Pressure Relief Valve Connections: Extend vent piping to the outside without valves or restrictions.
- G. Ground water chillers according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- H. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 STARTUP SERVICE

- A. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.
- B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Verify that refrigerant charge is sufficient and water chiller has been leak tested.
 - 2. Verify that pumps are installed and functional.
 - 3. Verify that thermometers and gages are installed.
 - 4. Operate water chiller for run-in period according to manufacturer's written instructions.
 - 5. Check bearing lubrication and oil levels.
 - 6. Verify that refrigerant pressure relief is vented outside.
 - 7. Verify proper motor rotation.
 - 8. Verify static deflection of vibration isolators, including deflection during water chiller startup and shutdown.
 - 9. Verify and record performance of chilled and condenser-water flow and low-temperature interlocks.
 - 10. Verify and record performance of water chiller protection devices.
 - 11. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- C. Prepare a written startup report that records results of tests and inspections.
- D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose.

END OF SECTION 15684

SECTION 15715 - HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following HVAC water-treatment systems:
 - 1. HVAC water-treatment chemicals.
 - 2. The contractor is responsible for flushing and recharging the system with new chemicals. The owner's maintenance contractor will perform final testing and acceptance for the entire chilled water system. Any deficiencies shall be corrected by the contractor. All strainers (including existing strainers) shall be cleaned and system shall be flushed for 48 hrs before charging.

1.2 PERFORMANCE REQUIREMENTS

- A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.
- B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- C. Passivation for Galvanized Steel: For the first 60 days of operation.
 - 1. pH: Maintain a value within 7 to 8
 - 2. Calcium Carbonate Hardness: Maintain a value within 100 to 300 ppm.
 - 3. Calcium Carbonate Alkalinity: Maintain a value within 100 to 300 ppm.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: Power and control wiring.
- C. Field quality-control test reports.
- D. Other Informational Submittals:

- 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in the "Performance Requirements" Article above.
- 2. Water Analysis: Illustrate water quality available at Project site.
- 3. Passivation Confirmation Report: Verify passivation of galvanized-steel surfaces, and confirm this observation in a letter to Architect.

1.4 QUALITY ASSURANCE

- A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC watertreatment service provider capable of analyzing water qualities, installing watertreatment equipment, and applying water treatment as specified in this Section.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cascade corp.
 - 2. Ampion Corp.
 - 3. Anderson Chemical Co, Inc.
 - 4. Aqua-Chem, Inc.; Cleaver-Brooks Div.
 - 5. Barclay Chemical Co.; Water Management, Inc.
 - 6. Boland Trane Services.
 - 7. GE Betz.
 - 8. GE Osmonics.
 - 9. H-O-H Chemicals, Inc.
 - 10. Metro Group. Inc. (The); Metropolitan Refining Div.
 - 11. ONDEO Nalco Company.
 - 12. Watcon, Inc.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.
- B. Install water testing equipment on wall near water chemical application equipment.
- C. Install interconnecting control wiring for chemical treatment controls and sensors.
- D. Mount sensors and injectors in piping circuits.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC systems' startup procedures.
 - 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 - 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.

- Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
- 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. At four week intervals following Substantial Completion, perform separate water analyses on hydronic systems to show that automatic chemical-feed systems are maintaining water quality within performance requirements specified in this Section. Submit written reports of water analysis advising Owner of changes necessary to adhere to Part 1 "Performance Requirements" Article.
- F. Comply with ASTM D 3370 and with the following standards:
 - 1. Silica: ASTM D 859.
 - 2. Acidity and Alkalinity: ASTM D 1067.
 - 3. Iron: ASTM D 1068.
 - 4. Water Hardness: ASTM D 1126.

END OF SECTION 15715

SECTION 15910 - REFRIGERANT DETECTION AND ALARM

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes refrigerant monitors and notification appliances.

1.2 SUBMITTALS

- A. Product Data:
 - 1. For each type of refrigerant monitor, include refrigerant sensing range in ppm, temperature and humidity range, alarm outputs, display range, furnished specialties, installation requirements, and electric power requirement.
- B. Shop Drawings:
 - 1. Air-Sampling Tubing: Size, routing, and termination including elevation above finished floor.
 - 2. Wiring Diagrams: Power, signal, and control wiring.
- C. Field quality-control test reports.
- D. Operation and maintenance data.

PART 2 - PRODUCTS

- 2.1 PIR REFRIGERANT MONITOR
 - A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - C. Description: Sensor shall be factory tested, calibrated, and certified to continuously measure and display the specific gas concentration and shall be capable of indicating, alarming, and automatically activating ventilation system.
 - D. ASHRAE: Monitoring system shall comply with ASHRAE 15
 - E. Performance:
 - 1. Refrigerant to Be Monitored: R-123

- 2. Range: 0 to 1000 ppm.
- 3. Sensitivity:
 - a. Minimum Detectability: 1 ppm.
 - b. Accuracy: 0 to 50 ppm; plus or minus 1 ppm. 51 to 1000 ppm; plus or minus 10 percent of reading.
 - c. Repeatability: Plus or minus 1 percent of full scale.
 - d. Response: Maximum 10 seconds per sample.
 - e. Detection Level Set Points:
 - 1) Detection Level 1: 1 ppm.
- 4. Operating Temperature: 32 to 104 deg F (0 to 40 deg C).
- 5. Relative Humidity: 20 to 95 percent, noncondensing over the operating temperature range. Compensate sensor for relative humidity.
- F. Input/Output Features:
 - 1. Maximum Power Input: 120-V ac, 60 Hz, 75 W.
 - 2. Number of Air-Sampling Points: Eight
 - 3. Air-Sampling Point Inlet Filter: 0.10-micron filter element for each sampling point.
 - 4. Air-Sampling Point Analog Output: 0- to 10-V dc into 2k ohms, or 4- to 20-mA into 1k ohms matched to sensor output.
 - 5. Alarm Relays: Minimum 3 relays at a minimum of 5-A resistive load each.
 - 6. Alarm Set Points: Displayed and adjustable through keypad on front of meter.
 - 7. Alarm Silence Switch: Mount in the front panel of the monitor to stop audible and visual notification appliances, but alarm LED remains illuminated.
 - 8. Alarm Manual Reset: Momentary-contact push button in the front panel of the monitor stops audible and visual notification appliances, extinguishes alarm LED, and returns monitor to detection mode at current detection levels.
 - 9. Display: Alphanumeric LCD, LED indicating lights for each detection level; acknowledge switch and test switch mounted on front panel; alarm status LEDs and service fault/trouble LEDs.
 - 10. Audible Output: Minimum 75 dB at 10 feet (3 m).
 - 11. Visible Output: Strobe light.
 - 12. Sensor Analog Output: 0- to 10-V dc into 2k ohms, or 4- to 20-mA into 1k ohms.
 - 13. Serial Output: RS-232 or RS-485 compatible with HVAC controls.
 - 14. Enclosure: NEMA 250, Type 1, with locking quarter-turn latch and key.

2.2 MONITOR ALARM SEQUENCE

- A. Detection Level 1: Notify HVAC control workstation of detection in the refrigeration equipment room on a rise or fall of refrigerant concentration to this level. Start ventilation system at low speed to allow occupancy by maintenance technicians to identify leaks. Cycle blue strobe lights.
- B. Sensor Fault/Trouble: Notify HVAC control workstation of fault/trouble detection in monitor.

2.3 NOTIFICATION APPLIANCES

- A. Horns: Comply with UL 464; electric-vibrating-polarized type, listed by a qualified testing agency with provision for housing the operating mechanism behind a grille. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn.
- B. Visible Alarm Devices: Comply with UL 1971; three color xenon strobe lights, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The words "REFRIGERANT DETECTION" printed in minimum 1/2-inch- (13-mm-) high letters on the lens. Rated light output is 75 candela.

2.4 AIR-SAMPLING TUBING

- A. Annealed-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).
- B. Polyethylene Tubing: ASTM D 2737, flame-retardant, nonmetallic tubing rated for ambient temperature range of 10 to 150 deg F (minus 13 to plus 65 deg C).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with ASHRAE 15
- B. Install air-sampling inlets, or diffusion type monitors in pits, tunnels, or trenches in machinery room that are accessible to personnel.
- C. Floor mount diffusion-type monitor, sensor/transmitters, or air-sampling inlets on slotted channel frame 12 to 18 inches (300 to 450 mm) above the floor in a location near the refrigerant source or between the refrigerant source and the ventilation duct inlet.
- D. Wall mount air-sampling multiple-point monitors with top of unit 60 inches (1525 mm) above finished floor.
- E. Run air-sampling tubing from monitor to air-sampling point, in size as required by monitor manufacturer. Install tubing with maximum unsupported length of 36 inches (915 mm), for tubing exposed to view. Terminate air-sampling tubing at sampling point with filter recommended by monitor manufacturer.
- F. Install air-sampling tubing with sufficient slack and flexible connections to allow for vibration of tubing and movement of equipment.
- G. Purge air-sampling tubing with dry, oil-free compressed air before connecting to monitor.
- H. Number-code or color-code air-sampling tubing for future identification and service of air-sampling multiple-point monitors.

- I. Extend air-sampling tubing from exhaust part of multiple-point monitors to outside.
- J. Install warning signs, labels, and nameplates to identify detection devices according to Section "Identification for HVAC Piping and Equipment."
- K. Place warning signs inside and outside each door to the refrigeration equipment room. Sample wording: "AUDIBLE AND VISUAL ALARM SOUNDING INDICATES REFRIGERANT DETECTION - ENTRY REQUIRES SELF-CONTAINED BREATHING APPARATUS."
- L. Audible Alarm-Indicating Devices: Install at each entry door to refrigeration equipment room, and position not less than 6 inches (150 mm) below the ceiling. Install horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- M. Visible Alarm-Indicating Devices: Install adjacent to each alarm horn at each entry door to refrigeration equipment room, and position at least 6 inches (150 mm) below the ceiling.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Inspect field-assembled components, equipment installation, and electrical connections for compliance with requirements.
 - 2. Test and adjust controls and safeties.
 - 3. Test Reports: Prepare a written report to record the following:
 - a. Test procedures used.
 - b. Test results that comply with requirements.
 - c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- D. Repair or replace malfunctioning units and retest as specified above.

END OF SECTION 15910

SECTION 15990 – TEST AND BALANCE

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes TAB to produce design objectives for the following:
 - 1. Hydronic Piping Systems:
 - a. Variable-flow systems.
 - 2. HVAC equipment quantitative-performance settings.
 - 3. Existing systems TAB.
 - 4. Verifying that automatic control devices are functioning properly.
 - 5. Reporting results of activities and procedures specified in this Section.
- B. The TAB contractor shall be under direct contract under the Div. 15 Contractor. The Div. 15 Contractor shall assist the TAB contractor by replacing pulleys, starter heaters, adjust settings, etc. as requested by the TAB contractor.
- C. Scope: Test and balance the new chiller and existing chilled water primary pumps.

1.2 SUBMITTALS

- A. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- B. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.
- C. Warranties specified in this Section.

1.3 QUALITY ASSURANCE

- A. TAB Firm Qualifications: Engage a TAB firm certified by either AABC or NEBB.
 1. Acceptable Firms:
 - a. Test & Balance of Orlando
 - b. Southern Independent Testing Agency, Inc Lutz, FL
 - c. Test & Balance of Tampa
 - d. Phoenix Agency, Lutz FL:
 - e. Evironmental Systems TAB
 - f. Thermocline Corporation, Merritt Island FL

- B. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems." Or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems."

1.4 PROJECT CONDITIONS

A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.5 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.6 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
- B. Special Guarantee: Provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - 1. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- D. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- E. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- F. Examine system and equipment test reports.
- G. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- H. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

- I. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers for clean screens and proper perforations.
- L. Examine control valves for proper installation for their intended function of throttling, diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine equipment for installation and for properly operating safety interlocks and controls.
- P. Examine automatic temperature system components to verify the following:
 - 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 - 2. Dampers and valves are in the position indicated by the controller.
 - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 - 4. Automatic modulating and shutoff valves, including two-way valves and threeway mixing and diverting valves, are properly connected.
 - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 - 6. Sensors are located to sense only the intended conditions.
 - 7. Sequence of operation for control modes is according to the Contract Documents.
 - 8. Controller set points are set at indicated values.
 - 9. Interlocked systems are operating.
 - 10. Changeover from heating to cooling mode occurs according to indicated values.
- Q. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
- 1. Permanent electrical power wiring is complete.
- 2. Hydronic systems are filled, clean, and free of air.
- 3. Automatic temperature-control systems are operational.
- 4. Equipment and duct access doors are securely closed.
- 5. Balance, smoke, and fire dampers are open.
- 6. Isolating and balancing valves are open and control valves are operational.
- 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" and this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fanspeed-control levers, and similar controls and devices, to show final settings.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.

3.5 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check expansion tank liquid level.
 - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.6 PROCEDURES FOR HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures, except for positivedisplacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 5 percent of design.
- B. Set calibrated balancing valves, if installed, at calculated presettings.
- C. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flowpressure-drop relationship may be used as a flow-indicating device.

- D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- G. Measure the differential-pressure control valve settings existing at the conclusions of balancing.

3.7 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.8 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer, model, and serial numbers.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data.

3.9 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. Measure and record the following data with each chiller operating at design conditions:

- 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
- 2. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
- 3. Power factor if factory-installed instrumentation is furnished for measuring kilowatt.
- 4. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatt.
- 5. Capacity: Calculate in tons of cooling.
- 6. If air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.10 PROCEDURES FOR TEMPERATURE MEASUREMENTS

- A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.
- B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.
- C. Measure outside-air, wet- and dry-bulb temperatures.

3.11 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- C. Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Check free travel and proper operation of control devices such as damper and valve operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.
- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.

K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.12 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 to plus 10 percent.
 - 2. Air Outlets and Inlets: 0 to minus 10 percent.
 - 3. Heating-Water Flow Rate: 0 to minus 10 percent.
 - 4. Cooling-Water Flow Rate: 0 to minus 5 percent.

3.13 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB firm who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.

- b. Notable characteristics of systems.
- c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer, type size, and fittings.
- 14. Notes to explain why certain final data in the body of reports varies from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outside-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

3.14 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

SECTION 16050 – BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Electrical equipment coordination and installation.
 - 2. Sleeves for raceways.
 - 3. Sleeve seals.
 - 4. Grout.
 - 5. Common electrical installation requirements.

1.3 DEFINITIONS

- A. EPDM: Ethylene-propylene-diene terpolymer rubber.
- B. NBR: Acrylonitrile-butadiene rubber.

1.4 SUBMITTALS

A. Product Data: For sleeve seals.

1.5 COORDINATION

- A. Coordinate arrangement, mounting, and support of electrical equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in masonry walls, and other structural components as they are constructed.

C. Coordinate location of electrical items that are behind finished surfaces or otherwise concealed.

PART 2 - PRODUCTS

2.1 SLEEVES FOR RACEWAYS AND CABLES

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- C. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and no side more than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches (1270 mm) and 1 or more sides equal to, or more than, 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 3. Pressure Plates: Plastic. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

- A. Electrical penetrations occur when raceways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.
- B. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- C. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- D. Cut sleeves to length for mounting flush with both surfaces of walls.
- E. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.
- F. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- G. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.

- H. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 "Thermal and Moisture Protection."
- I. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials.

3.3 SLEEVE-SEAL INSTALLATION

A. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly.

SECTION 16060 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This section includes methods and materials for grounding systems and equipment.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.2 CONNECTORS

- A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressuretype, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.
- B. Conductor Terminations and Connections:
 - 1. Equipment Grounding Conductor Terminations: Bolted connectors.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Branch circuits.
 - 2. Three-phase motor and appliance branch circuits.
 - 3. Flexible raceway runs.
- B. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections and prepare test reports:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

SECTION 16072 - ELECTRICAL SUPPORTS AND SEISMIC RESTRAINTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes:
 - 1. Hangers and supports for electrical equipment and systems.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. IMC: Intermediate metal conduit.
- C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

- A. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- B. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 SUBMITTALS

A. Product Data: For Steel slotted support systems.

1.6 QUALITY ASSURANCE

A. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

- 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
- 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS type 18; complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- C. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 2. To Existing Concrete: Expansion anchor fasteners.
 - 3. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 4. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
 - 5. To Light Steel: Sheet metal screws.
 - 6. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Touchup: Match paint to existing color when cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

SECTION 16075 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification for power and control cables.
 - 3. Identification for conductors.
 - 4. Equipment identification labels.
 - 5. Miscellaneous identification products.

1.3 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards and 29 CFR 1910.145. Use consistent designations throughout Project.

B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
- B. Colors for Raceways Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage.
- C. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.
- D. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

2.3 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: consisting of 1/2 inch letter height on 1-1/2 inch height label.

2.4 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Select paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. System Identification Color-Coding Bands for Raceways and Cables: Each colorcoding band shall completely encircle cable or conduit. Place adjacent bands of twocolor markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

3.2 IDENTIFICATION SCHEDULE

- A. Accessible Raceways for branch circuits: Identify with self-adhesive vinyl tape applied in bands. Install labels at 30-foot (10-m) maximum intervals.
- B. Accessible Raceways within Building: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend, system voltage, and circuit number. System legends shall be as follows:
 - 1. Power.
- C. Power-Circuit Conductor Identification, 600 V or Less:
 - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less.
 - a. Color shall be factory applied.
 - b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.

Y-11-814-EZ OC COURTHOUSE SWING CHILLER ADDITION 17 AUGUST 12

- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- D. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- E. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with schedules. Apply labels to disconnect switches and protection equipment.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment to Be Labeled:
 - a. Boxes and enclosures.
 - b. Enclosed switches.
 - c. Variable-speed controllers.

SECTION 16120 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Connectors, splices, and terminations rated 600 V and less.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Alcan Products Corporation; Alcan Cable Division.
 - 2. American Insulated Wire Corp.; a Leviton Company.
 - 3. General Cable Corporation.
 - 4. Senator Wire & Cable Company.
 - 5. Southwire Company.

- B. Copper Conductors: Comply with NEMA WC 70.
- C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN.

2.2 CONNECTORS AND SPLICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. 3M; Electrical Products Division.
 - 5. Tyco Electronics Corp.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

- 3.1 CONDUCTOR MATERIAL APPLICATIONS
 - A. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.
 - B. Class 1 Control Circuits: Type THHN-THWN, in raceway.
 - C. Class 2 Control Circuits: Type THHN-THWN, in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means; including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.

- D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 16 Section "Electrical and Seismic Restrains."
- F. Identify and color-code conductors and cables according to Division 16 Section "Electrical Identification."
- G. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- H. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- I. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 - 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

- 2. At any time until final completion, infrared scanning shall be provided at no additional cost when requested by the engineer or authority having jurisdiction.
- C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- D. Remove and replace malfunctioning units and retest as specified above.

SECTION 16124 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes cables, splices, terminations, and accessories for mediumvoltage electrical distribution systems.

1.2 SUBMITTALS

- A. Product Data: For each type of cable, splice and termination.
- B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with IEEE C2 and NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cables:
 - a. American Insulated Wire Corp.; a Leviton Company.
 - b. BICC Brand-Rex Company.
 - c. General Cable Corporation.
 - d. Kerite Co. (The); Hubbell Incorporated.
 - e. Okonite Company (The).
 - f. Pirelli Cables & Systems NA.
 - g. Rome Cable Corporation.
 - h. Southwire Company.
 - 2. Cable Splicing and Terminating Products and Accessories:
 - a. Engineered Products Co.

- b. G&W Electric Co.
- c. MPHusky.
- d. Raychem Corp.; Telephone Energy and Industrial Division.
- e. RTE Components; Cooper Power Systems, Inc.
- f. Scott Fetzer Co. (The); Adalet, Inc.
- g. Thomas & Betts Corporation.
- h. Thomas & Betts/Elastimold.
- i. 3M Company; Electrical Products Division.

2.2 CABLES

- A. Cable Type: MV90 with copper conductor and compact round, concentric lay, class B stranding.
- B. Comply with UL-1072, AEIC CS8, ICEA S-93-639, and ICEA S-97-682.
- C. Strand Filling: Conductor interstices are filled with impermeable compound.
- D. Conductor Insulation: Crosslinked polyethylene.
- E. Conductor Insulation: Ethylene-propylene rubber.
 - 1. Voltage Rating: 5 kV.
 - 2. Insulation Thickness: 100 percent insulation level.
- F. Shielding: Copper tape helically applied over semiconducting insulation shield.
- G. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.
- H. Cable Jacket: Chlorosulfonated polyethylene, CPE.

2.3 SPLICE KITS

- A. Splice Kits: Comply with IEEE 404; type as recommended by cable or splicing kit manufacturer for the application.
 - 1. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by castepoxy-resin encasement or other waterproof, abrasion-resistant material.
 - 2. Heat-shrink splicing kit, polymeric construction with outer heat-shrink jacket.
 - 3. Premolded, cold-shrink-rubber, in-line splicing kit.
 - 4. Premolded EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.

2.4 SOLID TERMINATIONS

A. Multiconductor Cable Sheath Seals: Type recommended by seal manufacturer for type of cable and installation conditions, including orientation.

- 1. Compound-filled, cast-metal body, metal-clad cable terminator for metal-clad cable with external plastic jacket.
- 2. Cold-shrink sheath seal kit with preformed sleeve openings sized for cable and insulated conductors.
- 3. Heat-shrink sheath seal kit with phase- and ground-conductor rejacketing tubes, cable-end sealing boot, and sealing plugs for unused ground-wire openings in boot.
- 4. Cast-epoxy-resin sheath seal kit with wraparound mold and packaged, two-part, epoxy-resin casting material.
- B. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class is equivalent to that of cable. Include shield ground strap for shielded cable terminations.
 - 1. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone rubber, insulator modules; shield ground strap; and compression-type connector.
 - 2. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
 - 3. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.
 - 4. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.
 - 5. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.
 - 6. Class 3 Terminations: Kit with stress cone and compression-type connector.
- C. Nonshielded-Cable Terminations: Kit with compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.

2.5 SEPARABLE INSULATED CONNECTORS

- A. Description: Modular system, complying with IEEE 386, with disconnecting, singlepole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.
- B. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.
- C. Load-Break Cable Terminators: Elbow-type units with 200-A load make/break and continuous-current rating. Include test point on terminator body that is capacitance coupled.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cables according to IEEE 576.
- B. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- D. Support cables according to "Common Work Results for Electrical."
- E. Install direct-buried cables on leveled and tamped bed of 3-inch- (75-mm-) thick, clean sand. Separate cables crossing other cables or piping by a minimum of 4 inches (100 mm) of tamped earth.
 - 1. Install permanent markers at ends of cable runs, changes in direction, and buried splices.
 - 2. Install "buried-cable" warning tape 12 inches (305 mm) above cables.
- F. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit.
- G. Install cable splices at pull points and elsewhere as indicated; use standard kits.
- H. Install separable insulated-connector components as follows:
 - 1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.
 - 2. Portable Feed-Through Accessory: Three.
 - 3. Standoff Insulator: Three.
- I. Seal around cables passing through fire-rated elements according to Division 07 Section "Penetration Firestopping."
- J. Ground shields and metal bodies of shielded cable at terminations, splices, and separable insulated connectors.
- K. Identify cables according to "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing:
 - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.2. Certify compliance with test parameters.

SECTION 16130 - RACEWAY AND BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. IMC: Intermediate metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. LFNC: Liquidtight flexible nonmetallic conduit.
- F. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, fittings, and hinged-cover enclosures.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 5. Electri-Flex Co.
 - 6. Manhattan/CDT/Cole-Flex.
 - 7. Maverick Tube Corporation.
 - 8. O-Z Gedney; a unit of General Signal.
 - 9. Wheatland Tube Company.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. EMT: ANSI C80.3.
- E. FMC: Zinc-coated steel.
- F. LFMC: Flexible steel conduit with PVC jacket.
- G. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Fittings for set-screw or compression type EMT:
- H. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 METAL WIREWAYS

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Square D; Schneider Electric.
- B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 3R, unless otherwise indicated.

- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Flanged-and-gasketed type.
- E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. EGS/Appleton Electric.
 - 3. Erickson Electrical Equipment Company.
 - 4. Hoffman.
 - 5. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 6. O-Z/Gedney; a unit of General Signal.
 - 7. RACO; a Hubbell Company.
 - 8. Robroy Industries, Inc.; Enclosure Division.
 - 9. Scott Fetzer Co.; Adalet Division.
 - 10. Spring City Electrical Manufacturing Company.
 - 11. Thomas & Betts Corporation.
 - 12. Walker Systems, Inc.; Wiremold Company (The).
 - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:

- 1. Exposed Conduit: Rigid steel conduit or IMC
- 2. Concealed Conduit, Aboveground: Rigid steel conduit or EMT.
- 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC or LFNC.
- 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 4X.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Severe Physical Damage: EMT or IMC.
 - 2. Exposed and Subject to Severe Physical Damage: Rigid steel conduit or IMC.
 - 3. Concealed in Ceilings and Interior Walls and Partitions: EM.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 5. Damp or Wet Locations: Rigid steel conduit or IMC.
 - 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4X, stainless steel in damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
- 3.2 INSTALLATION
 - A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
 - B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
 - C. Complete raceway installation before starting conductor installation.
 - D. Support raceways as specified in Division 16 Section "Electrical Supports and Seismic Restrains."
 - E. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
 - F. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - G. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.
 - H. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.

- I. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.
- J. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- K. Flexible Conduit Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
- L. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

3.3 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Thermal and Moisture Protection."
SECTION 16410 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of enclosed switch, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- B. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- C. Operation and Maintenance Data: For enclosed switches to include in emergency, operation, and maintenance manuals.

1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).
- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 3. Service-Rated Switches: Labeled for use as service equipment.

2.2 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1
 - 2. Outdoor Locations: NEMA 250, Type 4X.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

- C. Install fuses in fusible devices.
- D. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Division 16 Section "Electrical Identification."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed switch, component, and connecting supply.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Enclosed switches will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

SECTION 16420 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
 - 1. Full-voltage magnetic.

1.2 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. N.C.: Normally closed.
- E. N.O.: Normally open.
- F. OCPD: Overcurrent protective device.

1.3 SUBMITTALS

- A. Product Data: For each type of enclosed controller.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Field quality-control reports.
- D. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, the following:
 - a. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - b. Rockwell Automation, Inc.; Allen-Bradley brand.
 - c. Siemens Energy & Automation, Inc.
 - d. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Surface mounting.
 - 4. Pilot light.
- C. Magnetic Controllers: Full voltage, across the line, electrically held.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Siemens Energy & Automation, Inc.
 - e. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - 6. Solid-State Overload Relay:

- a. Switch or dial selectable for motor running overload protection.
- b. Sensors in each phase.
- c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- 7. External overload reset push button.
- D. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Siemens Energy & Automation, Inc.
 - e. Square D; a brand of Schneider Electric.
 - 2. MCP Disconnecting Means:
 - a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 - b. Auxiliary contacts "a" and "b" arranged to activate with MCP handle.

2.2 ENCLOSURES

- A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 - 1. Outdoor Locations: Type 4X.

2.3 ACCESSORIES

- A. Push Buttons, Pilot Lights, and Selector Switches: NEMA ICS 5; heavy-duty type; factory installed in controller enclosure cover unless otherwise indicated.
- B. Control Relays: Auxiliary and adjustable time-delay relays.
- C. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solidstate sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- B. Install fuses in control circuits if not factory installed.
- C. Comply with NECA 1.

3.2 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Division 16 Section "Electrical Identification."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.3 CONTROL WIRING INSTALLATION

- A. Bundle, train, and support wiring in enclosures.
- B. Connect selector switches and other automatic-control selection devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 - 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.

- 2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Enclosed controllers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports. Include notation of deficiencies detected, remedial action taken and observations after remedial action.

3.5 ADJUSTING

- A. Set field-adjustable switches and overload-relay pickup and trip ranges.
- B. Adjust the trip settings of MCPs with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

SECTION 16442 – PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution panelboards and lighting, appliance branch-circuit panelboards, and load centers.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Panelboard schedules for installation in panelboards.
- C. Operation and maintenance data.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Enclosures: Surface-mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.

- 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
- 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
- 4. Directory Card: Inside panelboard door, mounted in transparent card holder.
- B. Incoming Mains Location: Top and bottom.
- C. Phase, Neutral, and Ground Buses: Hard-drawn copper, 98 percent conductivity.
- D. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Main and Neutral Lugs: Mechanical type.
 - 3. Ground Lugs and Bus Configured Terminators: Mechanical type.
 - 4. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- E. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.
- F. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- G. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, and listed and labeled for series-connected short-circuit rating by an NRTL.
- H. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.2 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker.

- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - c. Application Listing: Appropriate for application; Type HACR for heating, air conditioning, and refrigerating equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Receive, inspect, handle, store and install panelboards and accessories according to NECA 407.
- B. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- D. Install overcurrent protective devices.
 - 1. Set field-adjustable, circuit-breaker trip ranges.
- E. Install filler plates in unused spaces.
- F. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

PANELBOARDS

G. Comply with NECA 1.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 66 Section "Electrical Identification."
- B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 16 Section "Electrical Identification."
- D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 16 Section "Electrical Identification."

3.3 FIELD QUALITY CONTROL

- A. Perform test and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each electrical test, visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Circuit breakers will be considered defective if they do not pass test and inspections.
- E. Prepare test and inspections reports, including a certified report that identifies new circuit breakers in existing panelboards. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

SECTION 16491 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in enclosed switches.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated. Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.

1.4 QUALITY ASSURANCE

- A. Comply with NEMA FU 1 for cartridge fuses.
- B. Comply with NFPA 70.
- C. Comply with UL 248-11 for plug fuses.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C) , apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

1.7 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, the following:
 - 1. Cooper Bussmann, Inc.
 - 2. Edison Fuse, Inc.
 - 3. Ferraz Shawmut, Inc.
 - 4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

- E. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 FUSE APPLICATIONS
 - A. Cartridge Fuses:1. Other Branch Circuits: Class RK1, time delay or Class RK5, time delay.
- 3.3 INSTALLATION
 - A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
 - B. Install plug-fuse adapters in Edison-base fuseholders and sockets. Ensure that adapters are irremovable once installed.
 - C. Install spare-fuse cabinet(s).

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division 16 Section "Electrical Identification" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.