November 11, 2015
BOARD OF COUNTY COMMISSIONERS
ORANGE COUNTY, FLORIDA
RFP Y16-803-MM / ADDENDUM \#1
DESIGN SERVICES FOR THE ORANGE COUNTY CONVENTION CENTER NORTH I SOUTH BUILDING SHOW POWER UPGRADES

PROPOSAL DUE BY: December 1, 2015 at 2:00 PM

This addendum is hereby incorporated into the RFP documents of the project referenced above. The following items are clarifications, corrections, additions, deletions and/or revisions to and shall take precedence over the original documents. Underlining indicates additions, deletions are indicated by strikethrough.
A. The Proposal due date remains the same.
B. A site visit is scheduled for November 24, 2015 at 1:00 p.m. Attendees should meet at the second floor of the South Concourse entrance, on the east side, in front of the Facilities Office Room 231.
C. The following are questions/responses/clarifications:

Q1: Is the study that was completed for the OCCC North/South Building Show Power Upgrade public information?

A1: See attached 26 page study titled: Orange County Convention Center North / South Building Show Power Upgrades, prepared by Milan Engineering, dated July 20, 2015.

Q2: Is the Consultant that completed the study precluded from pursing the A\&E portions as a prime?

A2: No. The consultant that completed the study may compete as a prime or a sub consultant.
D. THE FOLLOWING ARE CHANGES TO RFP:

CHANGES TO SECTION 8, paragraph C (Page no. 5)
Effective August 1, 2003, the County has implemented a graduation program whereby M/WBE firms designated as graduates can participate in the M/WBE program only on specified projects. All professional service solicitations for which the County has estimated the overall contractual fees to be awarded to the prime in excess of $\$ 500,000$ are eligible for graduate M/WBE participation. The

Y16-803-MM
Addendum \#1
November 11, 2015

Page 1 of 2
prime consultant will receive full M/WBE credit for the use of graduate MWBE's that meet all other requirements. The contract solicited through this RFP is estimated to be valued over under \$500,000 and therefore, graduate M/WBE's are ineligible to participate. It is the proposing firm's responsibility to insure that graduate M/WBE's are not listed in proposals to meet M/WBE participation requirements on projects in which they are not eligible to participate.

E. ALL OTHER TERMS AND CONDITIONS OF THE RFP REMAIN THE SAME.

The Proposer shall acknowledge receipt of this addendum by completing the applicable section in the solicitation or by completion of the acknowledgement information on the addendum. Either form of acknowledgement must be completed and returned not later than the date and time for receipt of the proposal.

Receipt acknowledged by:

Authorized Signature

Title

Name of Firm

COLanda

Orange County Convention Center

North/ South Building Show Power Upgrades

Prepared by:

ENGINEERING

Table of Contents

1.0 Introduction
2.0 Existing Electric al Infrastructure
3.0 PowerCalculations/ Analysis
4.0 Existing Utility PowerAnalysis
5.0 Electrical Upgrades Concepts
6.0 Constructability Review \& Schedule
7.0 Cost Estimate
8.0 Summary and Recommendations
9.0 Appendix

1.0 Introduction

The intent of this project is to upgrade the current power system at the North-South building to accommodate "Show" or Event power. Currently, OCCC event and utilities staff does not feel they have sufficient power in the buildings' existing electric al infrastructure to
accommodate "show power". During some shows, such as the "plastics" show, heavy electric al usa ge occurs which sometimes causes over current trip ping.

To accommodate these situations, the events staff has determined the following requirements for additional "new" power:

At 36 bump-out locations within the catwalk level (as shown on sketch to the side), the following additional powercomponents are required:
A. $480 \mathrm{~V} / 3$ phase, 3 -wire + ground, 400 A fused disconnect.
B. $120 / 208 / 3$ phase, 4 -wire + ground, 200A fused disc onnect (separate power from item-A)
C. Every 90 ' on center a long the catwalks, add 120/208V/3Ph (5-wire) 30A twist-lock outlet for "par-can lighting". The 30A twist-lock outlets shall be connected into a new power panelat each bump out location. All outlets can be controlled simultaneously through a single new contactor. The contactor shall be controlled via existing lighting controls/relay panel. (separate from item-A \& B)

OCCC Capital Planning staff has engaged Milan Engineering to perform a detailed study to venify the concepts, constructability, phasing, utility power upgrades required, and estimated cost to allow for the show power upgrades.
This report shall serve as the document to convey the results of the a nalysis.

2.0 Existing Eectrical Infrastructure

The North/South building is served from (4) OUC vaults, labeled A, B, C, and D. Each vault conta ins six (6) $750 \mathrm{kVA} 12.47 \mathrm{kV} / 277 \mathrm{~V}$ single phase transformers. The vaults are located at the east and west comers of the north and south penthouses. Each vault serves (4) 3000A, 277/480V customer switc hboards.
A. OUC Vault A (SE): Switchboards MSCA, MSFA, MSIA, MSLA
B. OUC Vault B (SW): Switchboards MSCB, MSFB, MSIB, MSLB
C. OUC Vault C (NE): Switc hboards MSOA, MSRA, MSUA, MSXA
D. OUC Vault D (NE):

Switc hboards MSOB, MSRB, MSUB, MSXB
In addition, there are (2) generator power transformer vaults in the center of north and south penthouse for emergency power distribution. The center penthouse has several electrical rooms with switchboards and distribution panels that are fed by feeder duct from ma in switc hes in the north a nd south penthouse. These are switc hboards, MSRA, MSFA on the east and MSRB, MSFB on the west.

Fig. 2.1 Typical OUC Primary Switches
Fig. 2.2 Typical OUC 750Kva
Fiq. 2.3 Tvpic al 3000A Switchboard

Technical Narrative

3.0 Power Calculations/ Analysis

The table below indicates the calculated value of power required at each bump out.

Required New Items at Each Bump Out						
	Item	Qty	Amps	Volts	Phase	KVA
1	Disconnect	1	400	480	3	332.2
2	Disconnect	1	200	208	3	72.0
3	Light	3	30	208	1	6.2
Total power at each Bump Out						410.4

Knowing that there are a total of 36 bump outs, and four vaults, the table below has been created to calculate the total power required at each existing OUC vault

Total Power Requirements per Vault		
Total Number of Bump Outs	36	
Total KVA	$14,773.25$	KVA
Total Number of Vaults	4	
KVA Per Vault to be Added	3693.312	KVA
Total Power at Each Vault	3700	KVA

4.0 Existing Utility Power Analysis

Currently, the transfomer capacity of each vault is 4500 kVA . OUC has provided historical peak usage data for the preceding two years. The table below indicates the existing peak (demand) capacity realized at each vault. Based on historical data, it can be seen that the current worst case peak demand hasbeen 35.5% of the OUC transformer rating

Vault	Vault kVA	Demand KVA
A (SE):	4500	1500
B (NE):	4500	1200
C (SW):	4500	1600
D (NW):	4500	900
Total	$\mathbf{1 8 , 0 0 0}$	$\mathbf{5 , 2 0 0}$

Connected Load refers to the sum total rating of the gear physically connected to the Vault. Demand Load (which is a more realistic noticed load) is equal to the sum total of the peak load measured at the transformer vault. OUC generally sizes there transformers to be rated 50% of the peak connected load [connected load diversity]; however will make exceptions based on a customer's historical load used.

The table below represents the calculated existing connected load diversity along with the anticipated new total connected load

OUC Vault Load Data							
Vault	Existing Vault Capacity	Existing Connected Load	Peak Use	Connected Load Diversity for Vault	Demand Load Diversity for Vault	Added Capacity	New Total Connected Load
A (SE):	4500	9965	1500	45%	300%	3700	13665
B (NE):	4500	9965	1200	45%	375%	3700	13665
C (SW):	4500	9965	1600	45%	281%	3700	13665
D (NW):	4500	9965	900	45%	500%	3700	13665

* All Load Numbers are in KVA

- Connected Load Diversity = Existing Vault Capacity/ Existing Connected Load $\times 100 \%$

Demand Load Diversity $=$ Existing Vault Capacity/ Peak Use $\times 100 \%$

Based on this information, it seems as if some upgrade of utility power would be required. OUC also allows a primary metering option where the customer connects to the high volta ge side and provides their own transformers.

5.0 Eectric al Upgrades Concepts

Based on the analysis and investigation of feasible solutions, the following four options have been analyzed
OPION-1 - 12.47 kV primary voltage service to customer owned MV distribution (3-1600A switchboards with integral customer owner transformers).

OPIION-2 - 12.47kV primary voltage service to customer owned MV distribution (2-2500A switchboards with integral customer owner transformers)

OPION-3-480V service from upgraded 833kVA utility transformers (2-2500A switchboards).
OPIION-4 -480V service from existing utility 750 kVA utility transformers serving only 2 catwalks per quadrant (2-1600A switc hboards) This option reduces the original requirement from OCCC Event Utilities; however would allow a reduced connected load on the existing transformer vaults.

Note: Please refer to Appendix sections 1 through 4 foreach option's intended layout and distribution riser diagrams
The a nalysis below is a summary of the a nalysis which was performed over the duration of the study. The a nalysis includes findings from several meetings with the convention center, OUC a nd intemally with the design team:

Option \#1 and \#2, 12.47kV primary service is provided to customer owned switc hboards with integral 277-480V step down transformers The new switc hboards would be located in the mechanical room with concrete encased primary service feeder from new switches in the utility vault. The advantage of this approach is that the full rated capacity can be provided. However, new primary switches a nd fuses will be required. Also, the equipment cost will be signific antly higher than retaining the existing senvice infrastructure. Both option1 and 2 would allow the existing transformers to remain in place and not be affected. The existing meter which is connected after the existing tranformers would be removed and a new primary meter would be located. After further analysis with OUC, it was determined that the primary meter would be required to be mounted outside the building on the ground and a new service cabling would be required to be from outside the building up within new concrete encased enclosures to the new electrical rooms. Based on this, this option ultimately became unfeasible. Please refer to Appendix-5 (OUC Primary Metering requirements and details).

For Option-3, with an additional 3700kVA requested for new power at each vault, OUC had determined they would be required to upgrade each existing 750 kVA to 833 kVA . This is the maximum size transformer that will fit into each vault. With this added load, the total vault capacity will be 5000 KVA versus the existing 4500 KVA . The total cost OUC would charge to the Convention Center for this upgrade would be $\$ 15,000$ per vault or approx. $\$ 60,000$ total for the project. This solution does not provide quite the OUC normally required peak capacity ratio of 50% of the peak connected load, but OUC has indicated that they feel this load will be acceptable since it is a load that will be seen only at small time periods.

Option-4 was quickly ruled out by the OCCC team during an initial review since it reduced the requirements of Event Utilities. This option has only been included in this report as it was originally studied.

6.0 Constructability Review \& Schedule

CONSTRUCTIBIUTY REVIEW
Blue Cord \& Bright Futures Electric provided a feasibility and constructability review of the installation of the different options. Below is the summary report from the contactors:

After reviewing the details of this proposed project, we have determined that the project will have some challenges that will need further research, but the constructability is achievable for the different scenarios. Safety will be one of the biggest factors to consider. All work done on the catwalks and on any lifts will require 100% tie-off at all times. Any time work is being performed in the air, the perimeter of the work area should be roped off and a spotter provided to ensure that no one enters the work zone. NFPA 70E: Standard for electrical safety in the workplace should be adhered to as well and the proper PPE should be worn any time live parts are encountered.

With each scenario, the down time should be minimal, as the new system can be installed complete in each area, and then brought online as each area is finished. The only real downtime for most of the scenarios can be coordinated with OUC and the Convention Center for the best times for the actual tie-in. Please see the narrative for the individual options below that discuss the pros and cons of each scenario.

Option \#1 - The most difficult part of option \#1 will be the concrete encasement of the primary conduits. This conduit run from the OUC transformer vault to the new substations will cross an expansion joint. This poses a problem as it would be difficult to install a concrete encased overhead conduit with an expansion fitting. The only feasible method would be to run PVC with an expansion fitting, pour and form one side, and then provide some expansion material in the concrete joint. This will need to be clarified as acceptable with the Authority having jurisdiction. We recommend having a concrete contractor form and pour these runs. The new unit substations will need to be coordinated with the weight rating on the freight elevators to ensure that the weight does not exceed the elevators capacity. There is truck access to the freight elevators at ground level, so logistically getting the new equipment to the penthouse should not be a problem. From each new switchboard to the each Bus duct tap box, will require (4) 4"conduits. The routing of these conduits is accessible so there should be no problems encountered. The bus duct itself is 1600A Aluminum. Being aluminum will make the installation a lot easier as each piece will be lighter than if it were copper. It will have some installation challenges as it is being installed approximately 8^{\prime} off the side of the catwalk instead of right beside the catwalk as the existing bus duct is. This obviously is more labor intensive. Since the catwalk is 40^{\prime} above the floor, the installation will most likely require 60-80' snorkel lifts for access. The bus duct sections would be staged on the catwalk, and then transferred to the platform of the lift for installation of each piece. As stated before we recommend the work area be roped off and a spotter be placed on the floor below to ensure everyone remains safe.

Option \# 2 - This option is very similar to option \#1 in that it has the same basic items. This option will not have as many new unit substations, but each one will be larger, possibly impacting the weight capabilities of the freight elevators. This option will face the same challenges with the concrete encasement, but will have (1) less conduit to deal with. Unfortunately this option will require more conduits to run to the bus duct area. Instead of (1) 1600A bus duct at each catwalk as in option \#1, this scenario will have (3) 600A bus ducts for each catwalk. This will add a lot more conduit work, and will almost double the overhead work in the high ceiling areas as a result.

Option \#3 - This option solves the problem with the concrete encasement associated with options 1 \& 2. This option will have a lot higher cost on OUC's end as they will be upgrading each of the transformers. Since OUC will be replacing the transformers this has the potential for the longest downtime. This will need to be coordinated with the convention center to ensure that the outage does not fall on any critical windows. As in option \#2, this option will have more conduit work around the catwalks as it utilizes (3) 600A bus ducts for each catwalk area.

Option \#4 - This option is in our eyes the most feasible option for constructability, and will most likely be the cheapest route. This option utilizes the existing transformers, thus removing the need for the concrete encasement. This option utilizes (1) 1600A bus duct each for (2) catwalk's in each quadrant section. This reduces a substantial portion of work over the convention floor. This option obviously does not provide the same power or flexibility that the other options include.

Andrew Heintzelman, Estimating Manager

CONSTRUCTION SCHEDULF

Blue Cord \& Bright Futures Electric provided a most probable Construction Schedule review of Option-3. This scheduling review was based on a field walk through review of design drawings, review of past two years of show schedules which would delay work above the show floor, and past experience. The total duration of construction which the contractor has determined is approximately 580 days Note that this schedule is based on working one quadrant at a time. If a faster schedule was required, the contractor could be released on working more than one quadrant simultaneously with multiple crews. If all four quads were manned simultaneously, the scheduled construction could potentially be accomplished within 200 calendar days; however it is recommended to allow more time for vanous show schedule delays or unforeseen conditions. Please refer to Appendix-6 - proposed construction schedule.

7.0 Cost Estimate

A cost estimate was provided by Montgomery Consulting for the four separate options. This cost only includes the electric al construction cost. Utility power upgrade costs have been added to each option based on communic ation with OUC and rough estimates. The table below represents the most probable cost

OCCC N/S Building Show Power Upgrades			
Cost Estimate Summary			
Option	Construction Cost	Utility Power Upgrades	Total Cost
1	$\$ 8,884,300$	$\$ 2,000,000$	$\$ 10,884,300$
2	$\$ 5,130,200$	$\$ 2,000,000$	$\$ 7,130,200$
3	$\$ 4,724,600$	$\$ 60,000$	$\$ 4,784,600$
4	$\$ 6,324,500$	$\$ 0$	$\$ 6,324,500$

Please refer to Appendix-7 for a full cost estimate detail of the construction cost section.

Technical Narrative

8.0 Summary and Recommendations

To accommodate an additional load of approximately 15,000 KVA during large power draw shows (such asthe Plastics Show), OCCC has engaged Milan Engineering to perform an analysis of the existing power distribution center at the Orange County Convention CenterNorth/South Buildings and determine the most feasible option for necessary upgrades.

Based on research of the distribution system, historical power use, utility company coordination and available space, Milan Engineering has determined the most feasible of the four solutions to be:

OPIION-3

- 480 V service provided from OUC upgraded 833 kVA utility transformers
- Two new 2500A switc hboards located in electrical rooms connected from the utility transformers.
- Conduit and Wire to each Bump Out
- Short run of 600A 480V/3ph Bus Duct at each Bump Out to separate loads.
- Locate (2) Transformers At each bump out forstep down loads (208/120)
- Bump Out equipment to include 400A 480V disc/ 200A 208V disc/ Lighting panel and 30A twist lock outlets 90' on center

The total expected cost for this solution is estimated at $\$ 4,724,600$ [Elec tric al Construction] $+\$ 60,000$ Utility.
The total construction schedule is estimated at a minimum of 200 days and a maximum of 580 days depending on how many quadrants the contractor is allowed to work in simulta neously.

The final recommendation from Milan Engineering is to move forward with design and construction for the project using Option-3.

9.0 Appendix

Technical Narrative

Table of Contents

A1, A2 removed
A. 3 Option-3 Layout a nd Distribution Riser Diagram

A4, A5 removed
A. 6 Orange County Convention Center Show Power Upgrades Proposed Schedule
A. 7 Cost Estimate Package

FEEDER SCHEDULE						
$\begin{aligned} & \text { FEEDER } \\ & \text { TAG } \end{aligned}$	NOMINAL	No. OF CONDUIT SETS	CONDUIT SIZES (INCHES)	PHASE Conductors size PER SET	NEUTRAL CONDUCTORS SIZE PER SET	EQPT GRD. CONDUCTORS SIZE PER SET
20x	20	1	3/4"	3\#12	1\#12	$1 \# 12$
30x	30	1	3/4"	3\#10	1\#10	1\#10
40x	40	1	3/4"	3\#8	1\#8	1\#8
50x	50	1	$3 / 4^{\prime \prime}$	3\#8	1\#8	1\#8
60x	60	1	1 "	3\#6	$1 \# 6$	1\#8
70x	70	1	$1^{\prime \prime}$	3\#4	1\#4	1\#8
80x	80	1	$1^{\prime \prime}$	3\#3	1\#3	\#8
90x	90	1	11/4"	3\#3	1\#3	1\#8
100x	100	1	11/4"	3\#2	1\#2	1\#8
125X	125	1	11/4"	3\#1	1\#1	1\#6
150x	150	1	11/2"	3\#1/0	1\#1/0	1\#6
175x	175	1	$2{ }^{\prime \prime}$	3\#2/0	1\#2/0	1\#6
$200 \times$	200	1	$2^{\prime \prime}$	3\#3/0	1\#3/0	1\#6
225x	225	1	$21 / 2^{\prime \prime}$	3\#4/0	1\#4/0	1\#4
$250 \times$	250	1	$3^{\prime \prime}$	3\#250kcmil	1\#250kcmil	$1 \# 4$
300 x	300	1	$3^{\prime \prime}$	$3 \# 350 \mathrm{kcmil}$	1\#350kcmil	1\#4
350x	350	1	$31 / 2^{\prime \prime}$	$3 \# 500 \mathrm{kcmil}$	3\#500kcmil	1\#2
400x	400	1	$4^{\prime \prime}$	34600 kcmil	1\#600kcmil	1\#2
500x	500	2	$21 / 2^{\prime \prime}$	$3 \# 250 \mathrm{kcmil}$	1\#250kcmil	1\#1
600x	600	2	$3^{\prime \prime}$	3\#350kcmil	1\#350kcmil	1\#1
700x	700	2	$3^{\prime \prime}$	3\#500kcmil	1\#500kcmil	1\#1
$800 \times$	800	2	$4{ }^{\prime \prime}$	3\#600kcmil	1\#600kcmil	1\#1/0
1000x	1000	3	$4^{\prime \prime}$	3\#400kcmil	1\#400kcmil	1\#2/0
1200x	1200	3	$4^{\prime \prime}$	34600 kcmil	1\#600kcmil	1\#3/0
1600 X	1600	4	$4{ }^{\text {" }}$	$3 \# 600 \mathrm{kcmil}$	14600 kcmil	1\#4/0
$2000 \times$	2000	5	$4{ }^{\prime \prime}$	$3 \# 600 \mathrm{kcmil}$	1\#600kcmil	1\#250kcmil
2500x	2500	6	$4{ }^{\prime \prime}$	$3 \# 600 \mathrm{kcmil}$	1\#600kcmil	1\#350kcmil
3000 x	3000	8	$4^{\prime \prime}$	3\#500kcmil	1\#500kcmil	1\#400kcmil
4000x	4000	10	$4^{\prime \prime}$	$3 \# 600 \mathrm{kcmil}$	14600 kcmil	1\#500kcmil
NOTES: 1. FEEDER LEGEND 2. WIRE TYPE: DUAL-RATED, THHM/THWN, COPPER, STRANDED UNLESS OTHERWISE NOTED.						

FEEDER SCHEDULE

$\text { Corange County } \begin{gathered} \text { Onvention Center } \\ \text { coser } \end{gathered}$		Orange County Convention Center North/South Building
		Show Power Upgrades

Feeder Schedule E6-10

Orange County Convention Center Show Power Upgrades Proposed Schedule

ACTVITY	DURATION	START DATE	FINISH DATE	2015						2016												2017												2018														
										JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	Nov	DEC	JAN	${ }_{\text {feB }}$	MAR																								
Design \& Material Procurement	155	7/27/2015	2/26/2016																																													
Relase Gear for NE Area	1	1/18/2016	1/1/8/2016							1						-																																
Release Gear for N Area	1	1/1/6/2017	1/1/6/2017													1						I																										
Release Gear for SW Area	1	7/17/2017	7/17/2017																									1																				
Construction NE ARea	145	2/29/2016	9/1/20126																																													
OUC U Pgrade Existing XFMR's	${ }_{2}^{20}$	2/292/2016	3/25/2016																																													
Set New SWBD's	5	4/4/2016	4/8/2016																																													
Run New Feeder Bus duct	10	4/11/2016	4/22/2016																																													
Run New Catwalk Bus duct	20	4/25/2016	5/20/2016																																													
Run Feeders to Catwalk	15	5/23/2016	6/10/2016																																													
Set new Gear at Catwalk Bump outs	20	6/13/2016	7/8/2016																																													
Final Inspections	2	8/8/2016	8/9/2016																																													
Contengency Time to Work Around Shows	30	8/8/2016	9/16/2016																																													
Construction NW Area	145 20	8/29/2016	${ }^{3 / 177 / 2017} 9$																																													
OUC C Uprade Existing XFMR's	20 5	8/292/2016	9/3/3/2016																																													
Set New SWBD's	5	10/3/2016	10/7/2016																																													
Run New Feeder Bus duct	10	10/10/2016	10/21/2016																																													
Run New Catwalk Bus duct	20	10/24/2016	11/18/2016																																													
Run Feeders to Catwalk	15 20	11/21/2016	12/9/2016																																													
Misc. Electrical work associate w with Bump outs	20	1/9/2017	2/3/2017																																													
Final Inspections	2	2/6/2017	2/7/2017																																													
Contengency Time to Work Around Shows	$\begin{array}{r}30 \\ 145 \\ \hline\end{array}$	2/6/2017	3/17/2017																																													
OUC U Uggrade Existing XFMR's	20	2/27/2017	3/24/2017																																													
Gear Arive on Site	5	3/27/2017	3/31/2017																																													
Set New SWBB's	5	4/3/2017	4/7/2017																																													
$\frac{\text { Run New Feeder Bus duct }}{\text { Run New Catwalk Bus duct }}$	10	4/10/2017	4/21/2017																																													
Run Feeders to Catwalk	15	5/22/2017	6/9/2017																																													
Set new Gear at Catwalk Bump outs	20	6/12/2017	7/7/2017																																													
Misc. Electrical work associated with Bump outs	20	7/10/2017	8/4/2017																																													
Final Inspections	${ }_{30}$	8/7/2017	88/82017																																													
Construction SW Area	145	8/28/2017	3/16/2018																																													
OUC Upgrade Existing XFMR's	20 20	8/28/2017	9/2/2/2017																																													
Build New Electrical Room	$\stackrel{20}{5}$	8/28/2017	9/22/21217																																													
Set New SWBD's	5	10/2/2017	10/6/2017																																													
$\frac{\text { Run New Feeder Bus duct }}{\text { Run New Catwalk }}$	10	10/9/2017	10/20/2017																																													
$\frac{\text { Run New Catwalk Bus duct }}{\text { Run Feeders to Catwalk }}$	20 15	10/23/2017	11/17/2017																																													
Set new Gear at Catwalk Bump outs	20	12/11/2017	1/5/2018																																													
Misc. Electrical work associated with Bump outs	20	1/8/2018	2/2/2018																																													
Final Inspections	2	2/5/2018	2/6/2018																																													
Contengency Time to Work Around Shows	30	2/5/2018	3/16/2018																																													

Orange County, Florida Cost Estimate Package
 Convention Center

N/S Building
Show Power Upgrades
June 4, 2015

Owner:
Orange County Government The Orange County Courthouse 425 N. Orange Ave Orlando, FL 32801

Engineer:

Milan Engineering
925 S Semoran Blvd, Ste 100
Winter Park, Florida 32792
Tel: 407.678.2055
Fax: 407.678.2088
Web: www.milan-engineering.com

Cost Consulting: Montgomery Consulting Group, Inc. 501 S. New York Avenue, Suite 210
Winter Park, FL 32789
Tel: 407.539.7030
Fax: 407.539.7035
Web: www.mcgi-us.com

ORANGE COUNTY, FL

ORANGE COUNTY CONVENTION CENTER
NORTH/SOUTH BUILDING SHOW POWER UPGRADES
ASSESSMENT ESTIMATE
JUNE 4, 2015
ESTIMATE SUMMARY - OPTION \#3

ORANGE COUNTY, FLORIDA

ORANGE COUNTY CONVENTION CENTER

NORTH/SOUTH BUILDING SHOW POWER UPGRADES
 PRELIMINARY ESTIMATE
 JUNE 4, 2015

DETAIL ESTIMATE - OPTION "3"

DETAIL ESTIMATE - OPTION "3"										
Line	CSI	Description	Quantity	Unit	Unit Material Cost	$\begin{aligned} & \text { Unit } \\ & \text { Labor } \\ & \text { Hours } \end{aligned}$	Labor Rate	Extension	Subtotal	Division Subtotal
1	01	GENERAL REQUIREMENTS							\$158,512.16	\$158,512
2		MOBILIZATION / DEMOBILIZATION (5\%)	1	LS	\$158,512.16	0	\$0.00	\$158,512.16		
3										
4	26	ELECTRICAL - OPTION \#3								\$3,170,243
5										
6		ARC FLASH							\$40,000.00	
7		ARC FLASH STUDY FOR EA LOCATIONS	4	EA	\$10,000.00	0	\$0.00	\$40,000.00		
8										
9		CONDUITS, FITTINGS AND BOXES							\$499,859.88	
10		3/4" EMT	17,000	LF	\$0.35	0.05	\$32.00	\$33,150.00		
11		3/4" EMT COUPLINGS	1,702	EA	\$0.18	0.1	\$32.00	\$5,752.76		
12		3/4" EMT CONNECTORS	588	EA	\$0.15	0.12	\$32.00	\$2,346.12		
13		3/4" EMT STRAPS AND ANCHORS	80	EA	\$0.15	0.1	\$32.00	\$268.00		
14		3/4" U CHANEL CONDUIT SUPPORTS	1,620	EA	\$0.35	0.12	\$32.00	\$6,787.80		
15		U CHANNEL WITH PIPE CLAMPS	324	EA	\$6.00	0.4	\$32.00	\$6,091.20		
16		$1{ }^{1 \prime}$ EMT NIPPLES	20	LF	\$0.60	0.06	\$32.00	\$50.40		
17		1" EMT CONNECTORS	24	EA	\$0.20	0.25	\$32.00	\$196.80		
18		3" EMT	31,440	LF	\$2.92	0.2	\$32.00	\$293,020.80		
19		3" EMT ELBOWS	136	EA	\$18.00	0.25	\$32.00	\$3,536.00		
20		3"EMT COUPLINGS	3,280	EA	\$25.00	0.05	\$32.00	\$87,248.00		
21		3" EMT CONNECTORS	400	EA	\$22.00	0.35	\$32.00	\$13,280.00		
22		3" BUSHINGS	400	EA	\$0.75	0.1	\$32.00	\$1,580.00		
23		3" EMT U CHANNEL STRAPS	3,128	EA	\$1.80	0.1	\$32.00	\$15,640.00		
24		U CHANNEL RACKS WITH ALL THREAD AND HANGERS	232	EA	\$55.00	1	\$32.00	\$20,184.00		
25		CORE DRILL ELECTRIC ROOM FLOORS AND FIRE SEAL	72	EA	\$85.00	2	\$32.00	\$10,728.00		
26										
27		FLEXIBLE CONDUIT AND FITTINGS							\$14,355.36	
28		1" FLEXIBLE CONDUIT	144	LF	\$1.85	0.08	\$32.00	\$635.04		
29		1" FLEXIBLE CONDUIT CONNECTORS	72	EA	\$2.50	0.25	\$32.00	\$756.00		
30		$11 / 4$ " FLEXIBLE CONDUIT	144	LF	\$2.25	0.09	\$32.00	\$738.72		
31		11/4" FLEXIBLE CONDUIT CONNECTORS	72	EA	\$3.80	0.3	\$32.00	\$964.80		
32		$11 / 2^{\prime \prime}$ FLEXIBLE CONDUIT	144	LF	\$2.65	0.1	\$32.00	\$842.40		
33		11/2" FLEXIBLE CONDUIT CONNECTORS	72	EA	\$4.10	0.35	\$32.00	\$1,101.60		

ORANGE COUNTY, FLORIDA

ORANGE COUNTY CONVENTION CENTER

NORTH/SOUTH BUILDING SHOW POWER UPGRADES
 PRELIMINARY ESTIMATE
 JUNE 4, 2015

DETAIL ESTIMATE - OPTION "3"

Line	CSI	Description	Quantity	Unit	Unit Material Cost	Unit Labor Hours	Labor Rate	Extension	Subtotal	Division Subtotal
34		2" FLEXIBLE CONDUIT	144	LF	\$3.50	0.12	\$32.00	\$1,056.96		
35		2" FLEXIBLE CONDUIT CONNECTORS	72	EA	\$6.00	0.45	\$32.00	\$1,468.80		
36		4" FLEXIBLE CONDUIT	144	LF	\$12.00	0.18	\$32.00	\$2,557.44		
37		4" FLEXIBLE CONDUIT CONNECTORS	72	EA	\$38.00	0.65	\$32.00	\$4,233.60		
38										
39		JUNCTION AND PULL BOXES							\$19,370.70	
40		4'SQ BOXES	30	EA	\$0.52	0.15	\$32.00	\$159.60		
41		4'SQ BOX BLANK COVERS	30	EA	\$0.25	0.1	\$32.00	\$103.50		
42		4 11/15" JUNCTION BOXES	60	EA	\$0.75	0.15	\$32.00	\$333.00		
43		$411 / 15^{\prime \prime}$ JUNCTION BOX RS COVERS (30AMP RECEPTACLES)	60	EA	\$0.45	0.18	\$32.00	\$372.60		
44		PIPE SUPPORTS FOR BOXES	90	EA	\$1.80	0.15	\$32.00	\$594.00		
45		$24 " \times 24 " \times 10 "$ PULL BOX WITH SCREW COVER	112	EA	\$35.00	2	\$32.00	\$11,088.00		
46		PULL BOX HANGERS	112	EA	\$28.00	1	\$32.00	\$6,720.00		
47										
48		CONDUCTORS AND CABLE (ALL CABLES ARE STRANDED)							\$873,627.40	
49		\#12 THHN/THWN	7,200	LF	\$0.10	0.006	\$32.00	\$2,102.40		
50		\#10 THHN/THWN	81,000	LF	\$0.15	0.007	\$32.00	\$30,294.00		
51		\#8 THHN/THWN	860	LF	\$0.25	0.008	\$32.00	\$435.16		
52		\#6 THHN/THWN	1,200	LF	\$0.35	0.009	\$32.00	\$765.60		
53		\#3 THHN/THWN	1,440	LF	\$0.74	0.007	\$32.00	\$1,388.16		
54		\#2 THHN/THWN	1,800	LF	\$0.93	0.008	\$32.00	\$2,134.80		
55		\#1 THHN/THWN	34,000	LF	\$1.18	0.009	\$32.00	\$49,912.00		
56		\#1/0 THHN/THWN	1,440	LF	\$1.40	0.012	\$32.00	\$2,568.96		
57		\#3/0 THHN/THWN	1,440	LF	\$2.20	0.014	\$32.00	\$3,813.12		
58		\#350 THHN/THWN	127,000	LF	\$4.83	0.035	\$32.00	\$755,650.00		
59		\#400 THHN/THWN	640	LF	\$5.50	0.035	\$32.00	\$4,236.80		
60		\#500 THHN/THWN	2,560	LF	\$6.82	0.035	\$32.00	\$20,326.40		
61										
62		CABLE CONNECTORS TAP BOXES							\$42,224.00	
63		\#1 LUGS WITH BOLTS AND NUTS	72	EA	\$18.00	1	\$32.00	\$3,600.00		
64		\#350 LUGS WITH BOLT AND NUTS	288	EA	\$35.00	1.5	\$32.00	\$23,904.00		
65		\#400 LUGS WITH BOLT AND NUTS	32	EA	\$40.00	1.5	\$32.00	\$2,816.00		
66		\#500 LUGS WITH BOLT AND NUTS	128	EA	\$45.00	1.5	\$32.00	\$11,904.00		
Montgomery Consulting Group, Inc. www.mcgi-us.com			Option 3-16					6/4/2015 - Page 23		

ORANGE COUNTY, FLORIDA

ORANGE COUNTY CONVENTION CENTER

NORTH/SOUTH BUILDING SHOW POWER UPGRADES
 PRELIMINARY ESTIMATE
 JUNE 4, 2015

DETAIL ESTIMATE - OPTION "3"

BUS DUCT, TAP BOXES, SWITCHES AND FUSES							\$493,372.80
600 AMP BUS DUCT 3 PHASE 4 WIRE WITH GROUND 277/480V N-3R	720	LF	\$350.00	0.5	\$32.00	\$263,520.00	
600 AMP TAP BOXES N-3R (INCLUDED IN QUOTE)	36	EA	\$0.00	10	\$32.00	\$11,520.00	
600 AMP DUCT HANGERS SINGLE ROD SUPPORT	180	EA	\$12.00	0.25	\$32.00	\$3,600.00	
100 AMP FUSED BUS DUCT SWITCHES	72	EA	\$800.00	2	\$32.00	\$62,208.00	
400 AMP FUSED BUS DUCT SWITCHES	36	EA	\$3,400.00	6	\$32.00	\$129,312.00	
80 AMP FUSES 480V	216	EA	\$15.00	0.15	\$32.00	\$4,276.80	
400 AMP FUSES 480 V	108	EA	\$45.00	0.25	\$32.00	\$5,724.00	
HANGER ROD AND BEAM CLAMPS	180	EA	\$15.00	1	\$32.00	\$8,460.00	
ANTI SWING BRACKETS WITH DUCT BOLT DOWN CLIPS (EVERY 20 FEET)	72	EA	\$18.00	1.5	\$32.00	\$4,752.00	
FEEDER DUCT							\$365,728.00
3000 AMP FEEDER DUCT	390	LF	\$640.00	0.8	\$32.00	\$259,584.00	
3000 AMP FEEDER DUCT 90\% ELBOWS	16	EA	\$2,875.00	2	\$32.00	\$47,024.00	
3000 AMP FEEDER DUCT PANEL ADOPTERS	8	EA	\$3,075.00	2	\$32.00	\$25,112.00	
3000 AMP TAP BOXES	8	EA	\$3,400.00	8	\$32.00	\$29,248.00	
FEEDER DUCT RACK SUPPORTS	64	EA	\$25.00	1	\$32.00	\$3,648.00	
SLEEVE VAULT, ELECTRIC ROOM WALLS AND FIRE SEAL	8	EA	\$75.00	2	\$32.00	\$1,112.00	
ELECTRICAL DISTRIBUTION EQUIPMENT							\$327,024.00
3000 AMP 3 POLE 4 WIRE SWITCHBOARD 277/480V	8	EA	\$37,950.00	28	\$32.00	\$310,768.00	
3000/3 480 MCB TERMINATION	8	EA	\$0.00	18	\$32.00	\$4,608.00	
600/3 BREAKER TERMINATION	36	EA	\$0.00	4	\$32.00	\$4,608.00	
60/3 BREAKER TERMINATION	8	EA	\$0.00	1	\$32.00	\$256.00	
SURGE PROTECTION DEVICES	8	EA	\$800.00	1.5	\$32.00	\$6,784.00	
TRANSFORMERS DRY TYPE							\$271,728.00
45KVA 480 TO 120/208V	36	EA	\$2,500.00	12	\$32.00	\$103,824.00	
75KVA 480 T0 120/208V	36	EA	\$3,800.00	20	\$32.00	\$159,840.00	
TRANSFORMER RACKS, ROD AND ANCHOR MATERIAL	72	EA	\$48.00	2	\$32.00	\$8,064.00	

ORANGE COUNTY, FLORIDA

ORANGE COUNTY CONVENTION CENTER

NORTH/SOUTH BUILDING SHOW POWER UPGRADES
 PRELIMINARY ESTIMATE
 JUNE 4, 2015

DETAIL ESTIMATE - OPTION "3"

DISCONNECT, FUSES AND CONTACTORS							\$149,846.40
200 AMP FUSED 3 POLE DISCONNECT N-1 250V	36	EA	\$225.00	4	\$32.00	\$12,708.00	
400 AMP FUSED 3 POLE DISCONNECT N-1 480V	36	EA	\$800.00	12	\$32.00	\$42,624.00	
200 AMP FUSES 250 V	108	EA	\$20.00	0.15	\$32.00	\$2,678.40	
400 AMP FUSES 480V	108	EA	\$45.00	0.25	\$32.00	\$5,724.00	
CONTACTORS 150 AMP MCB 3 PHASE 4 WIRE 120/208V 3P 4W	36	EA	\$1,800.00	8	\$32.00	\$74,016.00	
DISCONNECT RACKS, ROD AND ANCHOR MATERIAL	108	EA	\$48.00	2	\$32.00	\$12,096.00	
WIRING DEVICES AND CONTROLS							\$4,635.04
30AMP 5 WIRE TWIST LOCK RECEPTACLES	60	EA	\$35.00	0.5	\$32.00	\$3,060.00	
EPO BUTTONS IN N-1 ENCLOSURES	8	EA	\$85.00	0.59	\$32.00	\$831.04	
epo Wall labels	8	EA	\$20.00	0.5	\$32.00	\$288.00	
MODIFY AND CONNECT NEW EPO'S	8	EA	\$25.00	1	\$32.00	\$456.00	
GROUNDING							\$34,765.16
3000 AMP SWITCHBOARDS (TO EXISTING GROUND BUS)							
1" EMT	360	LF	\$0.60	0.08	\$32.00	\$1,137.60	
1" EMT COUPLINGS	36	EA	\$0.24	0.06	\$32.00	\$77.76	
1" EMT CONNECTORS	24	EA	\$0.20	0.25	\$32.00	\$196.80	
1" EMT STRAPS AND ANCHORS	50	EA	\$0.18	0.12	\$32.00	\$201.00	
4/0 LUGS ,BOLTS WASHERS AND NUTS	12	EA	\$8.00	1	\$32.00	\$480.00	
4/0 GROUNDS WIRE	500	FT	\$2.80	0.015	\$32.00	\$1,640.00	
GROUND 45 KVA TRANSFORMERS ALLOWANCE	36	EA	\$150.00	8	\$32.00	\$14,616.00	
GROUND 75 KVA TRANSFORMERS ALLOWANCE	36	EA	\$200.00	8	\$32.00	\$16,416.00	
LIGHT CONTROL CABLING (FROM NEW CONTACTORS TO EXISTING PANELS)							\$8,583.88
3/4" EMT	1,800	LF	\$0.35	0.05	\$32.00	\$3,510.00	
3/4" EMT COUPLINGS	180	EA	\$0.18	0.1	\$32.00	\$608.40	
3/4" EMT CONNECTORS	72	EA	\$0.15	0.12	\$32.00	\$287.28	
3/4" EMT STRAPS AND ANCHORS	180	EA	\$0.45	0.12	\$32.00	\$772.20	
\#12 THHN/THWN	5,500	LF	\$0.10	0.006	\$32.00	\$1,606.00	
CONTROL VOLTAGE RELAYS	36	EA	\$18.00	1	\$32.00	\$1,800.00	

ORANGE COUNTY, FLORIDA
ORANGE COUNTY CONVENTION CENTER

NORTH/SOUTH BUILDING SHOW POWER UPGRADES

PRELIMINARY ESTIMATE
JUNE 4, 2015
DETAIL ESTIMATE - OPTION "3"

DETAIL ESTIMATE - OPTION "3"										
Line	CSI	Description	Quantity	Unit	Unit Material Cost	Unit Labor Hours	Labor Rate	Extension	Subtotal	Division Subtotal
132										
133		COMMUNICATION AND DATA - STILL IN DESIGN - ALLOWANCE							\$4,594.56	
134		DATA OUTLET PLATE WITH 1-CAT 6 JACK DEVICE	12	EA	\$5.00	0.25	\$32.00	\$156.00		
135		CAT 6 JUMPERS	12	EA	\$8.00	0.15	\$32.00	\$153.60		
136		CAT 6 CONNECTOR	12	EA	\$2.00	0.15	\$32.00	\$81.60		
137		CAT 6 CABLE	1,500	LF	\$0.28	0.004	\$32.00	\$612.00		
138		3/4" EMT	1,200	LF	\$0.35	0.05	\$32.00	\$2,340.00		
139		3/4" EMT COUPLINGS	120	EA	\$0.18	0.1	\$32.00	\$405.60		
140		3/4" EMT CONNECTORS	24	EA	\$0.15	0.12	\$32.00	\$95.76		
141		3/4" EMT STRAPS AND ANCHORS	120	EA	\$0.15	0.1	\$32.00	\$402.00		
142		TERMINATE IN EXISTING PATCH PANEL	12	EA	\$0.00	0.5	\$32.00	\$192.00		
143		LABEL CAble and Patch panel	12	LF	\$5.00	0.25	\$32.00	\$156.00		
144										
145		RENTAL EQUIPMENT AND MATERIAL HANDLING							\$20,528.00	
146		MAN LIFTS	1	LS	\$12,000.00	2	\$32.00	\$12,064.00		
147		EQUIPMENT LIFTING	1	LS	\$2,000.00	2	\$32.00	\$2,064.00		
148		MATERIAL HANDLING	1	LS	\$0.00	200	\$32.00	\$6,400.00		
149										
150	I	TOTAL CONSTRUCTION COST						\$3,328,755	\$3,328,755	\$3,328,755

