#### September 17, 2014

#### BOARD OF COUNTY COMMISSIONERS ORANGE COUNTY, FLORIDA ADDENDUM NO. 4 / IFB Y14-7035-PH

#### ALLISON OAKS 3893A, GREENVIEW PINES 3887, BRADFORD COVE 3290, ROUSE AND UNIVERSITY 3365 AND LENA STREET 3309 PUMP STATIONS IMPROVEMENTS BID OPENING DATE: September 25, 2014

This Addendum is hereby incorporated into the bid documents of the project referenced above. The following items are clarifications, corrections, additions, deletions and/or revisions to and shall take precedence over the original documents. Additions are indicated by <u>underlining</u>, deletions are indicated by <u>strikethrough</u>.

The bid opening remains September 25, 2014 at 2:00 P.M.

#### A. CLARIFICATIONS

- 1. Q: Appendix A of the Specifications contains a geotechnical report for Rouse and University PS 3365, and Lena Street PS 3309. Are there any geotechnical reports available for the other pump stations?
  - A: There is additional information available for only Allison Oaks PS 3893A and Greenview Pines PS 3887. These documents, which are attached and dated this addendum are named as follows:
    - Geotechnical Engineering Report for Allison Oaks Pump Station, prepared by Nodarse and Associates, Inc.
    - NPDES Groundwater Testing and Database Search for Allison Oaks Pump Station, prepared by Nodarse and Associates, Inc.,
    - Geotechnical Engineering Report for Greenview Pines Pump Station, prepared by Nodarse and Associates, Inc.
    - NPDES Groundwater Testing and Database Search for Greenview Pines Pump Station, prepared by Nodarse and Associates, Inc.

## 2. Q: Plan Sheet C-101 shows we are to install 6" x 8" curbing with a 4" reveal, should that be 6" x 18"?

A: Yes, the call out on Sheet C-101 should read 6" x 18", not 6" x 8". This Plan Sheet has been corrected in this Addendum

- 3. Q: What type of wet well liner is existing in the Rouse and University PS 3365?
  - A: The existing wet well liner is HDPE. This liner is damaged and is scheduled to be removed in this project.
- 4. Q: It appears that the Rouse and University PS 3365 is the only pump station that has an existing wet well liner, is this correct?
  - A: Yes, the Rouse and University PS 3365 is the only wet well that has an existing wet well liner.

#### **B. PROJECT MANUAL**

#### TABLE OF CONTENTS

#### Page iv, APPENDICES

Add: Under the heading "APPENDIX A - GEOTECHNICAL REPORT", add the following text:

<u>Geotechnical Engineering Report for Allison Oaks Pump Station, prepared</u> by Nodarse and Associates, Inc.

NPDES Groundwater Testing and Database Search for Allison Oaks Pump Station, prepared by Nodarse and Associates, Inc.,

<u>Geotechnical Engineering Report for Greenview Pines Pump Station,</u> prepared by Nodarse and Associates, Inc.

NPDES Groundwater Testing and Database Search for Greenview Pines Pump Station, prepared by Nodarse and Associates, Inc.

#### APPENDIX A

Add: Add the above referenced documents to Appendix A of the Specifications, which are attached and dated this Addendum.

#### C. PROJECT DRAWINGS

#### SHEET C-101

- Delete: Delete the text that points to the concrete curb that reads "CONST 6" X 8" CONC CURB W/ 4" REVEAL AND WEEP HOLES WHERE APPLICABLE"
- Add: Add in its place the following note: "<u>CONST 6" X 18" CONC CURB W/ 4"</u> <u>REVEAL AND WEEP HOLES WHERE APPLICABLE</u>"

#### D. ACKNOWLEDGEMENT OF ADDENDA

- a. The Proposer shall acknowledge receipt of this addendum by completing the applicable section in the solicitation or by completion of the acknowledgement information on the addendum. Either form of acknowledgement must be completed and returned not later than the date and time for receipt of proposal.
- b. All other terms, conditions and specifications remain the same.
- c. Receipt acknowledged by:

Authorized Signature

Date Signed

Title

Name of Firm

# **Geotechnical Engineering Report**

## Allison Oaks Pump Station No. F3215

Winter Park, Florida

September 21, 2012 Terracon Project No. AK127001

#### **Prepared for:**

Orange County Public Utilities-Engineering Division Orlando, Florida

#### **Prepared by:**

Nodarse & Associates A Terracon Company Winter Park, Florida

Offices Nationwide Employee-Owned nodarse.com terracon.com

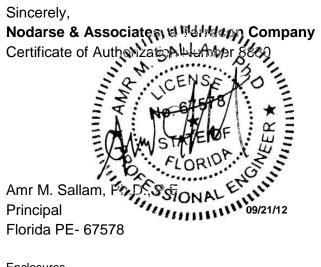


September 21, 2012

Orange County Public Utilities – Engineering Division 9150 Curry Ford Road Orlando, Florida 32815



Attn: Mr. Jeff Nazario


Re: Geotechnical Engineering Report Allison Oaks Pump Station No. F3215 Winter Park, Florida Terracon Project Number: AK127001

Dear Mr. Nazario:

Nodarse & Associates, a Terracon Company (Terracon) has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with our proposal number PH1120210 dated May 2, 2012.

This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of the proposed wet well pump station.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.



Jay W. Casper, P.E. Senior Associate Florida PE - 36330

Enclosures cc: 1 – Client (PDF) 1 – File

Nodarse & Associates, a Terracon Company 1675 Lee Road Winter Park, Florida 32789 P [407] 740 6110 F [407] 740 6112 terracon.com

| EXECL | JTIVE S | SUMMARY                                 | i |
|-------|---------|-----------------------------------------|---|
| 1.0   | INTRO   | DUCTION                                 | 1 |
|       |         |                                         |   |
|       | 2.1     | Project Description                     | 1 |
|       | 2.2     | Site Location and Description           | 2 |
| 3.0   | SUBSL   | JRFACE CONDITIONS                       | 2 |
|       | 3.1     | USDA Soil Survey                        | 2 |
|       | 3.2     | Typical Profile                         | 2 |
|       |         | Groundwater                             |   |
| 4.0   | RECO    | MMENDATIONS FOR DESIGN AND CONSTRUCTION | 4 |
|       | 4.1     | Geotechnical Considerations             | 4 |
|       |         | 4.1.1 Pump Station:                     | 4 |
|       |         | 4.1.2 Pipelines:                        | 6 |
|       |         | 4.1.4 General Site Preparation          |   |
|       |         | 4.1.5 Temporary Dewatering:             |   |
| 5.0   | GENE    | RAL COMMENTS                            | 7 |

#### **APPENDIX A – FIELD EXPLORATION**

| Exhibit A-1        | Site Location Map             |
|--------------------|-------------------------------|
| Exhibit A-2        | Soil Survey Map               |
| Exhibit A-3        | Soil Survey Descriptions      |
| Exhibit A-4        | Boring Location Plan          |
| Exhibit A-5        | Field Exploration Description |
| Exhibit A-6 to A-9 | Boring Logs                   |
|                    |                               |

#### **APPENDIX B – SUPPORTING INFORMATION**

#### **APPENDIX C – SUPPORTING DOCUMENTS**

| Exhibit C-1 | General Notes                      |
|-------------|------------------------------------|
| Exhibit C-2 | Unified Soil Classification System |

#### **APPENDIX D – SUSTAINABILITY CONSIDERATIONS**

Exhibits D-1 to D-3 Sustainability Considerations



#### **EXECUTIVE SUMMARY**

A geotechnical investigation has been performed for the proposed Allison Oaks Pump Station planned at 3120 Patel Drive in Winter Park, Orange County, Florida. Three (3) borings, designated PB-1, PB-2, and TB-1 have been performed to depths of between 15 and 50 feet below the existing ground surface within the pump station areas. This report specifically addresses the recommendations for the proposed pump station wet well, manhole, and pipelines.

Based on the information obtained from our geotechnical exploration, it appears that the subsoil and groundwater conditions at the site are suitable for the proposed developed and construction. The following geotechnical considerations were identified:

- Temporary dewatering will be required for construction of the pump station. Dewatering the pump station area will require the use of a properly designed well point system. The dewatering system should not be turned off until the pump station has enough dead weight to counteract an uplift force calculated based on a head of water measured from the base of the pump station to the estimated Seasonal High Water Level (SHWL).
- Our borings did not encounter unsuitable soils such as muck, clay, high silts, and debris, which might cause problems during construction. However, if encountered, unsuitable soils should be completely removed to a minimum depth of 18 inches below the pump station pipelines bottom, replaced with well-draining granular sands with a fines content of less than 5 percent or less passing the No. 200 U.S. Standard sieve by weight, and compacted to a firm and unyielding state.
- The proposed structure may be supported on shallow footings bearing on the existing site soil only if the proper site preparations are following according to the appropriate sections of this report.
- On-site native soils typically appear suitable for use as general engineered fill.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

#### GEOTECHNICAL ENGINEERING REPORT ALLISON OAKS PUMP STATION NO. F3125 WINTER PARK, FLORIDA Terracon Project No. AK127001 September 21, 2012

#### **1.0 INTRODUCTION**

A geotechnical engineering report has been prepared for the proposed Allison Oaks Pump Station which will be located at 3120 Patel Drive in Winter Park, Orange County, Florida as shown on the Topographic Vicinity Map included as Exhibit A-1 in Appendix A. Three (3) borings, designated PB-1, PB-2, and TB-1 have been performed to depths of between 15 and 50 feet below the existing ground surface in the proposed pump station and manhole area. Logs of the borings along with a site location plan, geologic map and boring location plans are included in Appendix A of this report.

The purpose of the geotechnical services was to provide information and geotechnical engineering recommendations relative to the proposed pump station wet well, gravity pipeline, and a concrete drive way. The followings will be provided:

- Field exploration method
- Subsurface soil and groundwater conditions
- Presentation of field and laboratory information in graphical format
- Recommendations for general earthwork
- Recommendations for pump station design and construction
- Recommendations for gravity pipe line earthwork

#### 2.0 **PROJECT INFORMATION**

#### 2.1 **Project Description**

| Item                | Description                                                                                                                   |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Site layout         | See Appendix A, Exhibit A-4: Boring Location Plan                                                                             |  |  |  |  |  |
| Construction        | One wet well to a depth of about 14 feet below existing grade and 6 feet in diameter with associated pipelines and man holes. |  |  |  |  |  |
| Grading             | Fill – fine grading, estimated at up to approximately 1 foot.                                                                 |  |  |  |  |  |
| Cut and fill slopes | Excavation per OSHA requirements or a license professional engineer for braced excavations.                                   |  |  |  |  |  |



#### 2.2 Site Location and Description

| Item                  | Description                                                                                                                                                                                                                                                                |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location              | The project will be located at 3120 Patel Drive in Winter Park, Orange County, Florida                                                                                                                                                                                     |
| Existing improvements | No existing structures on site. A previous structure on site has been removed.                                                                                                                                                                                             |
| Current ground cover  | Grass covered with limited trees.                                                                                                                                                                                                                                          |
| Existing topography   | The USGS topographic quadrangle map "Orlando East, Florida" depicts the developed topography as nearly level, with original ground surface elevations ranging from about elevation +65 feet to +70 feet referencing the National Geodetic Vertical Datum of 1929 (NGVD29). |

#### 3.0 SUBSURFACE CONDITIONS

#### 3.1 USDA Soil Survey

The Soil Survey of Orange County, Florida, as prepared by the United States Department of Agriculture (USDA), Soil Conservation Service (SCS; later renamed the Natural Resource Conservation Service - NRCS), dated October 1981, identifies the soil types at the project site as Zofl-Urban land complex (55). It should be noted that the Soil Survey is not intended as a substitute for site-specific geotechnical exploration; rather it is a useful tool in planning a project scope in that it provides information on soil types likely to be encountered. A copy of the pertinent section of the Soil Survey map is included as Exhibit A-2 in Appendix A. Descriptions of soil map units are included in Appendix A as Exhibit A-3.

#### 3.2 Typical Profile

Based on the results of the borings, subsurface conditions on the project site can be generalized as follows:

| Stratum | Approximate Depth to<br>Bottom of Stratum<br>(feet) | Material Description                           | Consistency/<br>Density |
|---------|-----------------------------------------------------|------------------------------------------------|-------------------------|
| 1       | 8                                                   | Fine sand to fine sand with silt<br>(SP/SP-SM) | Very loose to<br>loose  |



| Stratum | Approximate Depth to<br>Bottom of Stratum<br>(feet) | Material Description                              | Consistency/<br>Density |
|---------|-----------------------------------------------------|---------------------------------------------------|-------------------------|
| 2       | 8 to 38                                             | Fine sand with silt to silty fine sand (SP/SP-SM) | Loose to medium dense   |
| 3       | 38 to 50                                            | Fine sand<br>(SP)                                 | Medium dense to dense   |

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in Appendix A of this report. Descriptions of our field exploration are included as Exhibit A-5 in Appendix A. Descriptions of our laboratory testing procedures are included as Exhibit B-1 in Appendix B.

#### 3.3 Groundwater

The boreholes were observed during drilling for the presence and level of groundwater. Groundwater was observed in the borings at a depth of 10 feet below existing grade. It should be recognized that fluctuations of the groundwater table will occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the boring was performed. Therefore, groundwater levels during construction or at other times in the future may be higher or lower than the levels indicated on the boring logs. The estimated seasonal high groundwater tables are included in the following table and on the boring logs.

| Boring<br># | Approximate depth to<br>encountered water table<br>(feet) | Approximate depth to estimated seasonal high groundwater table (feet) |
|-------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| PB-1        | 10                                                        | 8                                                                     |
| PB-2        | 10                                                        | 8                                                                     |
| TB-1        | 10                                                        | 8                                                                     |

Estimates of the seasonal high water table presented in this report are based on and limited by the data collected during our geotechnical exploration, and the referenced published documents. Estimates of the seasonal high assume normal precipitation volumes and distribution. These seasonal water table estimates do not represent the temporary rise in water table that occurs immediately following a storm event, including adjacent to other stormwater management facilities. This is different from static groundwater levels in wet ponds and/or drainage canals which can affect the design water levels of new, nearby ponds. The seasonal high water table may be affected by extreme weather changes, localized or regional flooding,



karst activity, future grading, drainage improvements, or other construction that may occur on our around the site following the date of this report.

#### 4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

#### 4.1 Geotechnical Considerations

The following conclusions and recommendations are based on the project characteristics previously described, the data obtained in our field exploration and our experience with similar subsurface conditions and construction types. If the proposed pump station location is significantly different from that previously described, or if subsurface conditions different from those disclosed by the borings are encountered during construction, we should be notified immediately so that we might review and modify, if necessary, the following recommendations in regards to such changes. The general guidelines included in this report are not intended to supersede more stringent requirements which may be mandated by County specifications.

**4.1.1 Pump Station:** Boring TB-1 was performed near the approximate location of the proposed pump station wet well as indicated by provided site plans. Groundwater was encountered in the boring at a depth of about 10 feet below existing grade. Based on the provided plans, the anticipated depth of the proposed pump station wet well is to be about 14 feet below existing grade.

- Dewatering will be required for construction of the pump station. Dewatering the pump station area will require the use of a properly designed well point system. Other dewatering systems utilizing sumps within shored or braced excavations may also be feasible. However, design of shoring/sump systems should be carefully evaluated with regard to blow outs of the excavation bottom due to unbalanced hydrostatic conditions. The Contractor should be allowed to review the soil stratification to determine the most feasible dewatering system for the pump station area. Dewatering should be performed gradually and slowly in order to reduce the effect of the sudden additional effective stress increase on the subsoil below close-by housed or roadways.
- All excavation should be performed in accordance with appropriate Occupational Safety and Health Administration (OSHA) standards. These standards typically include side slopes for temporary excavation no steeper than 1.5 horizontal to 1 vertical (1.5H: 1V) to provide adequate worker safety.
- If these side slopes cannot be maintained or are not desired due to other considerations, a properly designed and braced excavation or sheet piling would be required. All shoring



and bracing systems or sheet piling should be designed and reviewed by an experienced professional engineer registered in the State of Florida.

• Although not encountered, it is important to note that soils with high fines content (clay, silts, ect.) or unsuitable material (organics, muck, debris, ect.) should be removed to a minimum depth of 12 inches below the pump station bottom, to provide a stable construction platform, and replaced with well-draining granular sands with fines contents of 5 percent of less passing the No. 200 U.S. Standard sieve by weight. The soils below the base of the pump station should be compacted to a firm and unyielding state.

After the subgrade soils have been prepared as recommended above, the pump station may be supported on a monolithic slab or spread footing. The foundations can utilize a maximum net soil bearing pressure of 2,000 pounds per square foot.

- Compaction of backfilled soils around the pump station should be accomplished in lift thicknesses no greater than 8 inches. The fill material should consist of relatively clean granular sands with no more than 5 percent passing the No. 200 U.S. standard sieve by weight.
- Compaction can likely be accomplished in these areas with a small plate or hand guided drum type vibratory compactor and loose lift thicknesses should be limited to 8 inches. At least one (1) density test should be performed on each lift to verify that the soil has been compacted to at least 95 percent of its modified Proctor maximum dry density (ASTM D-1557).
- If compaction difficulties arise during construction, the geotechnical engineer should be consulted to provide further recommendations.
- The construction should also be sequenced so that a dewatering system, if necessary, is not turned off until the pump station has enough weight to counteract an uplift force equivalent to the amount of water displaced. It may also be prudent to place additional concrete in the structure foundation to provide ballast against such an uplift force. This uplift force should account for the head difference from the bottom elevation of the foundation to the seasonal high groundwater level or the groundwater level at the time of construction, whichever is shallower, plus any possible flooding conditions that may occur at the project site.
- For calculations of resistance to the uplift force, 50 pounds per cubic foot may be used for the buoyant unit weight of the soil. The buoyant weight of the concrete and overlying soils should be used in calculating the necessary amount of ballast required.



**4.1.2 Pipelines:** Regarding the pipe subgrade soils and backfill soils we offer the following recommendations:

- The bedding soil beneath the pipe should be properly shaped to completely support the pipe section and areas should be excavated to accommodate any bells or other raised portions of the pipe to help avoid point loading conditions.
- Once the pipe has been laid in the excavation trench and approved, backfill should be carefully deposited and compacted to the centerline of the pipe on both sides. All fill should be inorganic, non-plastic, granular soils (clean sands). The near surficial native site soils appear to meet backfill requirements.
- Compaction of backfilled soils above the centerline of the pipe to the proposed final grade should be accomplished in lift thicknesses no thicker than 12 inches.
- At least one (1) density per lift should be performed to verify that the soil has been compacted to 95 percent of the material's maximum modified Proctor dry density (ASTM D 1557).
- If compaction difficulties arise during construction, the Geotechnical Engineer should be consulted to provide further recommendations.

**4.1.4 General Site Preparation**: The following general procedures are recommended for site preparation:

- All excavations required should be performed in accordance with appropriate Occupational Safety and Health Administration (OSHA) standards. These standards typically include side slopes for temporary excavations not steeper than 1.5 Horizontal to 1 Vertical (1.5H:1V) to provide for adequate worker safety.
- If these side slopes cannot be maintained or are not desired due to other considerations, a properly designed braced excavation, trench shield, or sheet piling would be required for stable excavations. All shields, shoring and bracing systems, or sheet piling should be designed and reviewed by an experienced Professional Engineer registered in the State of Florida. Adjacent traffic loads and induced vibrations, among other factors, should be included in the design of these stabilization systems.



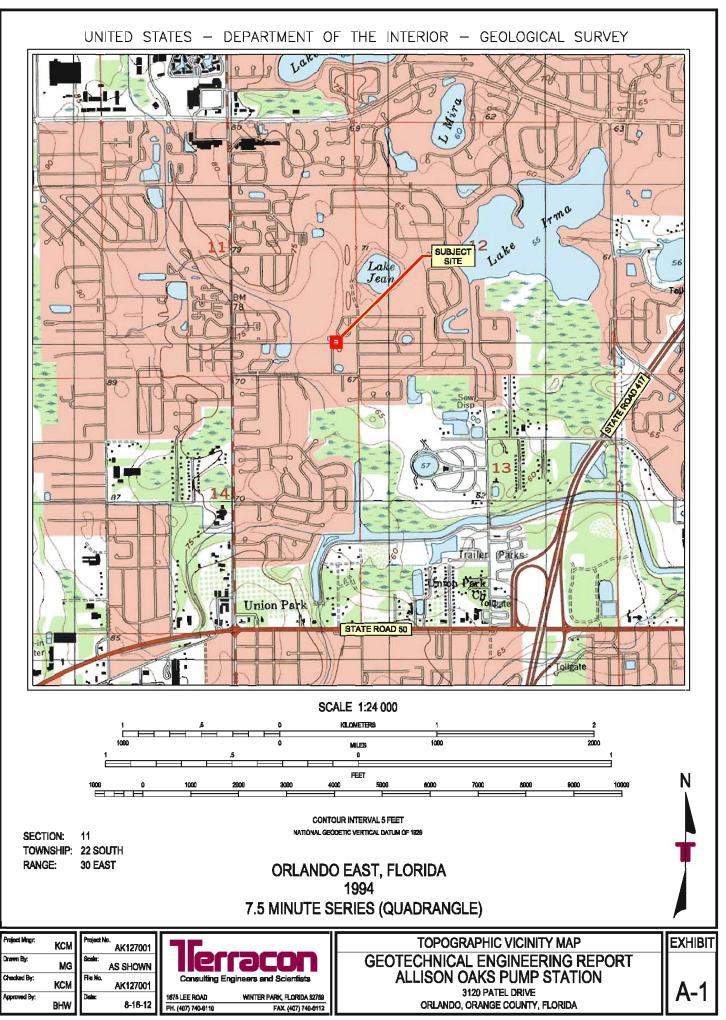
**4.1.5 Temporary Dewatering:** Groundwater was observed at a depth of about 10 feet at our boring locations at the time of our exploration. The seasonal high groundwater level is anticipated to be at a depth of about 8 feet below existing grades. Based on this information and the proposed embedment depths of the pump station, dewatering will be required to facilitate construction, backfill and compaction in the dry. Regarding dewatering, we offer the following recommendations:

- Dewatering operations at this site for the proposed pump station should be accomplished with a properly designed well point system dewatering system operating outside the excavation limits.
- The dewatering system should be adequate to lower groundwater levels to at least 2 feet below the lowest compaction surface.
- Other dewatering systems utilizing sumps within shored or braced excavations may also be feasible. However, design of shoring/sump systems should be carefully evaluated with regard to blow outs of the excavation bottom due to unbalanced hydrostatic conditions. The Contractor should be allowed to review the soil stratification to determine the most feasible dewatering system for the pump station area.

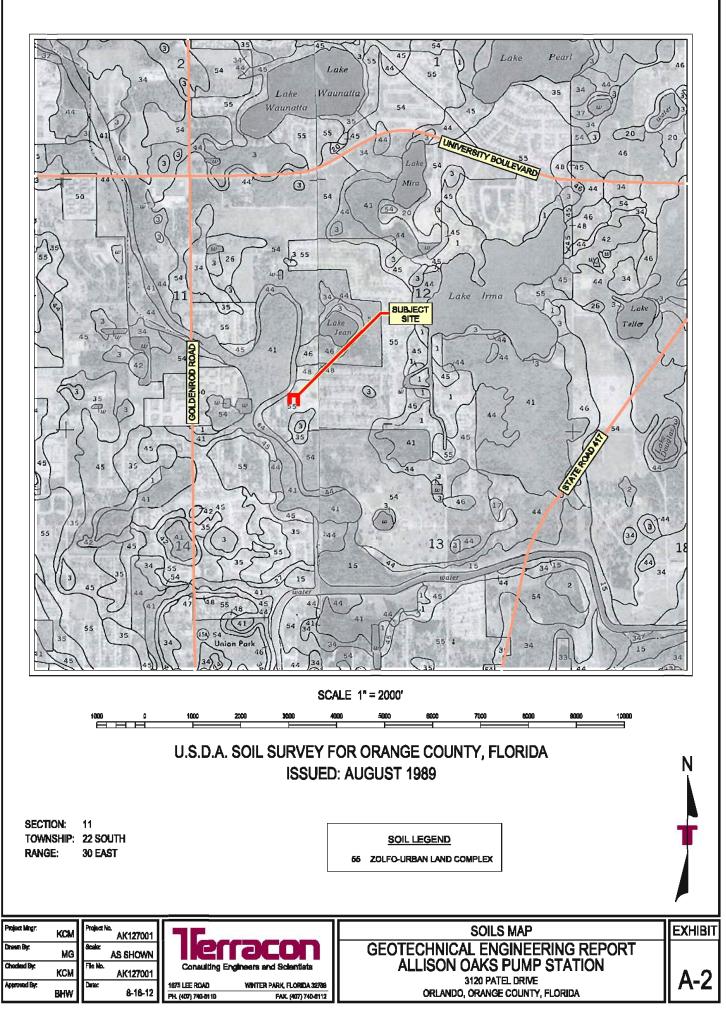
The construction should be sequenced so that the dewatering system is not turned off until the pump station has enough weight placed over it to counteract an uplift force equivalent to the height of standing water above the base of the pump station. The resisting weight of soil over the pump station should be calculated using the buoyant unit weight of the soil.

#### 5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.


The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.




The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

## APPENDIX A FIELD EXPLORATION



ojectr\2012\4K127001\PROJECT DOCIMENTS (Reports-Latines-Dwifts to Chemic)\Cod(4K127001-Eathble-A-1.4mg





#### **Soil Survey Descriptions**

<u>55 – Zolfo-Urban land complex.</u> This complex consists of areas of Zolfo soil that is nearly level and somewhat poorly drained and areas of Urban land. It is typically found in broad, slightly higher positions adjacent to the flatwoods. Drainage systems have been established in most areas. The depth to the seasonal high water table is dependent upon the functioning of the drainage system. In undrained areas, this soil map unit has an apparent seasonal high water table between depths of 24 and 40 inches (2.0 and 3.3 feet) for 2 to 6 months and at a depth of 10 to 24 inches (0.8 to 2.0 feet) during periods of high rainfall. It recedes to a depth of more than 60 inches (5.0 feet) during extended dry periods. Zolfo soil is predominantly sandy throughout the defined profile of 80 inches (6.7 feet). The areas of Urban land have been covered or altered such that the natural soil profile is no longer observable.





#### Field Exploration Description

The boring locations were laid out at the project site by Terracon personnel. The locations indicated on the attached diagram are approximate and were measured by pacing distances and estimating right angles, across vegetated/wooded terrain. The locations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

The SPT soil borings were drilled with an truck-mounted, rotary drilling rig equipped with a rope an automatic hammer. The boreholes were advanced with a cutting head and stabilized with the use of bentonite (drillers' mud). Soil samples were obtained by the split spoon sampling procedure in general accordance with the Standard Penetration Test (SPT) procedure. In the split spoon sampling procedure, the number of blows required to advance the sampling spoon the last 12 inches of an 18-inch penetration or the middle 12 inches of a 24-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (N). This value is used to estimate the in-situ relative density of cohesionless soils and the consistency of cohesive soils. The sampling depths and penetration distance, plus the standard penetration resistance values, are shown on the boring logs.

Portions of the samples from the borings were sealed in glass jars to reduce moisture loss, and then the jars were taken to our laboratory for further observation and classification. Upon completion, the boreholes were backfilled with the site soil.

Field logs of each boring were prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. The boring logs included with this report represent an interpretation of the field logs and include modifications based on laboratory observation of the samples.

A CME automatic SPT hammer was used to advance the split-barrel sampler in the borings performed on this site. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

| BORING LOG NO. PB-1 Page 1 of 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                             |             |                                     |                      |               |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------|-------------|-------------------------------------|----------------------|---------------|
| PROJECT: Allison Oaks Pump Station<br>No. F3215 - Wet Well           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT: Orang<br>Orlan                    | ge County P<br>Ido, Florida              | ublic                       | Util        | lities                              |                      |               |
| SITE: 3120 Patel Drive<br>Winter Park, Orange County, F              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                             |             |                                     |                      |               |
| UCATION Exhibit A-4                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | DEPTH (ft)                               | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | FIELD TEST<br>RESULTS               | WATER<br>CONTENT (%) | PERCENT FINES |
| FINE SAND WITH SILT (SP-SM), gray                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | -                           |             |                                     |                      |               |
| , J                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 5                                        |                             |             | 2-2-3-2<br>N=5                      |                      |               |
| 8.0<br>SILTY FINE SAND (SM), tan, loose                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | _                           |             | 2-2-3-3<br>N=5<br>3-3-2-2           | 21                   | 16            |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                             |             | N=5                                 |                      |               |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 15                                       | _                           |             | 5-4-5<br>N=9                        |                      |               |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          | _                           |             |                                     |                      |               |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                          |                             |             |                                     |                      |               |
| Stratification lines are approximate. In-situ, the transition may be |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 25                                       | _                           |             |                                     |                      |               |
| Stratification lines are approximate. In-situ, the transition may be | gradual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | Hammer Type: A                           | Automatic                   | ;           |                                     |                      |               |
| Rotary Drilling Cutting Head Abandonment Method:                     | See Exhibit A-5 for description of the sector of the sector of the sector procedures and additional See Appendix C for explanation of the sector of the sect | iption of laboratory<br>I data, (if any). | Notes:                                   |                             |             |                                     |                      |               |
| Borings backfilled with soil cuttings upon completion.               | abbreviations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                         |                                          |                             |             |                                     |                      |               |
| WATER LEVEL OBSERVATIONS Water Initially Encountered                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Boring Started: 8/8/<br>Drill Rig: Truck | 2012                        |             | Boring Completed<br>Driller: Travis | 8/8/2012             | 2             |
| Estimated Seasonal High Water Level @ 8'                             | 1675 Le<br>Winter Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Road                                    | Project No.: AK127                       | 001                         |             | Exhibit A-6                         |                      |               |

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. SMART LOG-DEPTH TO BOTTOM OF PAGE AK127001-ALLISON OAKS.GFJ TERRACON2012.GDT 8/28/12

|                    | E                                                                    | BORING LC                                                                                           | OG NO. PB-                | -2                           |                             |             | Page                  | e 1 of 1             | 1             |
|--------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------|------------------------------|-----------------------------|-------------|-----------------------|----------------------|---------------|
| PR                 | OJECT: Allison Oaks Pump Station<br>No. F3215 - Wet Well             |                                                                                                     | CLIENT: Orang<br>Orlan    | ge County Pu<br>Ido, Florida | ıblic                       | Util        |                       |                      |               |
| SIT                | E: 3120 Patel Drive<br>Winter Park, Orange County, I                 | Florida                                                                                             | SPT Borings               |                              |                             |             |                       |                      | -             |
| <b>GRAPHIC LOG</b> | LOCATION Exhibit A-4                                                 |                                                                                                     |                           | DEPTH (ft)                   | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | PERCENT FINES |
|                    | FINE SAND (SP), light brown to grayish-brown,                        | very loose to mediun                                                                                | n dense                   | -                            | -                           |             |                       |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | -                           |             |                       | 5                    | 5             |
|                    |                                                                      |                                                                                                     |                           | 5 -                          | -                           |             | 2-1-1-2<br>N=2        |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | _                           |             | 1-1-2-4<br>N=3        |                      |               |
|                    |                                                                      |                                                                                                     |                           | - 10-                        |                             |             | 6-5-6-4<br>N=11       |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | -                           |             |                       |                      |               |
|                    | 13.5<br>SILTY FINE SAND (SM), brown, loose                           |                                                                                                     |                           |                              | -                           |             | 2-2-5                 |                      |               |
|                    | 15.0<br>Boring Terminated at 15 Feet                                 |                                                                                                     |                           | 15-                          |                             |             | N=7                   |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | -                           |             |                       |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | -                           |             |                       |                      |               |
|                    |                                                                      |                                                                                                     |                           | 20-                          | -                           |             |                       |                      |               |
|                    |                                                                      |                                                                                                     |                           | -                            | -                           |             |                       |                      |               |
|                    |                                                                      |                                                                                                     |                           | - 25-                        | -                           |             |                       |                      |               |
|                    | Stratification lines are approximate. In-situ, the transition may be | e gradual.                                                                                          |                           | Hammer Type: Au              | tomatic                     |             |                       |                      | <u> </u>      |
|                    | ement Method:<br>Iry Drilling Cutting Head                           | See Exhibit A-5 for descri                                                                          | ption of field procedures | Notes:                       |                             |             |                       |                      |               |
|                    | onment Method:<br>ngs backfilled with soil cuttings upon completion. | See Appendix B for descr<br>procedures and additional<br>See Appendix C for expla<br>abbreviations. |                           |                              |                             |             |                       |                      |               |
|                    | WATER LEVEL OBSERVATIONS                                             |                                                                                                     | -                         |                              |                             |             | I                     |                      |               |
| $\Box$             | Water Initially Encountered                                          |                                                                                                     | ODARSE                    | Boring Started: 8/8/20       | )12                         |             | Boring Completed:     | 8/8/2012             | 2             |
|                    |                                                                      | ^]                                                                                                  | Erracon COMPANY           | Drill Rig: Truck             |                             |             | Driller: Travis       |                      |               |
|                    | Estimated Seasonal High Water Level @ 8'                             |                                                                                                     | ee Road<br>ark, Florida   | Project No.: AK12700         | )1                          |             | Exhibit A-7           |                      |               |

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. SMART LOG-DEPTH TO BOTTOM OF PAGE AK127001-ALLISON OAKS.GFJ TERRACON2012.GDT 8/28/12

٢

|                                                                                                                                                      | BORING LOG NO. TB-1 Page 1 of 2                                      |                                                                                                    |                         |                 |                                              |                             |             |                       |                      |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|-----------------|----------------------------------------------|-----------------------------|-------------|-----------------------|----------------------|---------------|--|
| PR                                                                                                                                                   | PROJECT: Allison Oaks Pump Station CLIENT: 0                         |                                                                                                    |                         |                 | nge County Public Utilities<br>ando, Florida |                             |             |                       |                      |               |  |
| SIT                                                                                                                                                  | E: 3120 Patel Drive<br>Winter Park, Orange County, F                 | Florida                                                                                            | SPT Borings             |                 |                                              |                             |             |                       |                      |               |  |
| <b>GRAPHIC LOG</b>                                                                                                                                   | LOCATION Exhibit A-4                                                 |                                                                                                    |                         |                 | DEPTH (ft)                                   | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | PERCENT FINES |  |
|                                                                                                                                                      | DEPTH<br>FINE SAND WITH SILT (SP-SM), grayish-brow                   | n                                                                                                  |                         |                 |                                              |                             |             |                       |                      |               |  |
|                                                                                                                                                      | 4.0                                                                  |                                                                                                    |                         |                 | _                                            |                             |             |                       |                      |               |  |
|                                                                                                                                                      | FINE SAND (SP), light brown, loose                                   |                                                                                                    |                         |                 | -<br>5                                       |                             |             | 2-2-2-2<br>N=4        |                      |               |  |
|                                                                                                                                                      | 8.0                                                                  |                                                                                                    |                         |                 | _                                            |                             |             | 2-2-3-3<br>N=5        |                      |               |  |
|                                                                                                                                                      | FINE SAND WITH SILT (SP-SM), tan to light br                         | own, loose to mediur                                                                               | n dense                 |                 | _<br>10—                                     | $\nabla$                    |             | 3-2-2-2<br>N=4        |                      |               |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | -                                            |                             |             |                       |                      |               |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | -<br>15-                                     |                             |             | 1-2-2<br>N=4          | 27                   | 9             |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | _                                            |                             |             |                       |                      |               |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | _<br>20—                                     | -                           |             | 3-4-3<br>N=7          |                      |               |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | _                                            | -                           |             |                       |                      |               |  |
|                                                                                                                                                      |                                                                      |                                                                                                    |                         |                 | _<br>25—                                     |                             |             | 5-5-5<br>N=10         |                      |               |  |
|                                                                                                                                                      | Stratification lines are approximate. In-situ, the transition may be | aradual                                                                                            |                         | Hammer T        | vpe: Aut                                     | omatic                      |             |                       |                      |               |  |
|                                                                                                                                                      |                                                                      | -                                                                                                  |                         |                 | , po. 7 dt                                   |                             |             |                       |                      |               |  |
| Advancement Method: See Exhibit A-5 for description of field procedures<br>Rotary Drilling Cutting Head See Appendix B for description of laboratory |                                                                      |                                                                                                    |                         | Notes:          |                                              |                             |             |                       |                      |               |  |
| Abando<br>Borir                                                                                                                                      | onment Method:<br>ngs backfilled with soil cuttings upon completion. | see Appendix B for descr<br>procedures and additiona<br>See Appendix C for expla<br>abbreviations. | l data, (if any).       |                 |                                              |                             |             |                       |                      |               |  |
|                                                                                                                                                      | WATER LEVEL OBSERVATIONS                                             | <b>N</b> 1                                                                                         |                         | Boring Starte   | ed: 8/8/20                                   | 12                          |             | Boring Completed      | 8/8/2012             | 2             |  |
|                                                                                                                                                      | Water Initially Encountered                                          |                                                                                                    |                         | Drill Rig: Truc | ck                                           |                             |             | Driller: Travis       |                      |               |  |
|                                                                                                                                                      | Estimated Seasonal High Water Level @ 8'                             |                                                                                                    | ee Road<br>irk, Florida | Project No.: A  | AK12700                                      | 1                           |             | Exhibit A-8           |                      |               |  |

| BORING LOG NO. TB-1 Page 2 of 2                               |                                                                                                                    |                                                                                                                                      |                                             |                                                     |                             |              |                       |                      |               |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------------|--------------|-----------------------|----------------------|---------------|--|--|
| PR                                                            | OJECT: Allison Oaks Pump Station<br>No. F3215 - Wet Well                                                           |                                                                                                                                      | CLIENT: Oran<br>Orlan                       | ge County Pu<br>ido, Florida                        | blic                        | Util         |                       |                      |               |  |  |
| SIT                                                           | E: 3120 Patel Drive<br>Winter Park, Orange County, F                                                               | Florida                                                                                                                              | SPT Borings                                 |                                                     |                             |              |                       |                      |               |  |  |
| GRAPHIC LOG                                                   | LOCATION Exhibit A-4                                                                                               |                                                                                                                                      |                                             | DEPTH (ft)                                          | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE  | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | PERCENT FINES |  |  |
|                                                               | DEPTH<br>FINE SAND WITH SILT (SP-SM), tan to light brown, loose to medium dense (continued)                        |                                                                                                                                      |                                             |                                                     |                             |              |                       |                      |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             | -                                                   |                             |              |                       |                      |               |  |  |
|                                                               |                                                                                                                    | AND WITH SILT (SP-SM), tan to light brown, loose to medium dense (continued)                                                         |                                             |                                                     |                             | 5-4-5<br>N=9 | 27                    | 9                    |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             | -                                                   | -                           |              |                       |                      |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             |                                                     |                             |              | 7-7-8<br>N=15         |                      |               |  |  |
|                                                               | 38.5                                                                                                               |                                                                                                                                      |                                             |                                                     | -                           |              |                       |                      |               |  |  |
| FINE SAND (SP), light brown, medium dense to dense            |                                                                                                                    |                                                                                                                                      |                                             | -                                                   |                             |              | 6-8-9<br>N=17         |                      |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             | 40-<br>-<br>-                                       | -                           |              |                       |                      |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             | 45-                                                 | -                           |              | 13-17-21<br>N=38      |                      |               |  |  |
|                                                               |                                                                                                                    |                                                                                                                                      |                                             | -                                                   | -                           |              |                       |                      |               |  |  |
|                                                               | 50.0                                                                                                               |                                                                                                                                      |                                             | -                                                   |                             |              | 10-14-19<br>N=33      |                      |               |  |  |
|                                                               | Boring Terminated at 50 Feet                                                                                       |                                                                                                                                      |                                             | 50-<br>_<br>_                                       | -                           |              |                       |                      |               |  |  |
|                                                               | Stratification lines are approximate. In-situ, the transition may be                                               | gradual.                                                                                                                             |                                             | Hammer Type: Au                                     | tomatic                     |              |                       |                      |               |  |  |
| Rota                                                          | zement Method:<br>ny Drilling Cutting Head<br>onment Method:<br>ngs backfilled with soil cuttings upon completion. | See Exhibit A-5 for descrip<br>See Appendix B for descri<br>procedures and additional<br>See Appendix C for explar<br>abbreviations. | ption of laboratory<br>data, (if any).      | Notes:                                              |                             |              |                       |                      |               |  |  |
|                                                               | WATER LEVEL OBSERVATIONS                                                                                           |                                                                                                                                      | Boring Started: 8/8/20                      | Boring Started: 8/8/2012 Boring Completed: 8/8/2012 |                             |              |                       |                      |               |  |  |
| Water Initially Encountered                                   |                                                                                                                    |                                                                                                                                      | DOARSE<br>Terracon communy Drill Rig: Truck |                                                     |                             |              | Driller: Travis       |                      |               |  |  |
| Estimated Seasonal High Water Level @ 8' Winter Park, Florida |                                                                                                                    | e Road                                                                                                                               | Project No.: AK127001 Exhibit A-9           |                                                     |                             |              |                       |                      |               |  |  |

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. SMART LOG-DEPTH TO BOTTOM OF PAGE AK127001-ALLISON OAKS.GFJ TERRACON2012.GDT 8/28/12

### **APPENDIX B – LABORATORY TESTING**



#### Laboratory Testing

During the field exploration, a portion of each recovered sample was sealed in a glass jar and transported to our laboratory for further visual observation and laboratory testing. Selected samples retrieved from the borings were tested for moisture (water) content, fines content (soil passing a US standard #200 sieve). Those results are included in this report and on the respective boring logs, except for permeability. The visual-manual classifications were modified as appropriate based upon the laboratory testing results.

The soil samples were classified in general accordance with the appended General Notes and the Unified Soil Classification System based on the material's texture and plasticity. The estimated group symbol for the Unified Soil Classification System is shown on the boring logs and a brief description of the Unified Soil Classification System is included in Appendix B. The results of our laboratory testing are presented in the Laboratory Test Results section of this report and on the corresponding borings logs.

## APPENDIX C SUPPORTING DOCUMENTS

### UNIFIED SOIL CLASSIFICATION SYSTEM

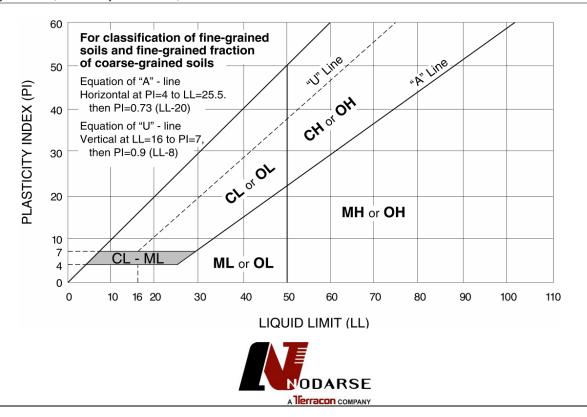
#### Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests<sup>A</sup>

| Criteria for Assign                             | Group<br>Symbol                                                            | Group Name <sup>B</sup>                                        |                                                    |    |                               |
|-------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----|-------------------------------|
|                                                 | Gravels:<br>More than 50% of<br>coarse fraction retained<br>on No. 4 sieve | Clean Gravels:                                                 | $Cu \ge 4$ and $1 \le Cc \le 3^{E}$                | GW | Well-graded gravel F          |
|                                                 |                                                                            | Less than 5% fines <sup>C</sup>                                | $Cu < 4$ and/or $1 > Cc > 3^{E}$                   | GP | Poorly graded gravel F        |
|                                                 |                                                                            | <b>Gravels with Fines:</b><br>More than 12% fines <sup>c</sup> | Fines classify as ML or MH                         | GM | Silty gravel F,G,H            |
| Coarse Grained Soils:<br>More than 50% retained |                                                                            |                                                                | Fines classify as CL or CH                         | GC | Clayey gravel F,G,H           |
| on No. 200 sieve                                | Sands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieve          | <b>Clean Sands:</b><br>Less than 5% fines <sup>D</sup>         | $Cu \ge 6$ and $1 \le Cc \le 3^{E}$                | SW | Well-graded sand <sup>1</sup> |
|                                                 |                                                                            |                                                                | $Cu < 6$ and/or $1 > Cc > 3^{E}$                   | SP | Poorly graded sand            |
|                                                 |                                                                            | Sands with Fines:<br>More than 12% fines <sup>D</sup>          | Fines classify as ML or MH                         | SM | Silty sand G,H,I              |
|                                                 |                                                                            |                                                                | Fines classify as CL or CH                         | SC | Clayey sand G,H,I             |
|                                                 | <b>Silts and Clays:</b><br>Liquid limit less than 50                       | Inorganic:                                                     | PI > 7 and plots on or above "A" line <sup>J</sup> | CL | Lean clay <sup>K,L,M</sup>    |
|                                                 |                                                                            |                                                                | PI < 4 or plots below "A" line <sup>J</sup>        | ML | Silt <sup>K,L,M</sup>         |
|                                                 |                                                                            | Organic:                                                       | Liquid limit - oven dried < 0.75                   | OL | Organic clay K,L,M,N          |
| Fine-Grained Soils: 50% or more passes the      |                                                                            |                                                                | Liquid limit - not dried                           |    | Organic silt K,L,M,O          |
| No. 200 sieve                                   | Silts and Clays:<br>Liquid limit 50 or more                                | Inorganic:                                                     | PI plots on or above "A" line                      | СН | Fat clay K,L,M                |
|                                                 |                                                                            |                                                                | PI plots below "A" line                            | MH | Elastic Silt K,L,M            |
|                                                 |                                                                            | Organic:                                                       | Liquid limit - oven dried < 0.75                   | ОН | Organic clay K,L,M,P          |
|                                                 |                                                                            |                                                                | Liquid limit - not dried                           |    | Organic silt K,L,M,Q          |
| Highly organic soils:                           | Primarily                                                                  | PT                                                             | Peat                                               |    |                               |

<sup>A</sup> Based on the material passing the 3-inch (75-mm) sieve

<sup>B</sup> If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

- <sup>c</sup> Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- <sup>D</sup> Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay


<sup>E</sup> Cu = D<sub>60</sub>/D<sub>10</sub> Cc = 
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\rm F}$  If soil contains  $\geq$  15% sand, add "with sand" to group name.  $^{\rm G}$  If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- <sup>H</sup> If fines are organic, add "with organic fines" to group name.
- If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- <sup>J</sup> If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- <sup>K</sup> If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

Soil Classification

- <sup>L</sup> If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- <sup>M</sup> If soil contains  $\geq$  30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- <sup>N</sup>  $PI \ge 4$  and plots on or above "A" line.
- <sup>o</sup> PI < 4 or plots below "A" line.
- <sup>P</sup> PI plots on or above "A" line.
- <sup>Q</sup> PI plots below "A" line.



APPENDIX D SUSTAINABILITY CONSIDERATIONS

#### SUSTAINABILITY CONSIDERATIONS

#### **LEED Sustainable Sites (SS)**

#### SS Prerequisite 1 – Construction Activity Pollution Prevention

The intent is to reduce pollution from construction activities by controlling soil erosion, waterway sedimentation and airborne dust generation. Terracon can assist in developing site specific Storm Water Management Plans (SWMP's) in addition to providing observation services for the duration of the project for conformance to the SWMP's.

#### SS Credit 5.1 - Site Development – Protect or Restore Habitat

The intent is to conserve existing natural areas and restoring damaged areas to provide habitat and promote biodiversity. Terracon can provide restoration recommendations such as design of mechanically stabilized earth vegetative faced retained slopes, stream mitigation, etc.

#### SS Credit 6.1 and Credit 6.1 – Storm Water Design – Quantity Control and Quality Control

Sustainable storm water design limits disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, and managing storm water runoff. Terracon can provide design recommendations for porous pavement systems and infiltration basins to assist in maintaining pre-development peak discharge rates of design storms without compromising the structural capacity of the pavement or surrounding improvements. A pervious pavement system is a pavement that is sufficiently porous to allow the infiltration of water into a sub-drainage system or open-graded aggregate base reservoir below paved areas. The collected water is allowed to infiltrate through a filter fabric into the underlying subgrade soils or the water is collected and discharged to a suitable outlet.

#### LEED Energy and Atmosphere (EA)

#### EA Credit 2 – On-site Renewable Energy

The intent is to provide on-site renewable energy. Self supply renewable energy potentials Include horizontal and vertical loop fields. Terracon can provide thermal resistivity testing for horizontal loop fields or trial testing for vertical geothermal wells.

#### LEED Materials and Resources (MR)

#### MR Credit 2 – Construction Waste Management

The intent is to divert construction and demolition debris from disposal in landfills and incineration facilities.

<u>Reuse of On-Site Building Materials or Construction Debris:</u> Reusing inorganic building materials derived from foundation demolition or construction debris as processed fill material is acceptable provided the materials are crushed to a well-graded homogenous mixture and free of wood and other deleterious debris. Crushed concrete foundations, flatwork and brick may be incorporated into structural compacted fill in approved areas.

Maximum size of crushed material should be no greater than 3 inches. Use of fill materials will depend upon the source of the recycled material and the intended use. Materials such as wood and metal should be properly disposed off-site. *Caution should be used when specifying painted recycled materials. In some states, the paint would need to be analyzed to evaluate if it is lead-based. The text above may need to be edited to say "uncoated" building materials* 

<u>Use of On-site Crushed Asphaltic Cement Concrete (ACC) Pavement for Engineered Fill:</u> ACC pavement, and the underlying base rock can be used as engineered fill as long as it is properly processed. It is important that the recycled ACC pavement be blended with another material, such as soil, sand, and/or gravel, to fill voids. This material should be well graded and have a maximum size, in any dimension, of 6-inches. This may necessitate the use of on-site screening of the materials and processing the oversized portion through a crusher such that the maximum size of the well graded blend would be 6-inches.

Recycled ACC pavement should be limited to a maximum of 50% of the fill material being placed in any lift. This material should be used deep within the fill or in non-structural areas such that it does not underlie future excavations being made for footings, utilities, etc.

#### MR Credit 4 – Recycled Content

<u>Flowable Fill:</u> Consider using flowable fill for trench backfill. The flowable fill should be comprised of waste materials such as waste limestone screenings as the bulk-filler and fly-ash for the cementitious component.

<u>ACC Pavement:</u> ACC Pavement produced in the Central Florida area typically includes 20 percent recycled asphalt pavement (RAP) and 4 percent recycled asphalt shingles resulting in a product that contains 24% recycled material.

Limestone Screenings (Waste Lime): Limestone screenings are a waste product produced by many Central Florida Quarries. This material is usually wasted in the quarries if it does not possess enough calcium content to be suitable for ag-lime applications and also because there is more product produced than demand can satisfy. As a result, this material is abandoned on-site as a waste product. This material typically is well graded crushed aggregate material with an approximate top size of ¼-inch. This material can be used as engineered fill material in structural and non-structural areas of the project. The limestone screenings can be used for the low volume change zones as a suitable replacement for shrink/swell prone soils.

<u>Supplementary Cementitious Materials (SCM's):</u> Consider using SCM's that are recycled from other operations, such as fly ash, in concrete mixes.

<u>Soil Subgrade Stabilization:</u> Consider using Fly-Ash or Code-L (a waste by-product produced when making cement) to stabilize or otherwise improve the soil subgrade.

#### MR Credit 5: Regional Materials

Using regional materials is intended to increase demand for building materials and products that are extracted and manufactured within the region. Regional materials also reduce environmental impacts caused by transportation.

<u>Asphaltic Cement Pavement (ACC)</u>: ACC pavement is typically produced locally. Asphalt and aggregates are typically derived locally. Oils may or may not be derived locally.

<u>Portland Cement Concrete (PCC):</u> PCC is typically derived locally including sand, gravel, water, and cement. Additives may or may not be locally derived.

<u>Aggregates for Base and Backfill:</u> Coarse and fine aggregates are typically derived locally from quarrying operations or from dredging operations.

## National Pollutant Discharge Elimination System Groundwater Testing and Database Search

Allison Oaks Pump Station No. F3215 3120 Patel Drive, Winter Park Orange County, Florida

October 4, 2012 Nodarse/Terracon Project No. AK127001

Prepared for: Orange County Public Utilities-Engineering Division Orlando, Florida

> Prepared by: Nodarse & Associates, Inc. A Terracon Company Winter Park, Florida 32789

Offices Nationwide Employee-Owned nodarse.com terracon.com





October 4, 2012

Orange County Utilities Department Engineering Division 9150 Curry Ford Road Orlando, Florida 32825

- Attn: Mr. Heriberto Collado-Lopez, P.E. Phone: 407-254-9900 Fax: 407-254-9999
- Re: Groundwater Sampling/Testing National Pollutant Discharge Elimination System (NPDES) Parameters Allison Oaks Pump Station No. F3215 3120 Patel Drive, Winter Park, Orange County, Florida Nodarse/Terracon Project No. AK127001

Dear Mr. Collado:

In accordance with your request and authorization, Nodarse & Associates, Inc., a Terracon Company (Nodarse/Terracon), has completed National Pollutant Discharge Elimination System (NPDES) groundwater quality sampling and testing services at the above referenced location in accordance with our proposal number PH1120210 dated May 2, 2012, and Orange County Purchase Order #C11903A012, dated July 10, 2012.

A review of the Florida Department of Environmental Protection's (FDEP's) Contamination Locator Database website did not reveal the presence of any identified contaminated site within 1,000 feet of the project site.

On September 19, 2012, a temporary monitor well (TMW-3) was installed by direct-push Geoprobe drilling method to a depth of 13 feet below land surface (BLS). The depth to the shallow water table was measured at 6.7 feet BLS. On September 20, 2012, after well purging and stabilization of groundwater field parameters, Nodarse/Terracon collected one representative groundwater sample (PS# FS3215) for laboratory testing. The groundwater sample was delivered to Southern Research Laboratories, Inc. (SRL) of Orlando, Florida (Florida Department of Health #E83484) for analysis of NPDES parameters.

As shown in Table 1, the reported concentration of one parameter, total copper (detected at 4.58 micrograms per liter [ $\mu$ g/l]), exceeded the Chapter 62-621.300 (2), Florida Administrative Code, listed screening value (LSV) of 2.9  $\mu$ g/l. If the dewatering effluent will be discharged onto the project site or sanitary sewer, then re-sampling of the temporary monitoring well for total copper may not to be warranted. Otherwise, re-sampling is recommended for total copper only. The remaining parameters analyzed did not report exceedances above their respective LSVs.



Nodarse & Associates, a Terracon Company 1675 Lee Road Winter Park, Florida 32789 P [407] 740 6110 F [407] 740 6112 terracon.com



A copy of the laboratory analytical report, the groundwater sampling log, instrument calibration sheet, the monitoring well details and a site photograph are included in Appendix A.

Nodarse/Terracon appreciates the opportunity to have assisted with these services. If you should have any questions or comments, please feel free to contact us.

Sincerely, Nodarse & Associates, Inc., a Terracon Company

Project Environmental Scientist



N:\Projects\2012\AK127001\PROJECT DOCUMENTS (Reports-Letters-Drafts to Clients)\NPDES Allison Oaks\AK127001 Final NPDES Report doc

TABLE

#### TABLE 1

#### GROUNDWATER ANALYTICAL SUMMARY FINAL RESULTS OF NPDES CONCENTRATIONS ALLISON OAKS PUMP STATION #F3215 WINTER PARK, ORANGE COUNTY, FLORIDA NODARSE/TERRACON PROJECT NO. AK127001 SAMPLING DATE: SEPTEMBER 20, 2012

|                            | Sample ID             |           |       |
|----------------------------|-----------------------|-----------|-------|
| PARAMETER<br>DATE SAMPLED  | PS #FS3215<br>9/20/12 | Limits*   | Units |
| Benzene                    | 0.50 U                | 1.0       | μg/L  |
| Naphthalene                | 0.10 U                | 100       | μg/L  |
| Cadmium, Total             | 0.306 U               | 9.3       | μg/L  |
| Copper, Total              | 4.58 i                | 2.9       | μg/L  |
| Lead, Total                | 1.60 U                | 30.0      | μg/L  |
| Mercury, Total             | 0.00195               | 0.012     | μg/L  |
| Zinc, Total                | 10.3 v                | 86.0      | μg/L  |
| Chromium, Hexavalent       | 4.2 U                 | 11.0      | μg/L  |
| Total Organic Carbon (TOC) | 6.9                   | 10.0      | mg/L  |
| TRPH                       | 200 U                 | 5000.0    | μg/L  |
| pH - Field                 | 6.44                  | 6.0 - 8.5 | μg/L  |
| Turbidity                  | 2.41                  | NA        | NTU   |

#### NOTES:

Bold values represent a concentration exceeding the respective NPDES criteria

mg/L - milligrams per liter

µg/L - micrograms per liter

i - indicates value < method detection limit but > than practical quantitation limit

I - The reported concentration is between the MDL and PQL

U - not detected above method detection limit

v - Analyte was detected in both the sample and associated Lab Method Blank; laboratory contamination

\* Based on the Florida Department of Environmental Protection' s Effluent Discharge

Generic Dewatering Permit Table 4 Screening Values (Doc # 62-621.300(1), eff. 2-14-2000

NS - No applicable limitation or standard referenced

NA - Not applicable

## **APPENDIX A**

## LABORATORY ANALYTICAL REPORT, GROUNDWATER SAMPLING LOGS, INSTRUMENT CALIBRATION SHEET, MONITORING WELL DETAILS AND PHOTOGRAPH



2251 Lynx Lane, Suite 1 Orlando, Florida 32804 (407) 522-7100 Fax (407) 522-7043 Toll Free 1 (888) 420-Test

Thank you **Mr. Ed Sainten** for the opportunity to be of service to you and your company; we Sincerely Appreciate Your Business. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

| Client Name: Te              | rracon                 |        | Date(s) Collected: 09/20/12    |
|------------------------------|------------------------|--------|--------------------------------|
| Contact Name: E              | d Sainten              |        | Date Received: 09/20/12        |
| Project Name: A              | llison Oak's PS #F3215 |        | Time Received: 13:08           |
| Project Number: AK-12-7001   |                        |        | Date Reported : 10/01/12       |
| Phone Number: (407) 740-6110 |                        |        | Date Emailed : 10/01/12        |
| Fax Number: (407) 740-6112   |                        |        | SRL Work Order # 12-09024      |
|                              |                        |        |                                |
| SRL WO #                     | Clients #              | Matrix | Analysis Requested             |
| 12-09024-001                 | PS #FS3215             | Liquid | EPA8260(Benz)/TOC/Cd/Cu/Pb/Zn/ |
|                              |                        |        | 8270-SIM(PAH)Naph/FLPRO/       |
|                              |                        |        | LL Hg/Hexavalent Chromium      |
| 12-09024-002                 | Trip Blank             | Liquid | EPA 8260 (Benz)                |



Sherri Payne Vice President & Quality Assurance Officer Southern Research Laboratories, Inc.

This report, which includes the attached Chain-of-Custody, shall not be reproduced except in full, without written approval of the laboratory.

| Southern Research Laboratories, Inc. |                                     | NELAP Certified             |
|--------------------------------------|-------------------------------------|-----------------------------|
| an MBE Environmental Labo            | E Environmental Laboratory FDOH Cer |                             |
| 2251 Lynx Lane, Suite 1              |                                     | SRL Lab Ref # : 12-09024    |
| Orlando, Florida 32804               | (407) 522-7100                      | Received Date : 09/20/12    |
| Ed Sainten                           |                                     | Project Number/Project Name |
| Terracon                             |                                     | AK-12-7001                  |
| 1675 Lee Rd.                         |                                     | Allison Oak's PS #F3215     |
| Winter Park, FL 32789                | (407) 740-6110                      | Orlando, FL                 |

#### EPA Method 5030/8260B VOA {602} Compounds in Water by GC-MS

| Client ID #               | : PS #FS3215  | Trip Blank     | Method Blank |           |          |            |
|---------------------------|---------------|----------------|--------------|-----------|----------|------------|
| SRL (Lab) ID#             | : 12-09024-00 | 1 12-09024-002 | MB092512     |           |          |            |
| Date Collected            | : 09/20/12    | 09/18/12       | NA           |           |          |            |
| Lab FDOII Certification # | : E83484      | E83484         | E83484       |           |          |            |
| Date Prepared             | : 09/25/12    | 09/25/12       | 09/25/12     |           |          |            |
| Date Analyzed             | : 09/25/12    | 09/25/12       | 09/25/12     | MDL       | PQL      | CAS Number |
| Benzene                   | 0.5 U         | 0.5 U          | 0.5 U        | 0.5       | 1.0      | 71-43-2    |
| Units                     | : ug/L        | ug/L           | ug/L         | ug/L      | ug/L     |            |
| Dilution Factor (MEDF)    | : 1           | 1              | 1            | 1         | 1        |            |
| Surrogate (% Rec)         | :             |                |              | (Surrogat | e Contro | ol Limits) |
| 4-Bromofluorobenzene      | 92.5%         | 97.4%          | 95.0%        |           | 70-130   |            |
|                           |               |                |              |           |          |            |
|                           |               |                |              |           |          |            |

|         |            | LCS        | MS/MSD     |        |            |
|---------|------------|------------|------------|--------|------------|
|         | % Recovery | Acceptable | Acceptable | %RPD   | Acceptable |
|         | LCS/MS/MSD | Limits     | Limits     | MS/MSD | Limits     |
| Benzene | 109/81/81  | 70-130     | 70-130     | 0.5    | 0-30       |

#### EPA Method 3510/8270C-SIM Polynuclear Aromatic Hydrocarbon Compounds +Naph in Water by GC-MS

| Client ID #               | : PS #FS3215           | Method Blank     |               |              |           |            |
|---------------------------|------------------------|------------------|---------------|--------------|-----------|------------|
| SRL (Lab) ID#             | : 12-09024-001         | MB092512         |               |              |           |            |
| Date Collected            | : 09/20/12             | NΛ               |               |              |           |            |
| Lab FDOII Certification # | : E83484               | E83484           |               |              |           |            |
| Date Extracted            | : 09/25/12             | 09/25/12         |               |              |           |            |
| Date Analyzed             | : 09/26/12             | 09/26/12         |               | MDL          | PQL       | CAS Number |
| Naphthalene               | 0.10 U                 | 0.10 U           |               | 0.10         | 0.50      | 91-20-3    |
| Units                     | : ug/L                 | ug/L             |               | ug/L         | ug/L      |            |
| Dilution Factor (MEDF)    | : 1                    | 1                |               | 1            | 1         |            |
| Surrogate (% Rec)         |                        |                  |               | (Surroga     | te Contro | ol Limits) |
| Nitrobenzene-D5           | 89.2%                  | 87.3%            |               |              | 60-140    |            |
| 2-Fluorobiphenyl          | 79.2%                  | 74.6%            |               |              | 60-140    |            |
| p-Terphenyl-D14           | 99.3%                  | 105.2%           |               |              | 60-140    |            |
|                           | % Recovery             | Acceptable       | %RPD          | Acceptable   |           |            |
| Naphthalenc               | LCS/MS/MSD<br>83/76/82 | Limits<br>60-140 | MS/MSD<br>7.6 | Limits<br>30 |           |            |

| Southern Research Laboratorn<br>an MBE Environmental Labora<br>2251 Lynx Lane, Suite 1<br>Orlando, Florida 32804<br>Ed Sainten<br>Terracon                                                                         | ,                                                                                                                                   | 00                                                                                               |                                          |                                          | FDOH<br>SRL L<br>Receiv              | ab Ref#<br>ed Date<br>t Numbe                  | fied<br>: E83484<br># : 12-09024<br>: : 09/20/12<br>er/Project Name |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------------|---------------------------------------------------------------------|
| 1675 Lee Rd.                                                                                                                                                                                                       |                                                                                                                                     |                                                                                                  |                                          |                                          | Allison                              | ı Oak's                                        | PS #F3215                                                           |
| Winter Park, FL 32789                                                                                                                                                                                              | (407) 740-611                                                                                                                       | 10                                                                                               |                                          |                                          | Orlan                                | do, FL                                         |                                                                     |
|                                                                                                                                                                                                                    | <u>FL-PRO (Pe</u>                                                                                                                   | etroleum Range                                                                                   | Organics)~{V                             | Water}                                   |                                      |                                                |                                                                     |
| Client ID #<br>SRL (Lab) ID#<br>Date Collected<br>Lab FDOH Certification #<br>Date Prepared<br>Date Analyzed<br>TOTAL PRO (C8-C40)<br>Units<br>Dilution Factor (MEDF)<br>Surrogate (% Rec)<br>Orthoterphenyl (OTP) | : <b>PS #FS3215</b><br>: 12-09024-001<br>: 09/20/12<br>: E83484<br>: 09/26/12<br>: 09/27/12<br>0.2 U<br>: mg/L<br>: 1<br>:<br>86.2% | Method Blank<br>MB092612<br>NA<br>E83484<br>09/26/12<br>09/27/12<br>0.2 U<br>mg/L<br>1<br>115.7% |                                          |                                          | MDL<br>0.2<br>mg/L<br>1<br>(Surrogat | PQL<br>0.5<br>mg/L<br>1<br>cc Contro<br>82-142 | CAS Number<br>NA                                                    |
| TOTAL PRO (C8-C40)                                                                                                                                                                                                 | % Recovery<br>LCS/LCSD<br>84/85<br><u>Hexavalent Ch</u>                                                                             | Acceptable<br>Limits<br>55-118                                                                   | % RPD<br>LCS/LCSD<br>1.7<br>18 3500-Cr D | Acceptable<br>Limits<br>0-20<br>in Water | c                                    |                                                |                                                                     |
| Client ID #                                                                                                                                                                                                        | : PS #FS3215                                                                                                                        | Method Blankl                                                                                    | Method Blank                             | 2                                        |                                      |                                                |                                                                     |
| SRL (Lab) ID#                                                                                                                                                                                                      | : 12-09024-001                                                                                                                      | MB092012                                                                                         | MB092112                                 |                                          |                                      |                                                |                                                                     |
| Date Collected                                                                                                                                                                                                     | : 09/20/12                                                                                                                          | NA                                                                                               | NA                                       |                                          |                                      |                                                |                                                                     |
| Lab FDOH Certification #                                                                                                                                                                                           | : E82277                                                                                                                            | E83182                                                                                           | E83182                                   |                                          |                                      |                                                |                                                                     |
| Date Prepared                                                                                                                                                                                                      | : 09/21/12                                                                                                                          | 09/20/12                                                                                         | 09/21/12                                 |                                          |                                      |                                                |                                                                     |
| Date Analyzed                                                                                                                                                                                                      | : 09/21/12                                                                                                                          | 09/20/12                                                                                         | 09/21/12                                 |                                          |                                      |                                                |                                                                     |
| Time Analyzed                                                                                                                                                                                                      | : 10:00                                                                                                                             | 22:09                                                                                            | 9:51                                     |                                          |                                      |                                                |                                                                     |
| Units                                                                                                                                                                                                              | <u>: mg/L</u>                                                                                                                       | mg/L                                                                                             | mg/L                                     |                                          |                                      | PQL                                            | CAS Number                                                          |

 Units
 : mg/L
 mg/L
 mg/L
 MDL
 PQL
 CAS Number

 Hexavalent Chromium
 0.0042
 U
 0.0042
 U

|                     | % Recovery<br>LCS/MS/MSD | LCS<br>Acceptable<br>Limits | MS/MSD<br>Acceptable<br>Limits | % RPD<br>MS/MSD | Acceptable<br>Limits |  |
|---------------------|--------------------------|-----------------------------|--------------------------------|-----------------|----------------------|--|
| Hexavalent Chromium | 106/92/93                | 85-115                      | 85-115                         | 2               | 0-13                 |  |

| Southern Research Laborato<br>an MBE Environmental Labo<br>2251 Lynx Lane, Suite 1<br>Orlando, Florida 32804                                    |                                                                                                              | 00                                                                            |                                          |                              | FDOH<br>SRL L   |                            |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|------------------------------|-----------------|----------------------------|-----------------------------|
| Ed Sainten<br>Terracon<br>1675 Lee Rd.<br>Winter Park, FL 32789                                                                                 | (407) 740-61                                                                                                 | 10                                                                            |                                          |                              | AK-12<br>Alliso | 2-7001                     | r/Project Name<br>PS #F3215 |
|                                                                                                                                                 | <u>Total Organ</u>                                                                                           | ic Carbon by SN                                                               | <u>/18 5310B in</u>                      | Water                        |                 |                            |                             |
| Client ID #<br>SRL (Lab) ID#<br>Date Collected<br>Lab FDOH Certification #<br>Date Prepared<br>Date Analyzed<br>Dilution Factor (MEDF)<br>Units | : <b>PS #FS3215</b><br>: 12-09024-001<br>: 09/20/12<br>: E82277<br>: 09/26/12<br>: 09/26/12<br>: 1<br>: mg/L | Method Blank<br>MB092612<br>NA<br>E83182<br>09/26/12<br>09/26/12<br>1<br>mg/L |                                          |                              | MDL             | PQL                        | CAS Number                  |
| Total Organic Carbon (TOC)                                                                                                                      | 6.9                                                                                                          | 0.22                                                                          |                                          |                              | 0.22            | 1.0                        | ECL-0165                    |
| Total Organic Carbon (TOC)                                                                                                                      | % Recovery<br>LCS/MS/MSD<br>100/103/104                                                                      | Acceptable<br>Limits<br>85-115                                                | % RPD<br>MS/MSD<br>0.7                   | Acceptable<br>Limits<br>0-21 |                 |                            |                             |
|                                                                                                                                                 | EPA Method 1                                                                                                 | 631 Low Lev <u>el I</u>                                                       | Mercury (Hg)                             | in Water                     |                 |                            |                             |
| Client ID #<br>SRL (Lab) ID#<br>Date Collected<br>Lab FDOII Certification #<br>Date Prepared<br>Date Analyzed<br>Units                          | : <b>PS #FS3215</b><br>: 12-09024-001<br>: 09/20/12<br>: E87688<br>: 09/24/12<br>: 09/25/12<br>: <b>ng/L</b> | Method Blank<br>MB092412<br>NA<br>E87688<br>09/24/12<br>09/25/12<br>ng/L      |                                          |                              | MDL             | PQL                        | CAS Number                  |
| Low Level Mcrcury (Hg)                                                                                                                          | 1.95                                                                                                         | 0.183 U                                                                       |                                          |                              | 0.183           | 0.5                        | 7439-97-6                   |
| Low Level Mercury (Hg)                                                                                                                          | % Recovery<br>LCS/MS/MSD<br>107/100/91                                                                       | LCS<br>Acceptable<br>Limits<br>77-123                                         | MS/MSD<br>Acceptable<br>Limits<br>71-125 | % RPD<br>MS/MSD<br>8.7       | A               | cceptabl<br>Limits<br>0-24 | e                           |

| Southern Research Laborato | ories, Inc.             |                              | NELAP Certified             |
|----------------------------|-------------------------|------------------------------|-----------------------------|
| an MBE Environmental Labo  | FDOH Cert # : E83484    |                              |                             |
| 2251 Lynx Lane, Suite 1    |                         |                              | SRL Lab Ref # : 12-09024    |
| Orlando, Florida 32804     | (407) 522-710           | 00                           | Received Date : 09/20/12    |
| Ed Sainten                 |                         |                              | Project Number/Project Name |
| Terracon                   |                         |                              | AK-12-7001                  |
| 1675 Lee Rd.               |                         |                              | Allison Oak's PS #F3215     |
| Winter Park, FL 32789      | (407) 740-61            | .0                           | Orlando, FL                 |
|                            | <u>Metals (total re</u> | coverable) by EPA 200 Series | Methods                     |
| Client ID #                | : PS #FS3215            | Method Blank                 |                             |
| SRL (Lab) ID#              | : 12-09024-001          | MB092412                     |                             |
| Date Collected             | : 09/20/12              | NA                           |                             |

| Diffe Concered           | . 07/20/12 |          |       |      |            |
|--------------------------|------------|----------|-------|------|------------|
| Lab FDOH Certification # | : E82277   | E82277   |       |      |            |
| Date Prepared            | : 09/24/12 | 09/24/12 |       |      |            |
| Date Analyzed            | : 09/25/12 | 09/25/12 |       |      |            |
| Units                    | : ug/L     | ug/L     | MDL   | PQL  | CAS Number |
| Cadmium                  | 0.306 U    | 0.306 U  | 0.306 | 1.00 | 7440-43-9  |
| Copper                   | 4,58 I     | 1.40 U   | 1.40  | 10.0 | 7440-50-8  |
| Lead                     | 1.60 U     | 1.60 U   | 1.60  | 10.0 | 7439-92-1  |
| Zinc                     | 10.3 V     | * 7.86 I | 3.00  | 10.0 | 7440-66-6  |
|                          |            |          |       |      |            |

|                        |             | LCS        | MS/MSD     |        |            |
|------------------------|-------------|------------|------------|--------|------------|
| Prep. Method EPA 3005A | % Recovery  | Acceptable | Acceptable | %RPD   | Acceptable |
| EPA 200.7              | LCS/MS/MSD  | Limits     | Limits     | MS/MSD | Limits     |
| Cadmium                | 104/102/102 | 85-115     | 70-130     | 0.1    | 0-25       |
| Copper                 | 101/101/101 | 85-115     | 70-130     | 0.2    | 0-25       |
| Lead                   | 102/100/100 | 85-115     | 70-130     | 0.7    | 0-25       |
| Zinc                   | 99/98/97    | 85-115     | 70-130     | 0.7    | 0-25       |

\* This compound is a common laboratory contaminant

,

| Southern Research Laborato | ries, Inc.     | NELAP Certified             |
|----------------------------|----------------|-----------------------------|
| an MBE Environmental Labor | ratory         | FDOH Cert # : E83484        |
| 2251 Lynx Lane, Suite 1    |                | SRL Lab Ref # : 12-09024    |
| Orlando, Florida 32804     | (407) 522-7100 | Received Date : 09/20/12    |
| Ed Sainten                 |                | Project Number/Project Name |
| Terracon                   |                | AK-12-7001                  |
| 1675 Lee Rd.               |                | Allison Oak's PS #F3215     |
| Winter Park, FL 32789      | (407) 740-6110 | Orlando, FL                 |

#### **DATA QUALIFIER CODES**

#### **Reporting Exceptions and Qualified Data**

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

- $\mathbf{D}$  = Data reported from a dilution and or multiple dilutions.
- I = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- J = Estimated Value
- L = Off-Scale high; exceeds the linear range or highest calibration standard.
- O = Sampled, but analysis lost or not performed
- Q = Sample held beyond normal holding time
- U = indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. MEDF = Matrix Effected Dilution Factor.
- V = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- $\mathbf{Y}$  = The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

LCS Obs. Value is the observed quantity, as calculated from the calibration curve, of the analyte in the Laboratory Control Sample (LCS). The LCS is a standard from a source different than the source of the standards used for calibration. The LCS is also known as the QC sample. It is used to check the accuracy of the calibration curve.

## Form FD 9000-24 GROUNDWATER SAMPLING LOG

|                                                                                                              |                               |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        |            |               | Rise                | r: 2.8                     |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|-----------|-------------------------------------------|------------------------------------------------------------------------|------------|---------------|---------------------|----------------------------|
| SITE<br>NAME:                                                                                                | Allison c                     | 2955                                    | PS#F                             | 3215                           | SI<br>L(                        | TE<br>DCATION:                   | 2         | orlan                                     | Lo, FC                                                                 | -          |               |                     |                            |
| SITE<br>NAME:Allison OgksPS#F3215SITE<br>LOCATION:Orlando, FC.WELL NO:PS#F3215SAMPLE ID:PS#F3215DATE:9/20/12 |                               |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |
|                                                                                                              |                               |                                         |                                  |                                |                                 | GING DA                          |           |                                           |                                                                        |            |               |                     |                            |
| WELL<br>DIAMETEI                                                                                             | R (inches):                   | r TUBIN<br>DIAM                         | IG<br>ETER (inches):             | 1/811 WE                       | LL SCREEN<br>PTH: <b>3_0</b> fe | INTERVAL<br>set to <b>/3,0</b> f | feet      | STATIC E                                  | EPTH<br>ER (feet): 8.7<br>WELL CAPAC                                   | 9          |               | E PUMP T            | YPE<br>Ar                  |
|                                                                                                              | t if applicable)              |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        | ITY        |               |                     |                            |
| EOUIDME                                                                                                      |                               |                                         |                                  | <u>15,0</u>                    | feet - Ž                        | 7.74<br>RING CARACI              |           | feet) X                                   | JBING LENGTH                                                           |            | s/foot        | = C,                | ZS gallons                 |
|                                                                                                              | t if applicable)              | URGE: TEG                               |                                  |                                |                                 |                                  |           |                                           |                                                                        | ,          | VUELL         |                     |                            |
|                                                                                                              |                               | IG                                      | FINAL PUI                        |                                | allon <u>s + (</u>              | PURGIN                           |           | oot X                                     | PURGING                                                                | ) +        | -             | gallons<br>TOTAL VO | -                          |
|                                                                                                              | WELL (feet):                  | 11,5'                                   |                                  | WELL (feet):                   | 14,5                            |                                  |           | т:0957                                    | ENDED AT:                                                              | 10/2       | <b>;</b> F    | PURGED (            | gallons): 0.97             |
| TIME                                                                                                         | VOLUME<br>PURGED<br>(gallons) | CUMUL.<br>VOLUME<br>PURGED<br>(gallons) |                                  | DEPTH<br>TO<br>WATER<br>(feet) | pH<br>(standard<br>units)       | темр.<br>(°С)                    | (cìr      | COND.<br>rcle units)<br>nho3/cm<br>r S/cm | DISSOLVED<br>OXYGEN<br>(circle units)<br>rhg/L <u>or</u><br>Saturation |            | BIDITY<br>Us) | COLC<br>(descrit    |                            |
| 0957                                                                                                         | 0.25                          | 0.25                                    | ,06                              | 13.05                          | 6.44                            | 25,16                            | 5         | 83                                        | \$0,8% 5.01                                                            | 7.0        | 2             | Clear               | non                        |
| 6000                                                                                                         | 0118                          | 0.43                                    | ,06                              | 13.84                          | 6.14                            | 25.13                            |           |                                           | 58.8% 4.89                                                             |            |               | eL                  | 11                         |
| 1003                                                                                                         | 6.18                          | 0.61                                    | 106                              | 13.85                          | 5.89                            | 25.07                            |           |                                           | 60,T/./5.0                                                             | 5,5        |               | eL                  | 11                         |
| 1006                                                                                                         | 0.12                          | 0.73                                    | ,04                              | 14.23                          | 5.71                            | 25.05                            |           |                                           | 59,8/0/4,92                                                            |            |               | 66                  | 47                         |
| 1009                                                                                                         | 0,12                          | 0,85                                    | ,04                              | 14.35                          | 5.62                            | 25,05                            |           |                                           | <u>59.5// 4.96</u>                                                     |            |               | CC                  | (/                         |
| 1012                                                                                                         | 0.12                          | 0.97                                    | 104                              | 14,48                          | 5.57                            | 25/06                            | 20        | 62                                        | 60% 4.95                                                               | 2.4        | (             | CL                  | 11                         |
|                                                                                                              |                               |                                         |                                  | -                              |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |
|                                                                                                              |                               |                                         |                                  | _                              |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |
|                                                                                                              |                               |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |
|                                                                                                              |                               |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |
| WELL CA                                                                                                      | PACITY (Gallor                | s Per Foot):                            | 0.75" = 0.02;<br>/Ft ): 1/8" = 0 | 1" = 0.04;<br>0006: 3/16'      | 1.25'' = 0.0                    | 6; 2" = 0.10<br>1/4" = 0.002     | 6;<br>6;  |                                           | <b>4</b> " = 0.65;<br>004; <b>3/8</b> " = 0                            | 5'' = 1.02 |               | " = 1.47;<br>0.010; | 12" = 5.88<br>5/8" = 0.016 |
|                                                                                                              | EQUIPMENT (                   |                                         |                                  | BP = Bladder F                 |                                 | SP = Electric                    |           |                                           | mp; PP = P                                                             | eristaltic | _             |                     | ther (Specify)             |
|                                                                                                              |                               |                                         |                                  |                                |                                 | LING DA                          | <b>AT</b> | 4                                         |                                                                        |            |               |                     |                            |
|                                                                                                              | BY (PRINT) / A                |                                         |                                  | SAMPLER(S)                     |                                 |                                  |           |                                           | SAMPLING<br>INITIATED A                                                | т. / с. /  | .             | SAMPLIN             | IG<br>AT: <b>;;;;;;;</b> ] |
| PUMP OR                                                                                                      | BURAS /                       |                                         | sa                               | TURING                         | 1 pour                          |                                  |           | FIELD                                     | FILTERED: Y                                                            |            | 1             |                     | ize: m                     |
| DEPTH IN                                                                                                     | WELL (feet):                  | 14.5                                    |                                  | MATERIAL C                     |                                 |                                  |           | Filtratio                                 | on Equipment Ty                                                        | /pe:       |               |                     |                            |
|                                                                                                              | CONTAMINATI                   |                                         |                                  | D                              | TUBING                          | Y Ø(re                           |           | ed)                                       | DUPLICATE                                                              |            |               |                     |                            |
| SAM<br>SAMPLE                                                                                                | PLE CONTAINE                  | ER SPECIFIC                             |                                  | PRESERVAT                      |                                 | RESERVATIO                       | N         | FINAL                                     | INTEND<br>ANALYSIS A                                                   |            |               | MPLING<br>NPMENT    | SAMPLE PUMP<br>FLOW RATE   |
| ID CODE                                                                                                      | CONTAINERS                    | CODE                                    | VOLUME                           | USED                           |                                 | D IN FIELD (r                    | mL)_      | pH                                        | МЕТНО                                                                  | D          | C             | ODE                 | (mL per minute)            |
| F3215                                                                                                        | 2                             | CG                                      | YOML                             | Hec                            |                                 | ~                                |           |                                           | VOA_                                                                   |            | RF            | -pp                 | Cloome                     |
|                                                                                                              | 2                             | AG                                      | YOML                             | Lone                           |                                 |                                  |           |                                           | Toc_                                                                   |            |               |                     | LIGORL                     |
|                                                                                                              | 2                             | CG                                      | YORL                             | Hec                            |                                 | -                                |           | ~                                         | LL Merc                                                                |            |               | 4                   | <100 MC                    |
|                                                                                                              | <u> </u>                      | AG                                      | ILFr.                            | How                            |                                 | <u> </u>                         | _         | ~                                         | FCIPRO                                                                 |            | -101          | ~                   | 1046pin                    |
|                                                                                                              | 1                             | AG                                      | 1640.                            | Non                            |                                 | <u> </u>                         |           |                                           | 8270-5In                                                               |            |               |                     |                            |
| REMARKS                                                                                                      | · · · · ·                     | PE<br>PE                                | 250mL<br>125mL                   | HN03                           |                                 | -                                |           | <br>                                      | Hex Cr<br>4 meta                                                       | 15         | -             |                     | <b>₽</b> ∕                 |
|                                                                                                              | p down                        | due to                                  | droping                          | xater In                       | wellA                           | llow re                          | chy       | irse fu                                   | 5 Smin                                                                 |            | to            | Collec              | fing Samples               |
| MATERIA                                                                                                      |                               | AG = Ambe                               |                                  | Clear Glass;                   | PE = Poly                       |                                  |           | Polypropyl                                | ene; S = Silic                                                         | one; T     | = Teflo       | n; 0 = (            | Diher (Specify)            |
| SAMPLING                                                                                                     | G EQUIPMENT                   |                                         | APP = After Pe<br>RFPP = Revers  |                                | B = Bai<br>Itic Pumo:           |                                  |           | der Pump;<br>od (Tubing                   | ESP = Elect<br>Gravity Drain):                                         |            |               |                     |                            |
| RFPP = Reverse Flow Peristallic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)          |                               |                                         |                                  |                                |                                 |                                  |           |                                           |                                                                        |            |               |                     |                            |

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

### DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

|                    |                                                                                                                                                                                    |                  |              | D INSTRUME             |               |                         |                      |                     |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|------------------------|---------------|-------------------------|----------------------|---------------------|--|
| INSTRUM            | ENT (M                                                                                                                                                                             | AKE/MOD          | EL#) _       | <u>YSI 556MP</u>       | S             | INSTRUM                 | ENT # _06H           | 251 <u>0AF</u>      |  |
| PARAME             | TER: [c                                                                                                                                                                            | heck only o      | one]         |                        |               |                         |                      |                     |  |
| 🗌 TEM              | 🗌 TEMPERATURE 🛛 🖾 CONDUCTIVITY 🗌 SALINITY 🕅 pH 🗌 ORP                                                                                                                               |                  |              |                        |               |                         |                      |                     |  |
| 🗌 TUR              | BIDITY                                                                                                                                                                             |                  | RESIDUAL     | _ CI 🔀 D               | 0             | 🗌 ОТН                   | ER                   |                     |  |
|                    | <b>STANDARDS:</b> [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased] |                  |              |                        |               |                         |                      |                     |  |
| Standa             | ard A                                                                                                                                                                              | Do 1             | 000 /0       |                        |               |                         |                      |                     |  |
| Standa             | ard B                                                                                                                                                                              | PH               | 4,7,         | 0                      |               |                         |                      |                     |  |
| Standa             | ard C                                                                                                                                                                              | Conducti         | uity         | 1413                   |               |                         |                      |                     |  |
| DATE<br>(yy/mm/dd) | TIME<br>(hr:min)                                                                                                                                                                   | STD<br>(A, B, C) | STD<br>VALUE | INSTRUMENT<br>RESPONSE | % DEV         | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |  |
| 9/20/12            | 0925                                                                                                                                                                               | A                | 100%         | 92.0 /100,3            | 8%/c1         | Yes                     | Init                 | mb                  |  |
| 1                  | 0934                                                                                                                                                                               | B                | 4.0          | 4.03                   | 21            |                         | 1                    |                     |  |
|                    | 0443                                                                                                                                                                               | ß                | 2.0          | 6.97                   | 21            | }                       |                      |                     |  |
|                    | 0949                                                                                                                                                                               | ß                | 10.0         | 10.10                  | 10/0          |                         |                      |                     |  |
|                    | 0951                                                                                                                                                                               | С                | 1413         | 1400                   | <1            | 1                       | 1                    | 4                   |  |
| 9/20/12            | 1157                                                                                                                                                                               | A                | 100%         | 1.00.4%                | <1            | Yes                     | cont                 | MB                  |  |
|                    | 1200                                                                                                                                                                               | ß                | 4            | 4.01                   | 41            |                         |                      | 1                   |  |
|                    | 1203                                                                                                                                                                               | ß                | 7            | 7,0                    | <1            |                         |                      | >                   |  |
|                    | 1208                                                                                                                                                                               | ß                | 10           | 10.03                  | <i>&lt;</i> [ |                         |                      |                     |  |
|                    | 1211                                                                                                                                                                               | e                | 1413         | 1413                   | 41            | d'                      | , r                  |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              | -                      |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    | 1                                                                                                                                                                                  |                  |              |                        |               | ,                       |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    | 1                                                                                                                                                                                  |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    |                                                                                                                                                                                    |                  |              |                        |               |                         |                      |                     |  |
|                    | I                                                                                                                                                                                  |                  | I            |                        | l             |                         |                      | ļ                   |  |

`

\*

## DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

|                    | Form              | ו FD 9000        | -8: FIEL      | D INSTRUME                            | NT CALI  | BRATION R               | ECORDS               |                     |
|--------------------|-------------------|------------------|---------------|---------------------------------------|----------|-------------------------|----------------------|---------------------|
| INSTRUM            | ENT (M            | AKE/MOD          | EL#) <u>I</u> | HACH 2100P                            |          | RUMENT #                | 08080C017            | 245                 |
| PARAME             | TER: [c/          | heck only d      | one]          |                                       |          |                         |                      |                     |
| 🗌 TEM              | PERATUR           | RE 🗍 (           | CONDUCT       |                                       | SALINITY | 🗌 рН                    | ORP                  |                     |
| 🗹 TUR              | BIDITY            |                  | RESIDUAL      | . CI 🗌 [                              | 00       | 🗌 ОТН                   | ER                   |                     |
|                    |                   |                  |               | ndards used for c<br>ared or purchase |          | he origin of the        | standards, the       | standard            |
| Standa             | ard A             | <0.1             |               |                                       |          |                         | _                    |                     |
| Standa             | ard B             | 20.0             |               |                                       |          |                         |                      |                     |
| Standa             | ard C             | 100              |               |                                       |          |                         |                      |                     |
| DATE<br>(yy/mm/dd) | TIME<br>(hr:min)_ | STD<br>(A, B, C) | STD<br>VALUE  | INSTRUMENT<br>RESPONSE                | % DEV    | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 9/20/12            | 0921              | A                | 0.(           | 0,14 0.11                             | 60/10/   | (es                     | Zait                 | MB.                 |
|                    | 0923              | ß                | 20.0          | 20,2                                  | 1%       |                         |                      | 1                   |
| J                  | 0925              | Ċ                | 100           | 99.3                                  | 21       |                         |                      |                     |
| glolic             | 1213              | A                | 0.)           | 0,11                                  | 1%       | 405                     | cowf                 | 1417                |
|                    | 1214              | ß                | 20,0          | 2011                                  | 21       |                         | 1                    |                     |
|                    | 1215              | Ś                | 1,00          | 99.7                                  | 01       |                         |                      |                     |
|                    | /                 |                  | V             |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       | _        |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  | ļ             |                                       | _        |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |
|                    |                   |                  |               |                                       |          |                         | -                    |                     |
|                    |                   |                  |               |                                       |          |                         |                      |                     |

DATE: 9/19/19 SITE: Pump Station #3215 LOCATION: O, lando, FL. WELL LOCATION STRATEGY: 7 MW-3 DRILLING COMPANY: Groundwater Protection DRILLING METHOD / BORING DIAMETER: Geo Probe / 4" WELL DEPTH / SCREEN INTERVAL: 13 bls / 3 - 13' GROUNDWATER LEVEL: 9.87' TOC TOP OF CASING ELEVATION: DEVELOPMENT PROCEDURE: Peristaltic Pump DISPOSITION OF INVESTIGATIVE DERIVED WASTES: Spread **REMARKS:** PROTECTIVE CASING TYPE: <u>NA</u> LOCKING CAP: Y/N 2.0'-SURFACE COVER: 91935 Å CEMENT GROUT , a , , , , RISER /" PVC 3,0' -SEAL \_\_\_\_A 13.0' -134.30/65 SCREEN 11,006 Slot Screen 10,0' -FILTER \_ 30/63 WELL POINT

Terracon



NODARSE



# **Geotechnical Engineering Report**

**Greenview Pines Pump Station No. 3887** 

Orlando, Florida October 16, 2012 Project No. AK125005

## **Prepared for:**

Orange County Public Utilities-Engineering Division Orlando, Florida

Prepared by:

Nodarse & Associates A Terracon Company Winter Park, Florida

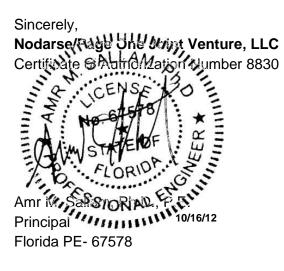




October 16, 2012

Orange County Public Utilities – Engineering Division 9150 Curry Ford Road Orlando, Florida 32815

Attn: Mr. Jeff Nazario


Re: Geotechnical Engineering Report Greenview Pines Pump Station No. 3887 Orlando, Florida Project Number: AK125005

Dear Mr. Nazario:

Nodarse/Page One Joint Venture has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with our proposal number PH1120208 dated May 2, 2012.

This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of the proposed wet well pump station.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.



Enclosures cc: 1 – Client (PDF) 1 – File Jay W. Casper, P.E. Senior Associate Florida PE - 36330

| EXECL | JTIVE S | SUMMARY                                 | i |
|-------|---------|-----------------------------------------|---|
| 1.0   | INTRO   | DUCTION                                 | 1 |
|       |         |                                         |   |
|       | 2.1     | Project Description                     | 1 |
|       | 2.2     | Site Location and Description           | 2 |
| 3.0   | SUBSL   | JRFACE CONDITIONS                       | 2 |
|       | 3.1     | USDA Soil Survey                        | 2 |
|       | 3.2     | Typical Profile                         | 2 |
|       |         | Groundwater                             |   |
| 4.0   | RECO    | MMENDATIONS FOR DESIGN AND CONSTRUCTION | 4 |
|       | 4.1     | Geotechnical Considerations             | 4 |
|       |         | 4.1.1 Pump Station:                     | 4 |
|       |         | 4.1.2 Pipelines:                        | 5 |
|       |         | 4.1.4 General Site Preparation          |   |
|       |         | 4.1.5 Temporary Dewatering:             |   |
| 5.0   | GENE    | RAL COMMENTS                            | 7 |

## **APPENDIX A – FIELD EXPLORATION**

| Exhibit A-1        | Site Location Map             |
|--------------------|-------------------------------|
| Exhibit A-2        | Soil Survey Map               |
| Exhibit A-3        | Soil Survey Descriptions      |
| Exhibit A-4        | Boring Location Plan          |
| Exhibit A-5        | Field Exploration Description |
| Exhibit A-6 to A-9 | Boring Logs                   |
|                    |                               |

## **APPENDIX B – SUPPORTING INFORMATION**

## **APPENDIX C – SUPPORTING DOCUMENTS**

| Exhibit C-1 | General Notes                      |
|-------------|------------------------------------|
| Exhibit C-2 | Unified Soil Classification System |

## **APPENDIX D – SUSTAINABILITY CONSIDERATIONS**

Exhibits D-1 to D-3 Sustainability Considerations



## **EXECUTIVE SUMMARY**

A geotechnical investigation has been performed for the proposed Greenview Pines Pump Station planned at 3955 Greenview Pines Court in Orlando, Orange County, Florida. Three (3) borings, designated AB-01, AB-02, and TB-01 have been performed to depths of between 10 and 50 feet below the existing ground surface within the pump station areas. This report specifically addresses the recommendations for the proposed pump station wet well, manhole, and pipelines.

Based on the information obtained from our geotechnical exploration, it appears that the subsoil and groundwater conditions at the site are suitable for the proposed developed and construction. The following geotechnical considerations were identified:

- Temporary dewatering will be required for construction of the pump station. Dewatering the pump station area will require the use of a properly designed well point system. The dewatering system should not be turned off until the pump station has enough dead weight to counteract an uplift force calculated based on a head of water measured from the base of the pump station to the estimated Seasonal High Water Level (SHWL).
- Our borings did not encounter unsuitable soils such as muck, clay, high silts, and debris, which might cause problems during construction. However, if encountered, unsuitable soils should be completely removed to a minimum depth of 18 inches below the pump station pipelines bottom, replaced with well-draining granular sands with a fines content of 5 percent or less passing the No. 200 U.S. Standard sieve by weight, and compacted to a firm and unyielding state.
- The proposed structure may be supported on shallow footings bearing on the existing site soil only if the proper site preparations are following according to the appropriate sections of this report.
- On-site native soils typically appear suitable for use as general engineered fill.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

## GEOTECHNICAL ENGINEERING REPORT GREENVIEW PINES PUMP STATION NO. 3887 ORLANDO, FLORIDA Project No. AK125005 October 16, 2012

## **1.0 INTRODUCTION**

A geotechnical engineering report has been prepared for the proposed Greenview Pines Pump Station which will be located at 3955 Greenview Pines Court in Orlando, Orange County, Florida as shown on the Topographic Vicinity Map included as Exhibit A-1 in Appendix A. Three (3) borings, designated AB-01, AB-02, and TB-01 have been performed to depths of between 10 and 50 feet below the existing ground surface in the proposed pump station and manhole area. Logs of the borings along with a site location plan, geologic map and boring location plans are included in Appendix A of this report.

The purpose of the geotechnical services was to provide information and geotechnical engineering recommendations relative to the proposed pump station wet well, gravity pipeline, and a concrete drive way. The followings will be provided:

- Field exploration method
- Subsurface soil and groundwater conditions
- Presentation of field and laboratory information in graphical format
- Recommendations for general earthwork
- Recommendations for pump station design and construction
- Recommendations for gravity pipe line earthwork

## 2.0 **PROJECT INFORMATION**

#### 2.1 **Project Description**

| Item                | Description                                                                                                                   |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Site layout         | See Appendix A, Exhibit A-4: Boring Location Plan                                                                             |  |  |  |  |  |
| Construction        | One wet well to a depth of about 20 feet below existing grade and 6 feet in diameter with associated pipelines and man holes. |  |  |  |  |  |
| Grading             | Fill – fine grading, estimated at up to approximately 1 foot.                                                                 |  |  |  |  |  |
| Cut and fill slopes | Excavation per OSHA requirements or a license professional engineer for braced excavations.                                   |  |  |  |  |  |



## 2.2 Site Location and Description

| Item                  | Description                                                                                                                                                                                                                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location              | The project will be located at 3955 Greenview Pines Court in Orlando, Orange County, Florida                                                                                                                                                                                                                   |
| Existing improvements | No existing structures on site. A residential structure exists just south of the site.                                                                                                                                                                                                                         |
| Current ground cover  | Grass covered with limited trees.                                                                                                                                                                                                                                                                              |
| Existing topography   | The USGS topographic quadrangle map "Orlando East, Florida"<br>and "Oviedo SW, Florida" depict the developed topography as<br>nearly level, with original ground surface elevations ranging from<br>about elevation +60 feet to +65 feet referencing the National<br>Geodetic Vertical Datum of 1929 (NGVD29). |

## 3.0 SUBSURFACE CONDITIONS

## 3.1 USDA Soil Survey

The Soil Survey of Orange County, Florida, as prepared by the United States Department of Agriculture (USDA), Soil Conservation Service (SCS; later renamed the Natural Resource Conservation Service - NRCS), dated October 1981, identifies the soil types at the project site as Pomello fine sand, 0 to 5 percent slopes (34). It should be noted that the Soil Survey is not intended as a substitute for site-specific geotechnical exploration; rather it is a useful tool in planning a project scope in that it provides information on soil types likely to be encountered. A copy of the pertinent section of the Soil Survey map is included as Exhibit A-2 in Appendix A. Descriptions of soil map units are included in Appendix A as Exhibit A-3.

## 3.2 Typical Profile

Based on the results of the borings, subsurface conditions on the project site can be generalized as follows:

| Stratum | Approximate Depth to<br>Bottom of Stratum<br>(feet) | Consistency/<br>Density                        |                       |  |
|---------|-----------------------------------------------------|------------------------------------------------|-----------------------|--|
| 1       | 8                                                   | Fine sand to fine sand with silt<br>(SP/SP-SM) | Loose to medium dense |  |
| 2       | 10 to 13.5                                          | Silty fine sand<br>(SM)                        | Loose                 |  |



| Stratum | Approximate Depth to<br>Bottom of Stratum<br>(feet) | Material Description                           | Consistency/<br>Density |  |  |
|---------|-----------------------------------------------------|------------------------------------------------|-------------------------|--|--|
| 3       | 15 to 50                                            | Fine sand to fine sand with silt<br>(SP/SP-SM) | Loose to dense          |  |  |

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in Appendix A of this report. Descriptions of our field exploration are included as Exhibit A-5 in Appendix A. Descriptions of our laboratory testing procedures are included as Exhibit B-1 in Appendix B.

## 3.3 Groundwater

The boreholes were observed during drilling for the presence and level of groundwater. Groundwater was observed in the borings at a depth of 4.5 feet below existing grade. It should be recognized that fluctuations of the groundwater table will occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the boring was performed. Therefore, groundwater levels during construction or at other times in the future may be higher or lower than the levels indicated on the boring logs. The estimated seasonal high groundwater tables are included in the following table and on the boring logs.

| Boring<br># | Approximate depth to<br>encountered water table<br>(feet) | Approximate depth to estimated<br>normal seasonal high<br>groundwater table<br>(feet) |
|-------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|
| AB-01       | 4.5                                                       | 3                                                                                     |
| AB-02       | 4.5                                                       | 3                                                                                     |
| TB-01       | 4.5                                                       | 3                                                                                     |

Estimates of the normal seasonal high water table presented in this report are based on and limited by the data collected during our geotechnical exploration, and the referenced published documents. Estimates of the normal seasonal high assume normal precipitation volumes and distribution. These seasonal water table estimates do not represent the temporary rise in water table that occurs immediately following a storm event, including adjacent to other stormwater management facilities. This is different from static groundwater levels in wet ponds and/or drainage canals which can affect the design water levels of new, nearby ponds. The seasonal high water table may be affected by extreme weather changes, localized or regional flooding, karst activity, future grading, drainage improvements, or other construction that may occur on our around the site following the date of this report.



## 4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

## 4.1 Geotechnical Considerations

The following conclusions and recommendations are based on the project characteristics previously described, the data obtained in our field exploration and our experience with similar subsurface conditions and construction types. If the proposed pump station location is significantly different from that previously described, or if subsurface conditions different from those disclosed by the borings are encountered during construction, we should be notified immediately so that we might review and modify, if necessary, the following recommendations in regards to such changes. The general guidelines included in this report are not intended to supersede more stringent requirements which may be mandated by County specifications.

**4.1.1 Pump Station:** Boring TB-01 was performed near the approximate location of the proposed pump station wet well as indicated by provided site plans. Groundwater was encountered in the boring at a depth of about 4.5 feet below existing grade. Based on the provided plans, the anticipated depth of the proposed pump station wet well is to be about 20 feet below existing grade.

- Dewatering will be required for construction of the pump station. Dewatering the pump station area will require the use of a properly designed well point system. Other dewatering systems utilizing sumps within shored or braced excavations may also be feasible. However, design of shoring/sump systems should be carefully evaluated with regard to blow outs of the excavation bottom due to unbalanced hydrostatic conditions. The Contractor should be allowed to review the soil stratification to determine the most feasible dewatering system for the pump station area. Dewatering should be performed gradually and slowly in order to reduce the effect of the sudden additional effective stress increase on the subsoil below close-by housed or roadways.
- All excavation should be performed in accordance with appropriate Occupational Safety and Health Administration (OSHA) standards. These standards typically include side slopes for temporary excavation no steeper than 1.5 horizontal to 1 vertical (1.5H: 1V) to provide adequate worker safety.
- If these side slopes cannot be maintained or are not desired due to other considerations, a properly designed and braced excavation or sheet piling would be required. All shoring and bracing systems or sheet piling should be designed and reviewed by an experienced professional engineer registered in the State of Florida.



Although not encountered, it is important to note that soils with high fines content (clay, silts, ect.) or unsuitable material (organics, muck, debris, ect.) should be removed to a minimum depth of 12 inches below the pump station bottom, to provide a stable construction platform, and replaced with well-draining granular sands with fines contents of 5 percent of less passing the No. 200 U.S. Standard sieve by weight. The soils below the base of the pump station should be compacted to a firm and unyielding state.

After the subgrade soils have been prepared as recommended above, the pump station may be supported on a monolithic slab or spread footing. The foundations can utilize a maximum net soil bearing pressure of 2,000 pounds per square foot.

- Compaction of backfilled soils around the pump station should be accomplished in lift thicknesses no greater than 8 inches. The fill material should consist of relatively clean granular sands with no more than 5 percent passing the No. 200 U.S. standard sieve by weight.
- Compaction can likely be accomplished in these areas with a small plate or hand guided drum type vibratory compactor and loose lift thicknesses should be limited to 8 inches. At least one (1) density test should be performed on each lift to verify that the soil has been compacted to at least 95 percent of its modified Proctor maximum dry density (ASTM D-1557).
- If compaction difficulties arise during construction, the geotechnical engineer should be consulted to provide further recommendations.
- The construction should also be sequenced so that a dewatering system, if necessary, is not turned off until the pump station has enough weight to counteract an uplift force equivalent to the amount of water displaced. It may also be prudent to place additional concrete in the structure foundation to provide ballast against such an uplift force. This uplift force should account for the head difference from the bottom elevation of the foundation to the seasonal high groundwater level or the groundwater level at the time of construction, whichever is shallower, plus any possible flooding conditions that may occur at the project site.
- For calculations of resistance to the uplift force, 50 pounds per cubic foot may be used for the buoyant unit weight of the soil. The buoyant weight of the concrete and overlying soils should be used in calculating the necessary amount of ballast required.

**4.1.2 Pipelines:** Regarding the pipe subgrade soils and backfill soils we offer the following recommendations:



- The bedding soil beneath the pipe should be properly shaped to completely support the pipe section and areas should be excavated to accommodate any bells or other raised portions of the pipe to help avoid point loading conditions.
- Once the pipe has been laid in the excavation trench and approved, backfill should be carefully deposited and compacted to the centerline of the pipe on both sides. All fill should be inorganic, non-plastic, granular soils (clean sands). The near surficial native site soils appear to meet backfill requirements.
- Compaction of backfilled soils above the centerline of the pipe to the proposed final grade should be accomplished in lift thicknesses no thicker than 12 inches.
- At least one (1) density per lift should be performed to verify that the soil has been compacted to 95 percent of the material's maximum modified Proctor dry density (ASTM D 1557).
- If compaction difficulties arise during construction, the Geotechnical Engineer should be consulted to provide further recommendations.

**4.1.4 General Site Preparation**: The following general procedures are recommended for site preparation:

- All excavations required should be performed in accordance with appropriate Occupational Safety and Health Administration (OSHA) standards. These standards typically include side slopes for temporary excavations not steeper than 1.5 Horizontal to 1 Vertical (1.5H:1V) to provide for adequate worker safety.
- If these side slopes cannot be maintained or are not desired due to other considerations, a properly designed braced excavation, trench shield, or sheet piling would be required for stable excavations. All shields, shoring and bracing systems, or sheet piling should be designed and reviewed by an experienced Professional Engineer registered in the State of Florida. Adjacent traffic loads and induced vibrations, among other factors, should be included in the design of these stabilization systems.

**4.1.5 Temporary Dewatering:** Groundwater was observed at a depth of about 4.5 feet at our boring locations at the time of our exploration. The normal seasonal high groundwater level is anticipated to be at a depth of about 3 feet below existing grades. Based on this information and the proposed embedment depths of the pump station, dewatering will be required to



facilitate construction, backfill and compaction in the dry. Regarding dewatering, we offer the following recommendations:

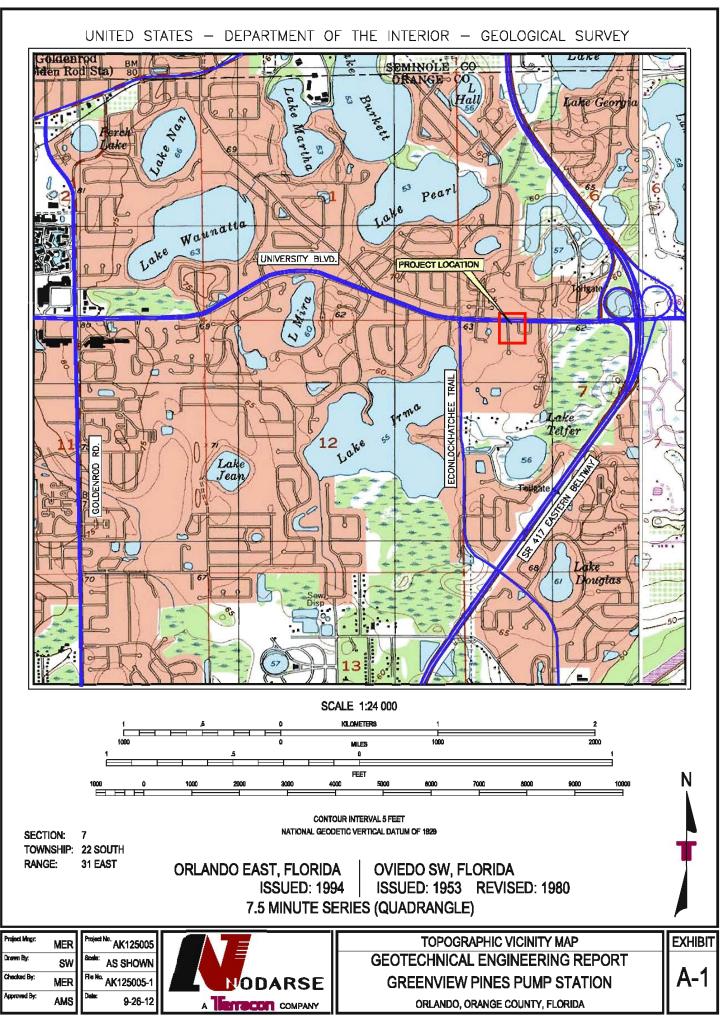
- Dewatering operations at this site for the proposed pump station should be accomplished with a properly designed well point system dewatering system operating outside the excavation limits.
- The dewatering system should be adequate to lower groundwater levels to at least 2 feet below the lowest compaction surface.
- Other dewatering systems utilizing sumps within shored or braced excavations may also be feasible. However, design of shoring/sump systems should be carefully evaluated with regard to blow outs of the excavation bottom due to unbalanced hydrostatic conditions. The Contractor should be allowed to review the soil stratification to determine the most feasible dewatering system for the pump station area.

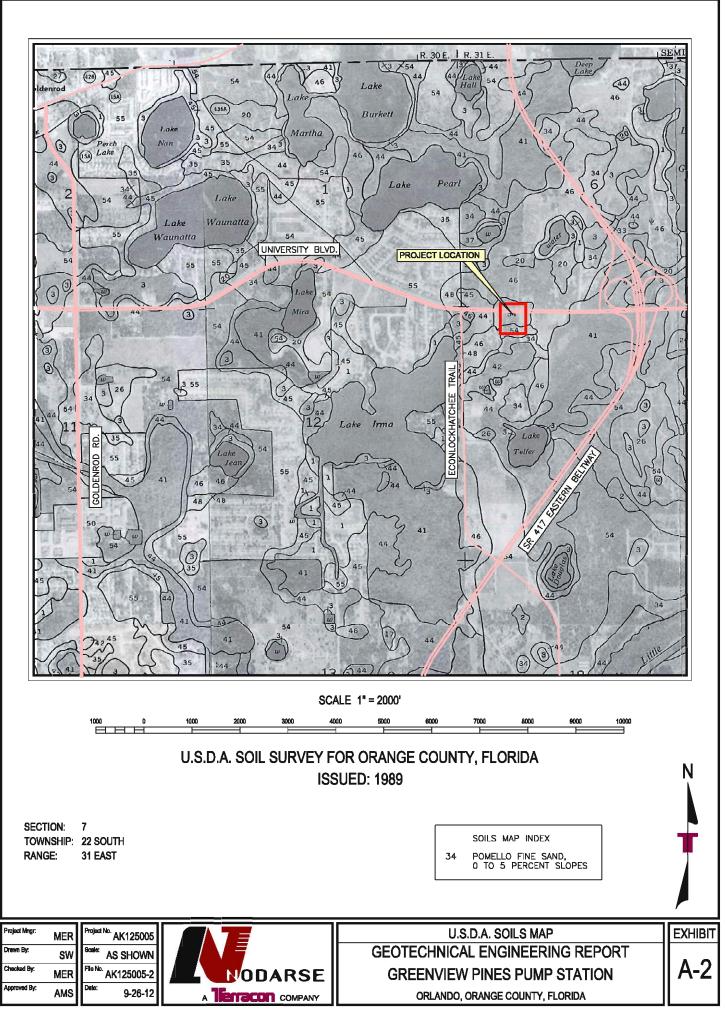
The construction should be sequenced so that the dewatering system is not turned off until the pump station has enough weight placed over it to counteract an uplift force equivalent to the height of standing water above the base of the pump station. The resisting weight of soil over the pump station should be calculated using the buoyant unit weight of the soil.

## 5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

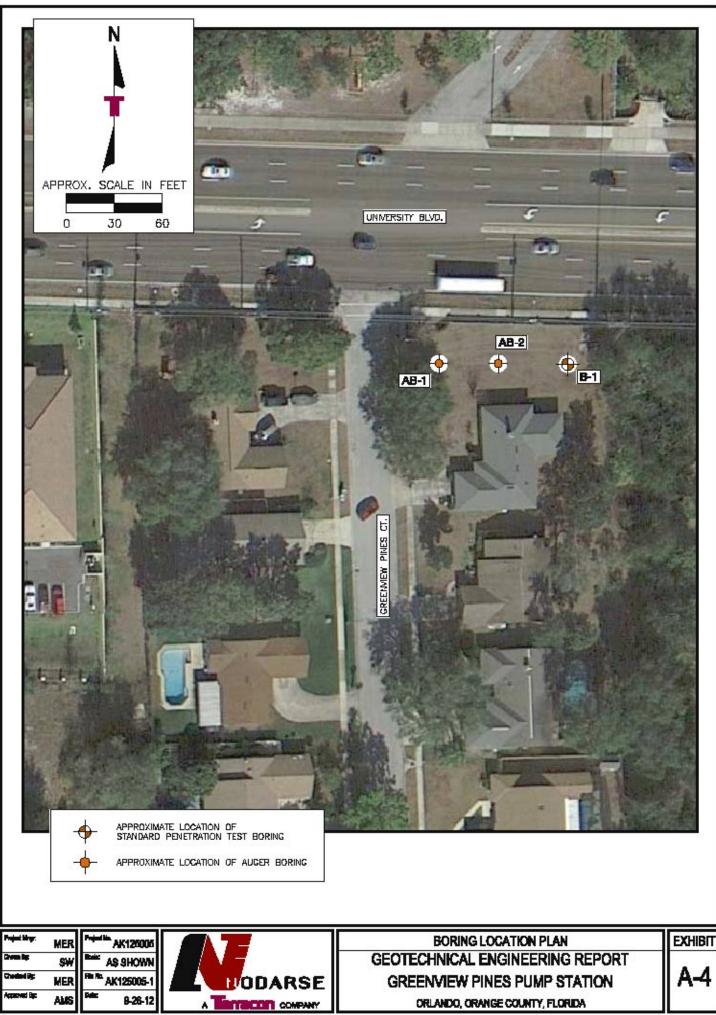

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or




prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

## APPENDIX A FIELD EXPLORATION








## **Soil Survey Descriptions**

<u>34 – Pomello fine sand, 0 to 5 percent slopes.</u> This soil type is nearly level to gently sloping and moderately well drained. It is typically found on low ridges and knolls on the flatwoods. In its natural state and during years of normal rainfall, this soil type has a seasonal high water table at a depth of between 20 and 40 inches (1.7 and 3.3 feet) for 1 to 4 months, receding to a depth of 40 to 60 inches (3.3 to 5.0 feet) during dry periods.





## **Field Exploration Description**

The boring locations were laid out at the project site by Terracon personnel. The locations indicated on the attached diagram are approximate and were measured by pacing distances and estimating right angles. The locations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

The SPT soil borings were drilled with a mini-rig mounted, rotary drilling rig equipped with a rope an automatic hammer. The boreholes were advanced with a cutting head and stabilized with the use of bentonite (drillers' mud). Soil samples were obtained by the split spoon sampling procedure in general accordance with the Standard Penetration Test (SPT) procedure. In the split spoon sampling procedure, the number of blows required to advance the sampling spoon the last 12 inches of an 18-inch penetration or the middle 12 inches of a 24-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (N). This value is used to estimate the in-situ relative density of cohesionless soils and the consistency of cohesive soils. The sampling depths and penetration distance, plus the standard penetration resistance values, are shown on the boring logs.

Portions of the samples from the borings were sealed in glass jars to reduce moisture loss, and then the jars were taken to our laboratory for further observation and classification. Upon completion, the boreholes were backfilled with the site soil.

Field logs of each boring were prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. The boring logs included with this report represent an interpretation of the field logs and include modifications based on laboratory observation of the samples.

|                                                                                   | BORING LOG NO. AB-01                                                                                                     |               |                                                                                             |                                                  |                                                                          |                                      |             |                             | Page 1 of 1 |                       |                      |               |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|-------------|-----------------------------|-------------|-----------------------|----------------------|---------------|--|--|
|                                                                                   | PROJECT: Greenview Pines Pump<br>Station No. 3887<br>SITE: 3955 Greenview Pines Court<br>Orlando, Florida                |               |                                                                                             |                                                  | CLIENT: O.C. Public Utilities - Engineering Division<br>Orlando, Florida |                                      |             |                             |             |                       |                      |               |  |  |
|                                                                                   |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
|                                                                                   | <b>GRAPHIC LOG</b>                                                                                                       |               | N See Exhibit A-3                                                                           |                                                  |                                                                          |                                      | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | Percent Fines |  |  |
|                                                                                   |                                                                                                                          | DEPTH<br>FINE | SAND (SP), brown to gray                                                                    |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
|                                                                                   |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
| SMART LOG-DEPTH TO BOTTOM OF PAGE AK125005 BORING LOGS GPJ ODOT TEST GPJ 10/16/12 |                                                                                                                          | 6.5           |                                                                                             |                                                  |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
| DT TEST.(                                                                         |                                                                                                                          |               | SAND (SP), light brown                                                                      |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
| S.GPJ ODC                                                                         |                                                                                                                          |               | <mark>Y FINE SAND (SM)</mark> , brown                                                       |                                                  |                                                                          |                                      | -           | -                           |             |                       | 31                   | 23            |  |  |
| NG LOG                                                                            |                                                                                                                          |               | ng Terminated at 10 Feet                                                                    |                                                  |                                                                          |                                      | 10          |                             |             |                       |                      |               |  |  |
| 005 BORI                                                                          |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
| E AK1250                                                                          |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | -           |                             |             |                       |                      |               |  |  |
| OF PAGE                                                                           |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | 15-         |                             |             |                       |                      |               |  |  |
| OTTOM                                                                             |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
| тн то в                                                                           |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
| OG-DEP                                                                            |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | _           | -                           |             |                       |                      |               |  |  |
| MART L                                                                            |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | 20-         |                             |             |                       |                      |               |  |  |
|                                                                                   |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | _           |                             |             |                       |                      |               |  |  |
| IAL REP                                                                           |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | -           | -                           |             |                       |                      |               |  |  |
| <b>I ORIGIN</b>                                                                   |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      | -<br>25-    |                             |             |                       |                      |               |  |  |
| ED FROM                                                                           |                                                                                                                          |               |                                                                                             |                                                  |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
| PARATE                                                                            |                                                                                                                          | Stratificatio | on lines are approximate. In-situ, the transition m                                         | ay be gradual.                                   |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
| THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.                   | Advancement Method:<br>Continuous Auger                                                                                  |               | See Exhibit A-4 for desc<br>procedures<br>See Appendix B for des<br>procedures and addition | escription of laboratory<br>onal data, (if any). |                                                                          |                                      |             |                             |             |                       |                      |               |  |  |
| G IS NO                                                                           | Abandonment Method: See A<br>Borings backfilled with cement-bentonite grout upon<br>completion. WATER LEVEL OBSERVATIONS |               |                                                                                             | See Appendix C for exp<br>abbreviations.         | lanation of symbols and                                                  |                                      |             |                             |             |                       |                      |               |  |  |
| ING LO                                                                            |                                                                                                                          |               |                                                                                             |                                                  |                                                                          | Boring Starte                        | d: 9/17     | /2012                       |             | Boring Completed      | : 9/17/20            | 012           |  |  |
| S BOR                                                                             | GWT Encountered During Drilling                                                                                          |               |                                                                                             | ۲.                                               |                                                                          | Drill Rig: Mini Rig Driller: Mark C. |             |                             |             |                       |                      |               |  |  |
| THIS                                                                              | ව 1675 Lee I<br>E Winter Park,                                                                                           |               |                                                                                             |                                                  | Project No.: A                                                           | No.: AK125005 Exhibit A-6            |             |                             |             |                       |                      |               |  |  |

| BORING LOG NO. AB-02 Page 1 of 1                                                                                                     |                                                                                                                                                                      |                                 |               |                                            |             |                       |                      |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|--------------------------------------------|-------------|-----------------------|----------------------|---------------|--|
| PROJECT: Greenview Pines Pump<br>Station No. 3887 CLIENT: O.C. Public Ut<br>Orlando, Florid                                          |                                                                                                                                                                      |                                 |               |                                            | ngin        |                       |                      |               |  |
| SITE: 3955 Greenview Pines Court<br>Orlando, Florida                                                                                 |                                                                                                                                                                      |                                 |               |                                            |             |                       |                      |               |  |
| DEPTH                                                                                                                                |                                                                                                                                                                      |                                 | DEPTH (Ft.)   | WATER LEVEL<br>OBSERVATIONS                | SAMPLE TYPE | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | Percent Fines |  |
| FINE SAND (SP), brown                                                                                                                |                                                                                                                                                                      |                                 |               |                                            | T           |                       |                      |               |  |
| 1.5<br>SILTY FINE SAND (SM), grayish-brown                                                                                           |                                                                                                                                                                      |                                 |               |                                            |             |                       | 11                   | 18            |  |
| 6.5<br>FINE SAND WITH SILT (SP-SM), grayish-br                                                                                       | own                                                                                                                                                                  |                                 | -             |                                            |             |                       |                      |               |  |
| Boring Terminated at 10 Feet                                                                                                         |                                                                                                                                                                      |                                 | 10-           |                                            |             |                       |                      |               |  |
|                                                                                                                                      |                                                                                                                                                                      |                                 | _<br>_<br>15— |                                            |             |                       |                      |               |  |
|                                                                                                                                      |                                                                                                                                                                      |                                 |               |                                            |             |                       |                      |               |  |
|                                                                                                                                      |                                                                                                                                                                      |                                 | 20            |                                            |             |                       |                      |               |  |
| Chatification lines are convoluente la situ des transitions                                                                          |                                                                                                                                                                      |                                 | 25—<br>_      |                                            |             |                       |                      |               |  |
| Stratification lines are approximate. In-situ, the transition r                                                                      | nay be gradual.                                                                                                                                                      |                                 |               |                                            |             |                       |                      |               |  |
| Advancement Method:<br>Continuous Auger<br>Abandonment Method:<br>Borings backfilled with cement-bentonite grout upon<br>completion. | See Exhibit A-4 for description<br>procedures<br>See Appendix B for description<br>procedures and additional data<br>See Appendix C for explanatic<br>abbreviations. | n of laboratory<br>ı, (if any). |               |                                            |             |                       |                      |               |  |
|                                                                                                                                      |                                                                                                                                                                      |                                 |               | ted: 9/17/2012 Boring Completed: 9/17/2012 |             |                       |                      |               |  |
| GWT Encountered During Drilling Drill Rig: Mini                                                                                      |                                                                                                                                                                      |                                 |               | ni Rig Driller: Mark C.                    |             |                       |                      |               |  |
|                                                                                                                                      | Winter Park, Florida Project No.: A                                                                                                                                  |                                 |               |                                            |             | Exhibit A-7           |                      |               |  |

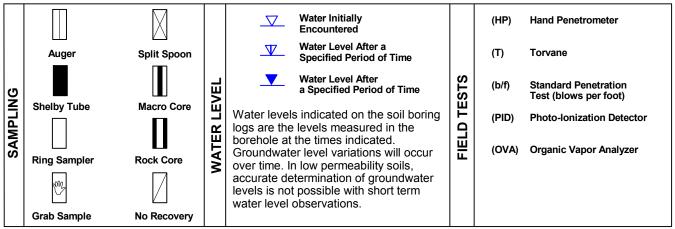
|                                                                     | BORING LOG NO. TB-01 Page 1 of 2 |                               |                                                     |                                                                                                                       |                                      |                                   |                                              |                             |                 | 2                     |                      |               |
|---------------------------------------------------------------------|----------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------|-----------------------------|-----------------|-----------------------|----------------------|---------------|
|                                                                     | PR                               | OJECT:                        | Greenview Pines Pump<br>Station No. 3887            |                                                                                                                       |                                      | O.C. Public L<br>Orlando, Flor    |                                              | s - E                       | ngin            |                       |                      |               |
|                                                                     | SIT                              | ſE:                           | 3955 Greenview Pines Court<br>Orlando, Florida      |                                                                                                                       |                                      |                                   |                                              |                             |                 |                       |                      |               |
|                                                                     | GRAPHIC LOG                      | LOCATION                      | N See Exhibit A-3                                   |                                                                                                                       |                                      |                                   | DEPTH (Ft.)                                  | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE     | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | Percent Fines |
|                                                                     |                                  |                               | <b>SAND (SP)</b> , brown to grayish-brown, lo       | ose to medium dens                                                                                                    | e                                    |                                   | -                                            |                             |                 | 3-3-3-3<br>N=6        |                      |               |
|                                                                     |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | -                                            |                             | M               | 3-4-5-6<br>N=9        |                      |               |
| PJ 10/16/12                                                         |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | 5-                                           |                             | X               | 5-4-7-6<br>N=11       |                      |               |
| DOT TEST.GI                                                         |                                  | 8.0                           |                                                     |                                                                                                                       |                                      |                                   |                                              | X                           | 7-7-6-5<br>N=13 |                       |                      |               |
| OGS.GPJ OI                                                          |                                  | SILT                          | <u>/ FINE SAND (SM)</u> , light grayish-brown       | , 100Se                                                                                                               |                                      |                                   | - 10-                                        |                             | X               | 5-4-5-5<br>N=9        | 16                   | 16            |
| H TO BOTTOM OF PAGE AK125005 BORING LOGS.GPJ ODOT TEST.GPJ 10/16/12 |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | -                                            | -                           |                 |                       |                      |               |
| DF PAGE AK1                                                         |                                  | 13.5<br>FINE                  | SAND WITH SILT (SP-SM), light brown                 | , medium dense                                                                                                        |                                      |                                   |                                              |                             | X               | 6-6-8<br>N=14         |                      |               |
| FO BOTTOM (                                                         |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | -                                            | -                           |                 |                       |                      |               |
| SMART LOG-DEPTH '                                                   |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | -                                            |                             |                 | 6-7-7<br>N=14         |                      |               |
|                                                                     |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | 20-                                          |                             |                 |                       |                      |               |
| GINAL REPOF                                                         |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | -                                            |                             |                 | 10-10-11              |                      |               |
| FROM ORI                                                            |                                  |                               |                                                     |                                                                                                                       |                                      |                                   | 25-                                          | -                           | $\square$       | N=21                  |                      |               |
| PARATED                                                             |                                  | Stratificatio                 | on lines are approximate. In-situ, the transition m | ay be gradual.                                                                                                        |                                      | Hammer                            | Type: R                                      | ope ar                      | d Cath          | nead                  |                      |               |
| THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.     | Rot                              | cement Meth<br>ary Drilling C | utting Head                                         | See Exhibit A-4 for deso<br>procedures<br>See Appendix B for des<br>procedures and addition<br>See Appendix C for exp | cription of laboranal data, (if any) |                                   |                                              |                             |                 |                       |                      |               |
| N SI DC                                                             | Bor                              | ings backfille<br>pletion.    | d with cement-bentonite grout upon                  | abbreviations.                                                                                                        |                                      |                                   |                                              |                             |                 | -                     |                      |               |
| SING LC                                                             | $\nabla$                         |                               | R LEVEL OBSERVATIONS                                |                                                                                                                       | ODARSE                               | Boring Star                       | Started: 9/17/2012 Boring Completed: 9/17/20 |                             |                 |                       |                      |               |
| S BOF                                                               |                                  |                               |                                                     | ۲.                                                                                                                    | ee Road                              | Drill Rig: M                      | Drill Rig: Mini Rig Driller: Mark C.         |                             |                 |                       |                      |               |
| THI                                                                 | Winter Park, Florida             |                               |                                                     |                                                                                                                       | Project No.                          | Project No.: AK125005 Exhibit A-8 |                                              |                             |                 |                       |                      |               |

|                       |                                                                           | B                                                                                       | ORING LO                                                                                                                                | G NO.                                   | TB-0             | 01                     |                   |                             |             | Pag                   | e 2 of 2             | 2             |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------------|-------------------|-----------------------------|-------------|-----------------------|----------------------|---------------|
| PR                    | OJECT:                                                                    | Greenview Pines Pump<br>Station No. 3887                                                |                                                                                                                                         | CLIENT:                                 | O.C. F<br>Orland | Public Ut<br>do, Flori | ilities<br>da     | 6 - E                       | ngin        | eering Divis          |                      |               |
| SIT                   | 'E:                                                                       | 3955 Greenview Pines Court<br>Orlando, Florida                                          |                                                                                                                                         |                                         |                  |                        |                   |                             |             |                       |                      |               |
| <b>GRAPHIC LOG</b>    | LOCATIO                                                                   | N See Exhibit A-3                                                                       |                                                                                                                                         |                                         |                  |                        | DEPTH (Ft.)       | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | FIELD TEST<br>RESULTS | WATER<br>CONTENT (%) | Percent Fines |
|                       |                                                                           | SAND WITH SILT (SP-SM), light brown                                                     | , medium dense <i>(cor</i>                                                                                                              | ntinued)                                |                  |                        | _                 | -                           |             |                       |                      |               |
|                       |                                                                           | <b>SAND (SP)</b> , light gray to light brown, m                                         | edium dense to dens                                                                                                                     | se                                      |                  |                        | <br>30<br>-       | -                           | X           | 12-16-14<br>N=30      |                      |               |
|                       |                                                                           |                                                                                         |                                                                                                                                         |                                         |                  |                        | -<br>35<br>-      | -                           | X           | 10-10-12<br>N=22      |                      |               |
|                       | 38.5<br>FINE                                                              | <u>SAND WITH SILT (SP-SM)</u> , dark gray to                                            | o dark greenish-gray                                                                                                                    | , loose to me                           | edium de         | nse                    | -<br>40-<br>-     | -                           | X           | 12-8-11<br>N=19       |                      |               |
|                       |                                                                           |                                                                                         |                                                                                                                                         |                                         |                  |                        | -<br>45<br>-<br>- | -                           | X           | 4-5-4<br>N=9          |                      |               |
|                       | 50.0                                                                      |                                                                                         |                                                                                                                                         |                                         |                  |                        | -<br>50-          |                             | X           | 5-5-5<br>N=10         |                      |               |
|                       | Borii                                                                     | ng Terminated at 50 Feet                                                                |                                                                                                                                         |                                         |                  |                        | _                 | -                           |             |                       |                      |               |
|                       | Stratificatio                                                             | on lines are approximate. In-situ, the transition mathematical sectors are approximate. | ay be gradual.                                                                                                                          |                                         |                  | Hammer T               | ype: R            | ope an                      | d Cath      | lead                  |                      |               |
| Rota<br>Aband<br>Bori | cement Meth<br>ary Drilling C<br>onment Meth<br>ngs backfille<br>pletion. | utting Head                                                                             | See Exhibit A-4 for desc<br>procedures<br>See Appendix B for des<br>procedures and addition<br>See Appendix C for exp<br>abbreviations. | cription of labor<br>nal data, (if any) | ).               | Notes:                 |                   |                             |             |                       |                      |               |
| $\overline{}$         |                                                                           |                                                                                         |                                                                                                                                         |                                         |                  | Boring Starte          | ed: 9/17/         | /2012                       |             | Boring Complete       | d: 9/17/20           | 012           |
|                       | GWT En                                                                    | countered During Drilling                                                               |                                                                                                                                         |                                         |                  | Drill Rig: Min         | ni Rig            |                             |             | Driller: Mark C.      |                      |               |
|                       |                                                                           |                                                                                         |                                                                                                                                         | ee Road<br>ırk, Florida                 |                  | Project No.: /         | AK1250            | 05                          |             | Exhibit A-9           |                      |               |

# **APPENDIX B – LABORATORY TESTING**



#### Laboratory Testing


During the field exploration, a portion of each recovered sample was sealed in a glass jar and transported to our laboratory for further visual observation and laboratory testing. Selected samples retrieved from the borings were tested for moisture (water) content and fines content (soil passing a US standard #200 sieve). Those results are included in this report and on the respective boring logs, except for permeability. The visual-manual classifications were modified as appropriate based upon the laboratory testing results.

The soil samples were classified in general accordance with the appended General Notes and the Unified Soil Classification System based on the material's texture and plasticity. The estimated group symbol for the Unified Soil Classification System is shown on the boring logs and a brief description of the Unified Soil Classification System is included in Appendix B. The results of our laboratory testing are presented in the Laboratory Test Results section of this report and on the corresponding borings logs.

# APPENDIX C SUPPORTING DOCUMENTS

# **GENERAL NOTES**

#### DESCRIPTION OF SYMBOLS AND ABBREVIATIONS



#### **DESCRIPTIVE SOIL CLASSIFICATION**

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

#### LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

|        | (More than<br>Density determin | NSITY OF COARSE-GRAM<br>50% retained on No. 200<br>ied by Standard Penetration<br>des gravels, sands and silf | sieve.)<br>on Resistance  | CONSISTENCY OF FINE-GRAINED SOILS<br>(50% or more passing the No. 200 sieve.)<br>Consistency determined by laboratory shear strength testing, field<br>visual-manual procedures or standard penetration resistance |                                             |                                                 |                           |  |  |
|--------|--------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------|--|--|
| RMS    | (Density)                      | Standard Penetration or<br>N-Value<br>Blows/Ft.                                                               | Ring Sampler<br>Blows/Ft. | Descriptive Term<br>(Consistency)                                                                                                                                                                                  | Unconfined Compressive<br>Strength, Qu, psf | Standard Penetration or<br>N-Value<br>Blows/Ft. | Ring Sampler<br>Blows/Ft. |  |  |
|        | Voly Loodo                     | 0 - 3                                                                                                         | 0 - 6                     | Very Soft                                                                                                                                                                                                          | less than 500                               | 0 - 1                                           | < 3                       |  |  |
| RENGTH | Loose                          | 4 - 9                                                                                                         | 7 - 18                    | Soft                                                                                                                                                                                                               | 500 to 1,000                                | 2 - 4                                           | 3 - 4                     |  |  |
| TREN   | Medium Dense                   | 10 - 29                                                                                                       | 19 - 58                   | Medium-Stiff                                                                                                                                                                                                       | 1,000 to 2,000                              | 4 - 8                                           | 5 - 9                     |  |  |
| S.     | Dense                          | 30 - 50                                                                                                       | 59 - 98                   | Stiff                                                                                                                                                                                                              | 2,000 to 4,000                              | 8 - 15                                          | 10 - 18                   |  |  |
|        | Very Dense                     | > 50                                                                                                          | <u>&gt;</u> 99            | Very Stiff                                                                                                                                                                                                         | 4,000 to 8,000                              | 15 - 30                                         | 19 - 42                   |  |  |
|        |                                |                                                                                                               |                           | Hard                                                                                                                                                                                                               | > 8,000                                     | > 30                                            | > 42                      |  |  |

#### RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace

With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

#### RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY** 

#### Major Component of Sample Boulders Cobbles Gravel Sand

Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

#### PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30



# UNIFIED SOIL CLASSIFICATION SYSTEM

#### Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests <sup>A</sup>

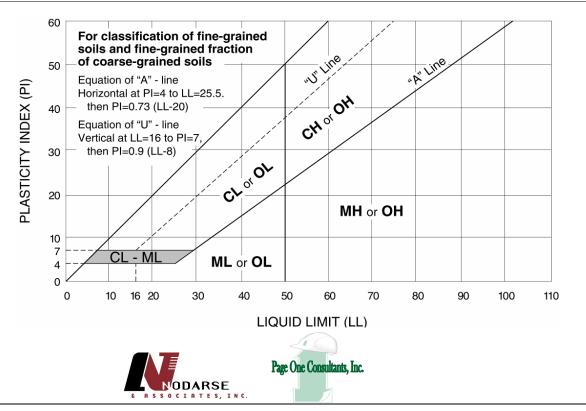
| Criteria for Assign                             | ing Group Symbols                                       | and Group Names                  | S USING Laboratory Tests                           | Group<br>Symbol | Group Name <sup>B</sup>         |
|-------------------------------------------------|---------------------------------------------------------|----------------------------------|----------------------------------------------------|-----------------|---------------------------------|
|                                                 | Gravels:                                                | Clean Gravels:                   | $Cu \geq 4$ and $1 \leq Cc \leq 3^{E}$             | GW              | Well-graded gravel <sup>F</sup> |
|                                                 | More than 50% of coarse fraction retained               | Less than 5% fines <sup>c</sup>  | $Cu < 4$ and/or $1 > Cc > 3^{E}$                   | GP              | Poorly graded gravel F          |
|                                                 |                                                         | Gravels with Fines:              | Fines classify as ML or MH                         | GM              | Silty gravel F,G,H              |
| Coarse Grained Soils:<br>More than 50% retained | on No. 4 sieve                                          | More than 12% fines <sup>c</sup> | Fines classify as CL or CH                         | GC              | Clayey gravel F,G,H             |
| on No. 200 sieve                                | Sands:                                                  | Clean Sands:                     | $Cu \ge 6$ and $1 \le Cc \le 3^{E}$                | SW              | Well-graded sand                |
|                                                 | 50% or more of coarse<br>fraction passes No. 4<br>sieve | Less than 5% fines <sup>D</sup>  | $Cu < 6$ and/or $1 > Cc > 3^{\text{E}}$            | SP              | Poorly graded sand <sup>1</sup> |
|                                                 |                                                         | Sands with Fines:                | Fines classify as ML or MH                         | SM              | Silty sand G,H,I                |
|                                                 |                                                         | More than 12% fines <sup>D</sup> | Fines classify as CL or CH                         | SC              | Clayey sand G,H,I               |
|                                                 |                                                         | Inorganic:                       | PI > 7 and plots on or above "A" line <sup>J</sup> | CL              | Lean clay <sup>K,L,M</sup>      |
|                                                 | Silts and Clays:                                        | morganic.                        | PI < 4 or plots below "A" line <sup>J</sup>        | ML              | Silt <sup>K,L,M</sup>           |
|                                                 | Liquid limit less than 50                               | Organic:                         | Liquid limit - oven dried < 0.75                   | OL              | Organic clay K,L,M,N            |
| Fine-Grained Soils: 50% or more passes the      |                                                         | Organic.                         | Liquid limit - not dried < 0.75                    | -               | Organic silt K,L,M,O            |
| No. 200 sieve                                   |                                                         | Inorganic:                       | PI plots on or above "A" line                      |                 | Fat clay <sup>K,L,M</sup>       |
|                                                 | Silts and Clays:                                        | morganic.                        | PI plots below "A" line                            |                 | Elastic Silt K,L,M              |
|                                                 | Liquid limit 50 or more                                 | Organic:                         | Liquid limit - oven dried < 0.75                   | ОН              | Organic clay K,L,M,P            |
|                                                 |                                                         | Organic.                         | Liquid limit - not dried                           |                 | Organic silt K,L,M,Q            |
| Highly organic soils:                           | Primarily                                               | organic matter, dark in o        | PT                                                 | Peat            |                                 |

<sup>A</sup> Based on the material passing the 3-inch (75-mm) sieve

<sup>B</sup> If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

<sup>c</sup> Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with clay.

graded gravel with silt, GP-GC poorly graded gravel with clay.
 <sup>D</sup> Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay


<sup>E</sup> Cu = D<sub>60</sub>/D<sub>10</sub> Cc = 
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$  If soil contains  $\geq$  15% sand, add "with sand" to group name.  $^{\sf G}$  If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- <sup>H</sup> If fines are organic, add "with organic fines" to group name.
- If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- <sup>J</sup> If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- <sup>K</sup> If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

Soil Classification

- <sup>L</sup> If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- <sup>M</sup> If soil contains  $\geq$  30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- <sup>N</sup>  $PI \ge 4$  and plots on or above "A" line.
- <sup>o</sup> PI < 4 or plots below "A" line.
- <sup>P</sup> PI plots on or above "A" line.
- <sup>Q</sup> PI plots below "A" line.



APPENDIX D SUSTAINABILITY CONSIDERATIONS

# SUSTAINABILITY CONSIDERATIONS

## LEED Sustainable Sites (SS)

#### SS Prerequisite 1 – Construction Activity Pollution Prevention

The intent is to reduce pollution from construction activities by controlling soil erosion, waterway sedimentation and airborne dust generation. Terracon can assist in developing site specific Storm Water Management Plans (SWMP's) in addition to providing observation services for the duration of the project for conformance to the SWMP's.

## SS Credit 5.1 - Site Development – Protect or Restore Habitat

The intent is to conserve existing natural areas and restoring damaged areas to provide habitat and promote biodiversity. Terracon can provide restoration recommendations such as design of mechanically stabilized earth vegetative faced retained slopes, stream mitigation, etc.

#### SS Credit 6.1 and Credit 6.1 – Storm Water Design – Quantity Control and Quality Control

Sustainable storm water design limits disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, and managing storm water runoff. Terracon can provide design recommendations for porous pavement systems and infiltration basins to assist in maintaining pre-development peak discharge rates of design storms without compromising the structural capacity of the pavement or surrounding improvements. A pervious pavement system is a pavement that is sufficiently porous to allow the infiltration of water into a sub-drainage system or open-graded aggregate base reservoir below paved areas. The collected water is allowed to infiltrate through a filter fabric into the underlying subgrade soils or the water is collected and discharged to a suitable outlet.

# LEED Energy and Atmosphere (EA)

## EA Credit 2 – On-site Renewable Energy

The intent is to provide on-site renewable energy. Self supply renewable energy potentials Include horizontal and vertical loop fields. Terracon can provide thermal resistivity testing for horizontal loop fields or trial testing for vertical geothermal wells.

## **LEED Materials and Resources (MR)**

#### MR Credit 2 – Construction Waste Management

The intent is to divert construction and demolition debris from disposal in landfills and incineration facilities.

<u>Reuse of On-Site Building Materials or Construction Debris:</u> Reusing inorganic building materials derived from foundation demolition or construction debris as processed fill material is acceptable provided the materials are crushed to a well-graded homogenous mixture and free of wood and other deleterious debris. Crushed concrete foundations, flatwork and brick may be incorporated into structural compacted fill in approved areas.

Maximum size of crushed material should be no greater than 3 inches. Use of fill materials will depend upon the source of the recycled material and the intended use. Materials such as wood and metal should be properly disposed off-site. *Caution should be used when specifying painted recycled materials. In some states, the paint would need to be analyzed to evaluate if it is lead-based. The text above may need to be edited to say "uncoated" building materials* 

<u>Use of On-site Crushed Asphaltic Cement Concrete (ACC) Pavement for Engineered Fill:</u> ACC pavement, and the underlying base rock can be used as engineered fill as long as it is properly processed. It is important that the recycled ACC pavement be blended with another material, such as soil, sand, and/or gravel, to fill voids. This material should be well graded and have a maximum size, in any dimension, of 6-inches. This may necessitate the use of on-site screening of the materials and processing the oversized portion through a crusher such that the maximum size of the well graded blend would be 6-inches.

Recycled ACC pavement should be limited to a maximum of 50% of the fill material being placed in any lift. This material should be used deep within the fill or in non-structural areas such that it does not underlie future excavations being made for footings, utilities, etc.

## MR Credit 4 – Recycled Content

<u>Flowable Fill:</u> Consider using flowable fill for trench backfill. The flowable fill should be comprised of waste materials such as waste limestone screenings as the bulk-filler and fly-ash for the cementitious component.

<u>ACC Pavement:</u> ACC Pavement produced in the Central Florida area typically includes 20 percent recycled asphalt pavement (RAP) and 4 percent recycled asphalt shingles resulting in a product that contains 24% recycled material.

Limestone Screenings (Waste Lime): Limestone screenings are a waste product produced by many Central Florida Quarries. This material is usually wasted in the quarries if it does not possess enough calcium content to be suitable for ag-lime applications and also because there is more product produced than demand can satisfy. As a result, this material is abandoned on-site as a waste product. This material typically is well graded crushed aggregate material with an approximate top size of ¼-inch. This material can be used as engineered fill material in structural and non-structural areas of the project. The limestone screenings can be used for the low volume change zones as a suitable replacement for shrink/swell prone soils.

<u>Supplementary Cementitious Materials (SCM's):</u> Consider using SCM's that are recycled from other operations, such as fly ash, in concrete mixes.

<u>Soil Subgrade Stabilization:</u> Consider using Fly-Ash or Code-L (a waste by-product produced when making cement) to stabilize or otherwise improve the soil subgrade.

## MR Credit 5: Regional Materials

Using regional materials is intended to increase demand for building materials and products that are extracted and manufactured within the region. Regional materials also reduce environmental impacts caused by transportation.

<u>Asphaltic Cement Pavement (ACC)</u>: ACC pavement is typically produced locally. Asphalt and aggregates are typically derived locally. Oils may or may not be derived locally.

<u>Portland Cement Concrete (PCC):</u> PCC is typically derived locally including sand, gravel, water, and cement. Additives may or may not be locally derived.

<u>Aggregates for Base and Backfill:</u> Coarse and fine aggregates are typically derived locally from quarrying operations or from dredging operations.

# National Pollutant Discharge Elimination System Groundwater Testing and Database Search

Greenview Pines Pump Station No. 3887 3955 Greenview Pines Court, Orlando Orange County, Florida

October 4, 2012 Nodarse/Terracon Project No. AK125005

Prepared for: Orange County Public Utilities-Engineering Division Orlando, Florida

## Prepared by:

Nodarse & Associates, Inc. A Terracon Company Winter Park, Florida 32789

Offices Nationwide Employee-Owned nodarse.com terracon.com





October 4, 2012

Orange County Utilities Department Engineering Division 9150 Curry Ford Road Orlando, Florida 32825

- Attn: Mr. Heriberto Collado-Lopez, P.E. Phone: 407-254-9900 Fax: 407-254-9999
- Re: Groundwater Sampling/Testing National Pollutant Discharge Elimination System (NPDES) Parameters Greenview Pines Pump Station No. 3887 3955 Greenview Pines Court, Orlando, Orange County, Florida Nodarse/Terracon Project No. AK125005

Dear Mr. Collado:

In accordance with your request and authorization, Nodarse & Associates, Inc., a Terracon Company (Nodarse/Terracon), has completed National Pollutant Discharge Elimination System (NPDES) groundwater quality sampling and testing services at the above referenced location in accordance with our proposal number PH1120208 dated May 2, 2012, and Orange County Purchase Order #C11903A011, dated July 11, 2012.

A review of the Florida Department of Environmental Protection's (FDEP's) Contamination Locator Database website did not reveal the presence of any identified contaminated site within 1,000 feet of the project site.

On September 19, 2012, a temporary monitor well (TMW-4) was installed by direct-push Geoprobe drilling method to a depth of 15 feet below land surface (BLS). The depth to the shallow water table was measured at 4.1 feet BLS. On September 20, 2012, after well purging and stabilization of groundwater field parameters, Nodarse/Terracon collected one representative groundwater sample (PS #F3887) for laboratory testing. The groundwater sample was delivered to Southern Research Laboratories, Inc. (SRL) of Orlando, Florida (Florida Department of Health #E83484) for analysis of NPDES parameters.

As shown in Table 1, the reported concentration of one parameter, total organic carbon (TOC), detected at 16 milligrams per liter (mg/l), exceeded the Chapter 62-621.300 (2), Florida Administrative Code, listed screening value (LSV) of 10 mg/l. The elevated TOC value is likely attributable to naturally-occurring, high molecular weight organic compounds in the groundwater at this location. This is confirmed by the reported non-detection of total recoverable petroleum

Winter Park, Florida 32789



Nodarse & Associates, a Terracon Company 1675 Lee Road



hydrocarbons (TRPH) above the laboratory method detection limit in the groundwater sample. Field pH was measured at 5.01 standard units (SU), which is below the LSV range of 6.5 - 8.0 SU. The measured field pH is representative of background pH levels below 6.0 (acidic) in east Orange County. The remaining parameters analyzed did not report exceedances above their respective LSVs.

A copy of the laboratory analytical report, the groundwater sampling log, instrument calibration sheet, the monitoring well details and a site photograph are included in Appendix A.

Nodarse/Terracon appreciates the opportunity to have assisted with these services if you should have any questions or comments, please feel free to contact us.

Sincerely, Nodarse & Associates, Inc., a Terracon Company

Hardo

Project Environmental Scientist

John Malkowski, P.E. Con Florida License No. 59404 Senior Engineer

N:\Projects\2012\AK125005\PROJECT DOCUMENTS (Reports-Letters-Drafts to Clients)\NPDES Greenview Pines\AK125005 Final NPDES Report.doc

TABLE

#### TABLE 1

#### GROUNDWATER ANALYTICAL SUMMARY FINAL RESULTS OF NPDES CONCENTRATIONS GREENVIEW PINES PUMP STATION #3887 ORLANDO, ORANGE COUNTY, FLORIDA NODARSE/TERRACON PROJECT NO. AK125005 SAMPLING DATE: SEPTEMBER 20, 2012

|                            | Sample ID |           |       |
|----------------------------|-----------|-----------|-------|
| PARAMETER                  | PS #F3887 | Limits*   | Units |
| DATE SAMPLED               | 09/20/12  | Limits    | Units |
| Benzene                    | 0.5 U     | 1.0       | μg/L  |
| Naphthalene                | 0.10 i    | 100       | μg/L  |
| Cadmium, Total             | 0.306 U   | 9.3       | μg/L  |
| Copper, Total              | 1.40 U    | 2.9       | μg/L  |
| Lead, Total                | 1.60 U    | 30.0      | μg/L  |
| Mercury, Total             | 0.00288   | 0.012     | μg/L  |
| Zinc, Total                | 47.2 v    | 86.0      | μg/L  |
| Chromium, Hexavalent       | 4.2 U     | 11.0      | μg/L  |
| Total Organic Carbon (TOC) | 16        | 10.0      | mg/L  |
| TRPH                       | 200 U     | 5000.0    | μg/L  |
| pH - Field                 | 5.01      | 6.0 - 8.5 | μg/L  |
| Turbidity                  | 1.38      | NA        | NTU   |

#### NOTES:

Bold values represent a concentration exceeding the respective NPDES criteria

mg/L - milligrams per liter

µg/L - micrograms per liter

i - indicates value < method detection limit but > than practical quantitation limit

I - The reported concentration is between the MDL and PQL

U - not detected above method detection limit

v - Analyte was detected in both the sample and associated Lab Method Blank; laboratory contamination

\* Based on the Florida Department of Environmental Protection' s Effluent Discharge

Generic Dewatering Permit Table 4 Screening Values (Doc # 62-621.300(1), eff. 2-14-2000

NS - No applicable limitation or standard referenced

NA - Not applicable

# **APPENDIX A**

# LABORATORY ANALYTICAL REPORT, GROUNDWATER SAMPLING LOGS, INSTRUMENT CALIBRATION SHEET, MONITORING WELL DETAILS AND PHOTOGRAPH



2251 Lynx Lane, Suite 1 Orłando, Florida 32804 (407) 522-7100 Fax (407) 522-7043 Toll Free 1 (888) 420-Test

Thank you **Mr. Ed Sainten** for the opportunity to be of service to you and your company; we Sincerely Appreciate Your Business. SRL certifies these **Laboratory Results** were produced in accordance with NELAC Standards. Hold times and preservation requirements were met for all analytes unless specifically noted in the report. Results relate only to the samples as received.

| Client Name: Te | rracon                  |                           | Date(s) Collected: 09/20/12                                                             |  |
|-----------------|-------------------------|---------------------------|-----------------------------------------------------------------------------------------|--|
| Contact Name: E | d Sainten               |                           | Date Received: 09/20/12                                                                 |  |
| Project Name: G | reenview Pines PS #3387 |                           | Time Received: 13:08                                                                    |  |
| Project Number: | AK-12-5005              |                           | Date Reported : 09/28/12                                                                |  |
| Phone Number: ( | (407) 740-6110          |                           | Date Emailed : 09/28/12                                                                 |  |
| Fax Number: (40 | 07) 740-6112            | SRL Work Order # 12-09025 |                                                                                         |  |
|                 |                         |                           |                                                                                         |  |
| SRL WO #        | Clients #               | Matrix                    | Analysis Requested                                                                      |  |
| 12-09025-001    | PS #F3887               | Liquid                    | EPA8260(Benz)/TOC/Cd/Cu/Pb/Zn/<br>8270-SIM(PAH)Naph/FLPRO/<br>LL Hg/Hexavalent Chromium |  |
| 12-09025-002    | Trip Blank              | Lìquid                    | EPA 8260 (Benz)                                                                         |  |



Sherri Paync Vice President & Quality Assurance Officer Southern Research Laboratories, Inc.

This report, which includes the attached Chain-of-Custody, shall not be reproduced except in full, without written approval of the laboratory.

| Southern Research Laborato | ries, Inc.     | NELAP Certified             |  |  |  |
|----------------------------|----------------|-----------------------------|--|--|--|
| an MBE Environmental Labor | ratory         | FDOH Cert # : E83484        |  |  |  |
| 2251 Lynx Lane, Suite 1    |                | SRL Lab Ref # : 12-09025    |  |  |  |
| Orlando, Florida 32804     | (407) 522-7100 | Received Date : 09/20/12    |  |  |  |
| Ed Sainten                 |                | Project Number/Project Name |  |  |  |
| Terracon                   |                | AK-12-5005                  |  |  |  |
| 1675 Lee Rd.               |                | Greenview Pines PS #3387    |  |  |  |
| Winter Park, FL 32789      | (407) 740-6110 | Orlando, FL                 |  |  |  |

#### EPA Method 5030/8260B VOA {602} Compounds in Water by GC-MS

| Client ID #               | : | PS #F3887    | Trip Blank   | Method Blank |           |          |            |
|---------------------------|---|--------------|--------------|--------------|-----------|----------|------------|
| SRL (Lab) ID#             | : | 12-09025-001 | 12-09025-002 | MB092512     |           |          |            |
| Date Collected            | : | 09/20/12     | 09/18/12     | NA           |           |          |            |
| Lab FDOIL Certification # | : | E83484       | E83484       | E83484       |           |          |            |
| Date Prepared             | : | 09/25/12     | 09/25/12     | 09/25/12     |           |          |            |
| Date Analyzed             | : | 09/25/12     | 09/25/12     | 09/25/12     | MDL       | PQL      | CAS Number |
| Benzene                   |   | 0.5 U        | 0.5 U        | 0.5 U        | 0.5       | 1.0      | 71-43-2    |
| Units                     | : | ug/L         | ug/L         | ug/L         | ug/L      | ug/L     |            |
| Dilution Factor (MEDF)    | : | 1            | 1            | 1            | 1         | 1        |            |
| Surrogate (% Rec)         | : |              |              |              | (Surrogat | e Contro | ol Limits) |
| 4-Bromofluorobenzene      |   | 92.2%        | 97.7%        | 95.0%        |           | 70-130   |            |
|                           |   |              |              |              |           |          |            |
|                           |   |              |              |              |           |          |            |
|                           |   |              | LCS          | MS/MSD       |           |          |            |

|         |            | LUS        | W13/W13D   |        |            |
|---------|------------|------------|------------|--------|------------|
|         | % Recovery | Acceptable | Acceptable | %RPD   | Acceptable |
|         | LCS/MS/MSD | Limits     | Limits     | MS/MSD | Limits     |
| Benzene | 109/81/81  | 70-130     | 70-130     | 0.5    | 0-30       |

#### EPA Method 3510/8270C-SIM Polynuclear Aromatic Hydrocarbon Compounds +Naph in Water by GC-MS

| Client ID #              | : PS #F3887              | Method Blank |                |                      |            |            |
|--------------------------|--------------------------|--------------|----------------|----------------------|------------|------------|
| SRL (Lab) ID#            | : 12-09025-001           | MB092512     |                |                      |            |            |
| Date Collected           | : 09/20/12               | NA           |                |                      |            |            |
| Lab FDOH Certification # | : E83484                 | E83484       |                |                      |            |            |
| Date Extracted           | : 09/25/12               | 09/25/12     |                |                      |            |            |
| Date Analyzed            | : 09/26/12               | 09/26/12     |                | MDI                  | <u> </u>   | CAS Number |
| Naphthalene              | 0.10 I                   | 0.10 U       |                | 0.10                 | 0.50       | 91-20-3    |
| Units                    | : ug/L                   | ug/L         |                | ug/L                 | ug/L       |            |
| Dilution Factor (MEDF)   | : 1                      | 1            |                | 1                    | 1          |            |
| Surrogate (% Rec)        |                          |              |                | (Surrog              | ate Contro | ol Limits) |
| Nitrobenzene-D5          | 79.9%                    | 87.3%        |                |                      | 60-140     |            |
| 2-Fluorobiphenyl         | 85.2%                    | 74.6%        |                |                      | 60-140     |            |
| p-Terphenyl-D14          | 98.9%                    | 105.2%       |                |                      | 60-140     |            |
|                          | % Recovery<br>LCS/MS/MSD |              | %RPD<br>MS/MSD | Acceptable<br>Limits |            |            |
| Naphthalene              | 83/76/82                 | 60-140       | 7.6            | 30                   |            |            |

| Southern Research Laborato<br>an MBE Environmental Labor |                  |                |              |           |                                                      | P Cert  | ified<br>: E83484 |  |
|----------------------------------------------------------|------------------|----------------|--------------|-----------|------------------------------------------------------|---------|-------------------|--|
| 2251 Lynx Lane, Suite 1                                  | uloy             |                |              |           |                                                      |         |                   |  |
| Orlando, Florida 32804                                   | (407) 522-710    | 00             |              |           | SRL Lab Ref # : 12-09025<br>Received Date : 09/20/12 |         |                   |  |
| Ed Sainten                                               |                  |                |              |           | Proiec                                               | t Numbe | er/Project Name   |  |
| Terracon                                                 |                  |                |              |           | AK-12                                                |         | on a reget raine  |  |
| 1675 Lee Rd.                                             |                  |                |              |           |                                                      |         | nes PS #3387      |  |
| Winter Park, FL 32789                                    | (407) 740-611    | 0              |              |           |                                                      | do, FL  | lites 1 6 #5567   |  |
| winter Park, FL 52769                                    | (407) 740-01     | 0              |              |           | Oriali                                               | uo, rL  |                   |  |
|                                                          | <u>FL-PRO (P</u> | etroleum Range | Organics)~{V | Water}    |                                                      |         |                   |  |
| Client ID #                                              | : PS #F3887      | Method Blank   |              |           |                                                      |         |                   |  |
| SRL (Lab) ID#                                            | : 12-09025-001   | MB092612       |              |           |                                                      |         |                   |  |
| Date Collected                                           | : 09/20/12       | NA             |              |           |                                                      |         |                   |  |
| Lab FDOH Certification #                                 | : E83484         | E83484         |              |           |                                                      |         |                   |  |
| Date Prepared                                            | : 09/26/12       | 09/26/12       |              |           |                                                      |         |                   |  |
| Date Analyzed                                            | : 09/27/12       | 09/27/12       |              |           | MDL                                                  | _PQL    | CAS Number        |  |
| TOTAL PRO (C8-C40)                                       | 0.2 U            | 0.2 U          |              |           | 0.2                                                  | 0.5     | NΛ                |  |
| Units                                                    | : mg/L           | mg/L           |              |           | mg/L                                                 | mg/L    |                   |  |
| Dilution Factor (MEDF)                                   | : 1              | [              |              |           | 1                                                    | 1       |                   |  |
| Surrogate (% Rec)                                        | :                | 115 50/        |              |           | (Surroga                                             |         | ol Limits)        |  |
| Orthoterphenyl (OTP)                                     | 102.5%           | 115.7%         |              |           |                                                      | 82-142  |                   |  |
|                                                          |                  |                |              |           |                                                      |         |                   |  |
|                                                          | % Recovery       | Acceptable     | %RPD         | Acceptabl | c                                                    |         |                   |  |
|                                                          | LCS/LCSD         | Limits         | LCS/LCSD     | Limits    |                                                      |         |                   |  |
| TOTAL PRO (C8-C40)                                       | 84/85            | 55-118         | 1.7          | 0-20      |                                                      |         |                   |  |
|                                                          |                  |                |              |           |                                                      |         |                   |  |
|                                                          | Hexavalent Ch    | romium by SM   | 18 3500-Cr D | in Water  |                                                      |         |                   |  |
| Client ID #                                              | : PS #F3887      | Method Blank   |              |           |                                                      |         |                   |  |
| SRL (Lab) ID#                                            | : 12-09025-001   | MB092012       |              |           |                                                      |         |                   |  |
| Date Collected                                           | : 09/20/12       | NA             |              |           |                                                      |         |                   |  |
| Lab FDOH Certification #                                 | : E83182         | E83182         |              |           |                                                      |         |                   |  |
| Date Prepared                                            | : 09/20/12       | 09/20/12       |              |           |                                                      |         |                   |  |
| Date Analyzed                                            | : 09/20/12       | 09/20/12       |              |           |                                                      |         |                   |  |
| Time Analyzed                                            | : 22:21          | 22:09          |              |           |                                                      |         |                   |  |
| Units                                                    | : mg/L           | mg/L           |              |           | MDL                                                  |         | CAS Number        |  |
| Hexavalent Chromium                                      | 0.0042 U         | 0.0042 U       |              |           | 0.0042                                               | 0.030   | 1854-02-99        |  |
|                                                          |                  | LCS            | MS/MSD       |           |                                                      |         |                   |  |
|                                                          | % Recovery       | Acceptable     | Acceptable   | %RPD      | А                                                    | cceptab | le                |  |
|                                                          | LCS/MS/MSD       | Limits         | Limits       | MS/MSD    |                                                      | Limits  |                   |  |
| Haussia fant Clauser fun                                 | 10(/02/02        | 05 115         | 05 115       | ^         |                                                      | 0.10    |                   |  |

| Hexavalent | Clưomium |
|------------|----------|
|------------|----------|

LCS/MS/MSD Limits 106/92/93 85-115

85-115

MS/MSD 2

0-13

| Southern Research Laborato<br>an MBE Environmental Labor<br>2251 Lynx Lane, Suite 1<br>Orlando, Florida 32804                                                                        | ,                                                                                                                 | 0                                                                                     |                                          |                              | FDOH<br>SRL L      | ab Ref i                  | ified<br>: E83484<br># : 12-09025<br>: : 09/20/12 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|------------------------------|--------------------|---------------------------|---------------------------------------------------|
| <b>Ed Sainten</b><br>Terracon<br>1675 Lee Rd.<br>Winter Park, FL 32789                                                                                                               | (407) 740-611                                                                                                     | 0                                                                                     |                                          |                              | AK-12<br>Green     | -5005                     | er/Project Name<br>nes PS #3387                   |
|                                                                                                                                                                                      | <u>Total Organi</u>                                                                                               | e Carbon by SM                                                                        | <u>118 5310B in</u>                      | Water                        |                    |                           |                                                   |
| Client ID #<br>SRL (Lab) ID#<br>Date Collected<br>Lab FDOH Certification #<br>Date Prepared<br>Date Analyzed<br>Dilution Factor (MEDF)<br><u>Units</u><br>Total Organic Carbon (TOC) | : <b>PS #F3887</b><br>: 12-09025-001<br>: 09/20/12<br>: E83182<br>: 09/26/12<br>: 09/26/12<br>: 1<br>: mg/L<br>16 | Method Blank<br>MB092612<br>NA<br>E83182<br>09/26/12<br>09/26/12<br>1<br>mg/L<br>0.22 |                                          |                              | <u>MDL</u><br>0.22 | PQL<br>1.0                | <u>CAS Number</u><br>ECL-0165                     |
| Total Organic Carbon (TOC)                                                                                                                                                           | 10                                                                                                                | 0.22                                                                                  |                                          |                              | 0.22               | 1.0                       | ECT-0102                                          |
| Total Organic Carbon (TOC)                                                                                                                                                           | % Recovery<br>LCS/MS/MSD<br>100/103/104                                                                           | Acceptable<br>Limits<br>85-115                                                        | %RPD<br>MS/MSD<br>0.7                    | Acceptable<br>Limits<br>0-21 |                    |                           |                                                   |
|                                                                                                                                                                                      | EPA Method 16                                                                                                     | 31 Low Level N                                                                        | Mercury (Hg)                             | in Water                     |                    |                           |                                                   |
| Client ID #<br>SRL (Lab) ID#<br>Date Collected<br>Lab FDOH Certification #<br>Date Prepared<br>Date Analyzed<br>Units<br>Low Level Mercury (Hg)                                      | : PS #F3887<br>: 12-09025-001<br>: 09/20/12<br>: E87688<br>: 09/24/12<br>: 09/25/12<br>: ng/L<br>2.88             | Method Blank<br>MB092412<br>NA<br>E87688<br>09/24/12<br>09/25/12<br>ng/L<br>0.183 U   |                                          |                              | MDL<br>0.183       | <b>PQL</b><br>0.5         | <u>CAS Number</u><br>7439-97-6                    |
| Low Level Mercury (Hg)                                                                                                                                                               | % Recovery<br>LCS/MS/MSD<br>107/100/91                                                                            | LCS<br>Acceptable<br>Limits<br>77-123                                                 | MS/MSD<br>Acceptable<br>Limits<br>71-125 | %RPD<br>MS/MSD<br>8.7        |                    | cceptab<br>Limits<br>0-24 |                                                   |

| Southern Research Laborato | pries, Inc.    | NELAP Certified                        |  |  |  |
|----------------------------|----------------|----------------------------------------|--|--|--|
| an MBE Environmental Labo  | ratory         | FDOH Cert # : E83484                   |  |  |  |
| 2251 Lynx Lane, Suite 1    |                | SRL Lab Ref # : 12-09025               |  |  |  |
| Orlando, Florida 32804     | (407) 522-7100 | Received Date : 09/20/12               |  |  |  |
| Ed Sainten                 |                | Project Number/Project Name            |  |  |  |
|                            |                | AK-12-5005                             |  |  |  |
| Terracon                   |                | AK-12-5005                             |  |  |  |
| Terracon<br>1675 Lee Rd.   |                | AK-12-5005<br>Greenview Pines PS #3387 |  |  |  |
|                            | (407) 740-6110 |                                        |  |  |  |

#### Metals (total recoverable) by EPA 200 Series Methods

| Client ID #              | : PS #F3887    | Method Blank |                      |
|--------------------------|----------------|--------------|----------------------|
| SRL (Lab) ID#            | : 12-09025-001 | MB092412     |                      |
| Date Collected           | : 09/20/12     | NA           |                      |
| Lab FDOH Certification # | : E82277       | E82277       |                      |
| Date Prepared            | : 09/24/12     | 09/24/12     |                      |
| Date Analyzed            | : 09/25/12     | 09/25/12     |                      |
| Units                    | : ug/L         | ug/L         | MDL PQL CAS Number   |
| Cadmium                  | 0.306 U        | 0.306 U      | 0.306 1.00 7440-43-9 |
| Copper                   | 1.40 U         | 1.40 U       | 1.40 10.0 7440-50-8  |
| Lead                     | 1.60 U         | 1.60 U       | 1.60 10.0 7439-92-1  |
| Zinc                     | 47.2 V         | * 7.86 I     | 3.00 10.0 7440-66-6  |

|                        |             | LCS        | MS/MSD     |        |            |
|------------------------|-------------|------------|------------|--------|------------|
| Prep. Method EPA 3005A | % Recovery  | Acceptable | Acceptable | %RPD   | Acceptable |
| EPA 200.7              | LCS/MS/MSD  | Limits     | Limits     | MS/MSD | Limits     |
| Cadmium                | 104/102/102 | 85-115     | 70-130     | 0.1    | 0-25       |
| Copper                 | 101/101/101 | 85-115     | 70-130     | 0.2    | 0-25       |
| Lead                   | 102/100/100 | 85-115     | 70-130     | 0.7    | 0-25       |
| Zinc                   | 99/98/97    | 85-115     | 70-130     | 0.7    | 0-25       |

\* This compound is a common laboratory contaminant

| Southern Research Laborato | ries, Inc.     | NELAP Certified            |  |  |
|----------------------------|----------------|----------------------------|--|--|
| an MBE Environmental Labor | ratory         | FDOH Cert # : E83484       |  |  |
| 2251 Lynx Lane, Suite 1    |                | SRL Lab Ref # : 12-09025   |  |  |
| Orlando, Florida 32804     | (407) 522-7100 | Received Date : 09/20/12   |  |  |
| Ed Sainten                 |                | Project Number/Project Nam |  |  |
| Terracon                   |                | AK-12-5005                 |  |  |
| 1675 Lee Rd.               |                | Greenview Pines PS #3387   |  |  |
| Winter Park, FL 32789      | (407) 740-6110 | Orlando, FL                |  |  |

#### **DATA QUALIFIER CODES**

#### **Reporting Exceptions and Qualified Data**

When quality control results are outside established control limits reanalysis, including re-extraction (if applicable), is preferred. If re-analysis is not viable or desirable, then results may be qualified. Sample results associated with quality control data that exceed acceptance criteria will be qualified with an appropriate comment.

- $\mathbf{D} = \mathbf{D}$ ata reported from a dilution and or multiple dilutions.
- I = Estimated Value, The reported value is between the Laboratory Method Detection Limit (MDL) and the Laboratory Practical Quantitation Limit (PQL)
- $\mathbf{J} = Estimated Value$
- L = Off-Scale high; exceeds the linear range or highest calibration standard.
- O = Sampled, but analysis lost or not performed
- $\mathbf{Q} =$ Sample held beyond normal holding time
- U = indicates the compound was analyzed for, but not detected. The numerical value preceding the "U" is the limit of detection for that compound based upon the dilution. MEDF = Matrix Effected Dilution Factor.
- V = Analyte was detected in both the sample and associated Laboratory Method Blank; Laboratory Contamination
- $\mathbf{Y} =$  The analysis was from an unpreserved or improperly preserved sample. The data may not be accurate

Unless otherwise noted, ug/Kg and mg/Kg denote dry weight.

(SOILS) Actual Reporting Limit will depend on moisture content of sample and the amount of sample received.

LCS Obs. Value is the observed quantity, as calculated from the calibration curve, of the analyte in the Laboratory Control Sample (LCS). The LCS is a standard from a source different than the source of the standards used for calibration. The LCS is also known as the QC sample. It is used to check the accuracy of the calibration curve.

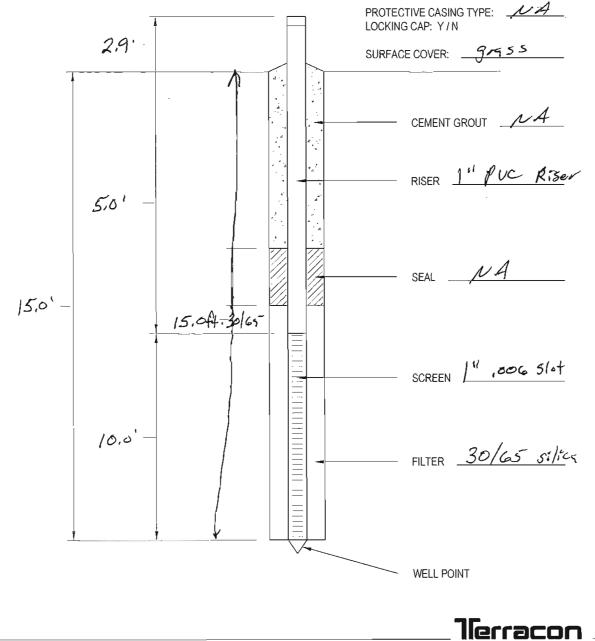
| There are the solution for the point of the                                                                                                                                                                                                                                                                                                                                                                                  | 7 C Matrix: (see<br>C Matrix: (see<br>2 C Matrix: (s | E TERPHONEN         | Hex Chremium H     | Ev PBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flair 32795<br>Flair 32795<br>Flair 510<br>Flair 5279<br>Flair 5279<br>Flair 5279<br>Flair 5279<br>Flair 1132<br>Flair                             | 10 Touristication 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I How How How I was | B B H MUIMONAD XOH | AIL Projust N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| +1 (ample on Sampled Composite 13 / Terration 13 / 13 / 13 / 13 / 13 / 13 / 13 / 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18<br>18<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T Kiphthalen        | A H MUIMONAD XOH   | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. Affiliation<br>2. Terrescon<br>2. 1. Errescon<br>Data Sampled<br>Data Taan<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Composite<br>Compos | in redination of the second of                                                                                                                                                                                                                                   | I Hold Phyloder     | н                  | Project Number:<br>AIL 12 - 5005<br>REQUESTED DUE DATE:<br>Standard<br>Sampling QAP No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Miller Durins / Terricon<br>Miller Durins / Terricon<br>Mull. Dury<br>Mull. Dury<br>Data Then<br>PS-HE-3887 9/20/12 1132 Crab<br>PS-HE-3887 9/20/12 1132 Crab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to reaction of Contractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I Hold I w          | H history          | A14 12 - 5005<br>REQUESTED DUE DATE:<br>Sampling QAP No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| M.L. Dur<br>M.L. Dur<br>Sample Identification<br>Sampled<br>Data Tau<br>Th. J. M.L. Dur<br>Data Tau<br>Th.J. M.L. Dur<br>Data Tau<br>Th.J. M.L. Dur<br>Data Tau<br>Th.J. M.L. Dur<br>Data Tau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to reducing the of the                                                                                                                                                                                                                                    | НАЯТЯ               | LE MERENY          | REQUESTED DUE DATE:<br>Stradard<br>Sampling QAP No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W. D. D. Sample laboration<br>Sample laboration<br>DSHE2387 912.12 1132 Composite<br>The p Blinnes P. 12 2 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A O Total fumber of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 TRPH              | LL MERCUN          | Standard<br>Sampling QAP No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample lacatification<br>Sample lacatification<br>DSzt 7 2887 9/20/12 1132 Crabs II<br>7 D. 17 12/12 21:12 21:12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Couldinate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R TRPH              | LL WELEN           | Sampling QAP No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Parts The The Construction of the PSHE 2887 9120 1132 Crab Construction of the PSHE 2112 1132 Crab Construction of the PSHE 2112 2112 1132 Crab Construction of the PSHE 2112 2112 2112 2112 2112 2112 2112 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Tours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT &                | 77                 | Approval Dute:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PS±F=3887 9/20/12 1132 Grab<br>They Blank Surie 21:12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                   | 1                  | Coentents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 72.17 Blinde Gist 28.12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | (S) (S)            | 1205025-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    | Em-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chinement Markov.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Traditional houses in the statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                    | Active Ac |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                   | Milber.            | 0/20/15 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Returned + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.21 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/2-/12 1/302       | 1212               | 9-20.12 8308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Casher Narga / T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cooler No. (a) / Tamperature(s) ('U'):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling Kit No.    | s 523              | Equipment ID Nu.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

| SITE /                                                                |                                                                                                                       | 0                                                                                        |                                                                    | +                                                                                               | si                              | TE                                               |                                                 | A                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kise                                                                                                                           | - 2.9'                                                                                                                                                           |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                                                       |                                                                                          |                                                                    | F-388                                                                                           | 1 LC                            |                                                  | Orland                                          | به ۲۰۰٬                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                                                                                                                  |
| WELL NO:                                                              | : ps ≠ <sub>f</sub>                                                                                                   | 23887                                                                                    |                                                                    | SAMPLI                                                                                          | EID: PS                         | # F3                                             | 887                                             |                                                                                                                          | DATE: 9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20/12                                                                                                                          |                                                                                                                                                                  |
|                                                                       |                                                                                                                       |                                                                                          |                                                                    |                                                                                                 | PUR                             | GING DA                                          |                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                                                                                                                  |
|                                                                       | R (Inches):                                                                                                           |                                                                                          | G<br>TER (inches):                                                 | 1/8 11 WE                                                                                       |                                 | INTERVAL                                         |                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ge pump tyf<br>Bailer: 🛛 🗡                                                                                                     | РЕ<br>2, рЭ                                                                                                                                                      |
| WELL VO                                                               | LUME PURGE                                                                                                            | : 1 WELL VO                                                                              | LUME = (TOT                                                        | AL WELL DE                                                                                      | PTH – STA                       | TIC DEPTH                                        | TO WATER) X                                     | WELL CAPACI                                                                                                              | TY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                  |
| (only fill or                                                         | ut if applicable)                                                                                                     |                                                                                          | = (                                                                | 7.4                                                                                             | feet -                          | 7.03                                             | feet) X                                         | JBING LENGTH)                                                                                                            | gallons/foot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =0,4                                                                                                                           | 3 gallo                                                                                                                                                          |
|                                                                       |                                                                                                                       | URGE: 1 EQ                                                                               | JIPMENT VOL                                                        | = PUMP VO                                                                                       | LUME + (TUE                     | SING CAPACI                                      | ד א אדו                                         | JBING LENGTH)                                                                                                            | + FLOW CEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L VOLUME                                                                                                                       |                                                                                                                                                                  |
| (only fill of                                                         | it if applicable)                                                                                                     |                                                                                          |                                                                    | = g                                                                                             | allons + (                      |                                                  | ons/foot X                                      | feet)                                                                                                                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gallons =                                                                                                                      | gallo                                                                                                                                                            |
|                                                                       | UMP OR TUBIN<br>WELL (feet):                                                                                          | <sup>IG</sup> 13,0                                                                       | FINAL PUN<br>DEPTH IN                                              | IP OR TUBIN<br>WELL (feet): /                                                                   | G 15.9                          |                                                  | IG<br>ED AT: <b>11/0</b>                        |                                                                                                                          | 1132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL VOLU<br>PURGED (ga                                                                                                       | IME<br>Ilons): 1.3                                                                                                                                               |
| TIME                                                                  | VOLUME<br>PURGED<br>(gallons)                                                                                         | CUMUL.<br>VOLUME<br>PURGED<br>(gallons)                                                  | PURGE<br>RATE<br>(gpm)                                             | DEPTH<br>TO<br>WATER<br>(feet)                                                                  | pH<br>(standard<br>units)       | TEMP.<br>(°C)                                    | COND,<br>(circle units)<br>nhos/cm<br>or S/cm   | DISSOLVED<br>OXYGEN<br>(circle units)<br>OgA or<br>Wosaturation                                                          | TURBIDITY<br>(NTUs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COLOR<br>(describe                                                                                                             |                                                                                                                                                                  |
| 1117                                                                  | 0,43                                                                                                                  | 0.43                                                                                     | ,04                                                                | 19.87                                                                                           | 5,01                            | 2685                                             | 93                                              | 58.6%/0/4.66                                                                                                             | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clear                                                                                                                          | jon                                                                                                                                                              |
| 1120                                                                  | 0.18                                                                                                                  | 0.61                                                                                     |                                                                    | 14.03                                                                                           | 4,81                            | 26.92                                            | 76                                              | 51.2% 4,02                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                             | L,                                                                                                                                                               |
| 1/23                                                                  | 0,18                                                                                                                  | 0,79                                                                                     |                                                                    | 14.37                                                                                           | 4.71                            | 26.82                                            | 80                                              | 49,40/0/3,94                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                             | 11                                                                                                                                                               |
| 126                                                                   | 0.18                                                                                                                  | 0.97                                                                                     |                                                                    | 14.84                                                                                           | 4.65                            | 26,82                                            | 74                                              | 46.7% 3:33                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                             | 1.                                                                                                                                                               |
| 121                                                                   | 0,18                                                                                                                  | 1.15                                                                                     |                                                                    | 14.89                                                                                           | 4.60                            | 26,81                                            | 75                                              | 45,10/0/3,57                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                             | 81                                                                                                                                                               |
| 132                                                                   | 0.18                                                                                                                  | 1.3 3                                                                                    | 1                                                                  | 14,94                                                                                           | 4,57                            | 26.82                                            | 76                                              | 44.4% 3.55                                                                                                               | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ĊĊ                                                                                                                             | L #                                                                                                                                                              |
|                                                                       | PACITY (Gallor<br>NSIDE DIA. CA                                                                                       |                                                                                          |                                                                    |                                                                                                 |                                 |                                                  |                                                 |                                                                                                                          | 5" = 1.02;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                | 2" = 5.88<br>8" = 0.016                                                                                                                                          |
| PURGING                                                               | EQUIPMENT                                                                                                             | CODES: B                                                                                 | = Bailer;                                                          | BP = Bladder                                                                                    |                                 |                                                  | Submersible Pu                                  | mp; PP = Pe                                                                                                              | ristaltic Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ; O = Oth                                                                                                                      | er (Specify)                                                                                                                                                     |
|                                                                       |                                                                                                                       |                                                                                          | 1                                                                  | SAMPLER(S                                                                                       |                                 | LING DA                                          |                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                              |                                                                                                                                                                  |
|                                                                       | BY (PRINT) /                                                                                                          |                                                                                          | I                                                                  |                                                                                                 | 1 Bit                           |                                                  |                                                 | SAMPLING<br>INITIATED AT                                                                                                 | 1132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLING<br>ENDED AT                                                                                                           | hou                                                                                                                                                              |
|                                                                       |                                                                                                                       | 1 2 2 2 3 3 3                                                                            |                                                                    |                                                                                                 |                                 |                                                  |                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                |                                                                                                                                                                  |
| Mike PLIME OR                                                         | TUBING                                                                                                                |                                                                                          |                                                                    |                                                                                                 | P                               | 15/2                                             |                                                 | -FILTERED: Y                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FILTER SIZ                                                                                                                     | E: m                                                                                                                                                             |
| PUMP OR<br>DEPTH IN                                                   | TUBING<br>WELL (feet):                                                                                                | 15,0                                                                                     | ل                                                                  | TUBING<br>MATERIAL C                                                                            |                                 |                                                  | Filtratio                                       | -FILTERED: Y                                                                                                             | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                | E: m                                                                                                                                                             |
| PUMP OR<br>DEPTH IN<br>FIELD DE                                       | TUBING<br>WELL (feet):<br>CONTAMINATI                                                                                 | 15,0<br>ON: PUM                                                                          | lP Y &                                                             |                                                                                                 | TUBING                          | Y DOW                                            | Filtration (Filtration)                         | -FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:                                                                           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                              |                                                                                                                                                                  |
| PUMP OR<br>DEPTH IN<br>FIELD DE                                       | TUBING<br>WELL (feet):                                                                                                | 15,0<br>ON: PUM                                                                          | lP Y &                                                             | TUBING<br>MATERIAL C                                                                            | TUBING<br>SAMPLE PF             |                                                  | Filtration<br>Phaced)<br>N<br>FINAL             | -FILTERED: Y                                                                                                             | Pe:<br>Y<br>D SA<br>ID/OR EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                | SAMPLE PU                                                                                                                                                        |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM                               | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAIN                                                                  | 0N: PUN<br>ER SPECIFIC/<br>MATERIAL                                                      |                                                                    | TUBING<br>MATERIAL C                                                                            | TUBING<br>SAMPLE PF             | Y MARESERVATIO                                   | Filtration<br>Phaced)<br>N<br>FINAL             | -FILTERED: Y<br>an Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN                                                 | D SA<br>ID/OR EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MPLING<br>UIPMENT<br>CODE                                                                                                      | SAMPLE PU<br>FLOW RAT<br>(mL per minu                                                                                                                            |
| Miles<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAIN<br>CONTAINERS<br>2.<br>2.<br>2.                                  | NN: PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>C &<br>AG                                 | ATION<br>VOLUME                                                    | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED                                                       | TUBING<br>SAMPLE PF             | Y MARESERVATIO                                   | Piltration<br>eplaced)<br>N<br>mL) FINAL<br>pH  | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD                                        | D SA<br>ID/OR EQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | €<br>MPLING<br>UIPMENT<br>CODE<br>E pp                                                                                         | SAMPLE PUł<br>FLOW RAT<br>(mL per minu<br>くしひゅ ん                                                                                                                 |
| Miles<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE | UBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAIN:<br>#<br>CONTAINERS<br>2-                                         | NS PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>CC<br>AG<br>CC                             | IP Y &<br>ATION<br>VOLUME<br>COMC                                  | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14°C C                                             | TUBING<br>SAMPLE PF             | Y MARESERVATIO                                   | Piltration<br>eplaced)<br>N<br>mL) FINAL<br>pH  | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>U-0,4<br>TOC<br>L L Mur             | Y<br>D SA<br>ID/OR EQ<br>D K/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPLING<br>UIPMENT<br>CODE                                                                                                      | SAMPLE PUR<br>FLOW RAT<br>(mL per minu<br>Cloy M                                                                                                                 |
| Miles<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAIN<br>CONTAINERS<br>2.<br>2.<br>2.                                  | NN: PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>CC<br>AG<br>AG                            | IP Y X<br>ATION<br>VOLUME<br>GOMC<br>GOMC<br>GOML<br>GOML<br>GUTT, | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14C C<br>Mone<br>HCC<br>Mone                       | TUBING<br>SAMPLE PF             | Y MAR<br>RESERVATIO<br>TOTAL VOL<br>D IN FIELD ( | Filtration<br>eplaced)<br>iN<br>mL) FINAL<br>pH | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>UPO A<br>TOC<br>L L Mer<br>8270 SIM | Y           ID         SA           ID/OR         EQ           D         ID/OR           ID/OR         ID/OR     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                | E: m<br>SAMPLE PUN<br>FLOW RATI<br>(mL per minu<br>(mL per minu<br>(mL por minu<br>(mL por minu<br>(mL por minu<br>(mL por minu<br>(mL por minu<br>(mL por minu) |
| Miles<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAIN<br>CONTAINERS<br>2.<br>2.<br>2.<br>2.                            | NS: PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>CC<br>AG<br>AG<br>AC                      | ATION<br>VOLUME<br>GOMC<br>GOMC<br>GOMC<br>GML<br>LLT,<br>ILT,     | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14CC<br>Mone<br>HCC                                | TUBING<br>SAMPLE PF             | Y MARESERVATIO                                   | Filtration<br>eplaced)                          | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>UCOA<br>TOC<br>LLMER<br>8270 SIM    | PE:<br>Y<br>ID/OR<br>C.<br>PAUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                | SAMPLE PUR<br>FLOW RAT<br>(mL per minu<br>(100 M<br>(100 M)<br>(100 M)                                                                                           |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE          | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAINS<br>CONTAINERS<br>2.<br>2.<br>2.<br>2.<br>2.<br>(<br>(<br>(<br>1 | IS, C<br>ON: PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>AG<br>AC<br>FE | ATION<br>VOLUME<br>GOMC<br>GOMC<br>GOML<br>GOML<br>LLT,<br>ZJOMC   | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14C C<br>Mone<br>HCC<br>Mone<br>MCC                |                                 | Y MAR<br>RESERVATIO<br>TOTAL VOL<br>D IN FIELD ( | Filtration<br>eplaced)                          | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>UCOA<br>TOC<br>LLMER<br>8270 SIM    | PE:<br>Y<br>ID/OR<br>C.<br>PAUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                | SAMPLE PUI<br>FLOW RAT<br>(mL per minu<br>Lion M<br>Lion M<br>Lion M                                                                                             |
| Miles<br>PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAINS<br>CONTAINERS<br>2.<br>2.<br>2.<br>2.<br>2.<br>(<br>(<br>(<br>1 | IS, C<br>ON: PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>CG<br>AG<br>AG<br>AG<br>AC<br>FE | ATION<br>VOLUME<br>GOMC<br>GOMC<br>GOMC<br>GML<br>LLT,<br>ILT,     | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14CC<br>Mone<br>HCC<br>Mone<br>Mone<br>MCC         |                                 | Y MAR<br>RESERVATIO<br>TOTAL VOL<br>D IN FIELD ( | Filtration<br>eplaced)                          | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>UPO A<br>TOC<br>L L Mer<br>8270 SIM | PE:<br>Y<br>ID/OR<br>C.<br>PAUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                | SAMPLE PUR<br>FLOW RAT<br>(mL per minu<br>(100 M<br>(100 M)<br>(100 M)                                                                                           |
| PUMP OR<br>DEPTH IN<br>FIELD DEC<br>SAM<br>SAMPLE<br>ID CODE          | TUBING<br>WELL (feet):<br>CONTAMINATI<br>PLE CONTAINERS<br>Z.<br>Z.<br>Z.<br>(<br>(<br>(<br>1<br>S: (                 | NS. PUN<br>ER SPECIFIC/<br>MATERIAL<br>CODE<br>C.C.<br>A.C.<br>A.C.<br>P.E.<br>P.E.      | ATION<br>VOLUME<br>GOMC<br>GOMC<br>GOML<br>GOML<br>LLT,<br>ZJOMC   | TUBING<br>MATERIAL C<br>PRESERVAT<br>USED<br>14C C<br>Mone<br>HCC<br>Mone<br>HCC<br>Mone<br>HCC | TUBING<br>SAMPLE PF<br>IVE ADDE | Y MAR<br>RESERVATIO<br>TOTAL VOL<br>D IN FIELD ( | Filtration<br>eplaced)                          | FILTERED: Y<br>on Equipment Typ<br>DUPLICATE:<br>INTENDE<br>ANALYSIS AN<br>METHOD<br>UCOA<br>TOC<br>LLMER<br>8270 SIM    | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$ | €<br>MPLING<br>UIPMENT<br>CODE<br>E<br>PP<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | SAMPLE PUR<br>FLOW RAT<br>(mL per minu<br>(100 M<br>(100 M)<br>(100 M)                                                                                           |

The above do Not constitute an of the information required by Chapter 92-100, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

## DEP-SOP-001/01 FT 1000 General Field Testing and Measurement


|                    | Form             | n FD 9000        | -8: FIEL     | D INSTRUME                             | NT CALI                            | BRATION R               | ECORDS               |                     |
|--------------------|------------------|------------------|--------------|----------------------------------------|------------------------------------|-------------------------|----------------------|---------------------|
| INSTRUM            | ENT (M/          | AKE/MOD          | EL#)         | YSI 556MF                              | PS                                 | INSTRUM                 | ENT # 06H            | 2510AF              |
| PARAME             | TER: [cl         | heck only        | one]         |                                        |                                    |                         |                      |                     |
| 🗌 TEM              | PERATUR          | RE 🔀             | CONDUC       | rivity 🗌 s                             | SALINITY                           | 🕅 pH                    | ORP                  |                     |
| 🗌 TUR              | BIDITY           |                  | RESIDUAI     | _CI 🔀 🛛                                | 00                                 | 🗌 OTH                   | ER                   |                     |
| values, and        | the date th      | ne standards     | were prep    | ndards used for c<br>ared or purchased |                                    | he origin of the        | standards, the       | standard            |
|                    |                  | Do 1             |              |                                        |                                    |                         |                      |                     |
| Standa             | ard B            | PH               | 4,7,         | 0                                      |                                    |                         |                      |                     |
|                    |                  | Conducti         |              |                                        |                                    |                         |                      |                     |
| DATE<br>(yy/mm/dď) | TIME<br>(hr:min) | STD<br>(A, B, C) | STD<br>VALUE | INSTRUMENT<br>RESPONSE                 | % DEV                              | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
| 9/20/12            | 0925             | A                | 100%         | 92,0 /100,3                            | 8%/21                              | Yes                     | Init                 | mb                  |
| ľ                  | 0934             | B                | 4,0          | 4.03                                   | <b>Z</b> 1                         |                         |                      |                     |
|                    | 0943             | B                | 7.0          | 6.97                                   | 41                                 | {                       |                      |                     |
|                    | 0949             | B                | 10.0         | 10.10                                  | 10/0                               |                         |                      |                     |
|                    | 0951             | C                | 1413         | 1400                                   | <1                                 | 1                       | 1                    | 1                   |
| 9/20/12            | 1                | A                | 100%         | 1.00.4%                                | <1                                 | Yes                     | cont                 | mЬ                  |
| ĺ                  | 1200             | ß                | 4            | 4.01                                   | 41                                 |                         | 1                    | 1                   |
|                    | 1203             | ß                | 7            | 7,0                                    | <(                                 |                         |                      |                     |
|                    | 1208             | ß                | 10           | 10.03                                  | </td <td></td> <td></td> <td></td> |                         |                      |                     |
|                    | 1211             | e                | 1413         | 1413                                   | 21                                 |                         |                      |                     |
| - <del>4</del>     | 1                |                  |              |                                        |                                    | 4                       | - 1                  | <b>v</b>            |
|                    | -                |                  |              |                                        | _                                  |                         |                      |                     |
|                    |                  |                  |              | -                                      | _                                  |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    | _                |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |
|                    |                  |                  |              |                                        |                                    |                         |                      |                     |

- Alexandre

## DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

|                     | Form             | n FD 9000-       | 8: FIEL       | D INSTRUME                              | NT CALI | BRATION R               | ECORDS               |                     |
|---------------------|------------------|------------------|---------------|-----------------------------------------|---------|-------------------------|----------------------|---------------------|
| INSTRUM             | ENT (M/          | AKE/MODI         | EL#) <u>ŀ</u> | HACH 2100P                              | INST    | RUMENT #                | 08080C017            | 245                 |
| PARAME              | TER: [cl         | heck only d      | one]          |                                         |         |                         |                      |                     |
| 🗀 TEM               | PERATUF          | RE 🗍 (           | CONDUCT       | IVITY 🗌 S                               | ALINITY | 🗌 pH                    | ORP                  |                     |
| 🗹 TUR               | BIDITY           |                  | RESIDUAL      |                                         | 00      | 🗌 ОТН                   | ER                   |                     |
|                     |                  |                  |               | ndards used for ca<br>ared or purchased |         | he origin of the        | standards, the       | standard            |
| Standa              | ard A            | <0.1             |               |                                         |         |                         | _                    |                     |
| Standa              | ard B            | _20.0            |               |                                         |         |                         |                      |                     |
| Standa              | ard C            | 100              |               |                                         |         |                         |                      |                     |
| DATE<br>(yy/mm/dd)_ | TIME<br>(hr:min) | STD<br>(A, B, C) | STD<br>VALUE  | INSTRUMENT<br>RESPONSE                  | % DEV   | CALIBRATED<br>(YES, NO) | TYPE<br>(INIT, CONT) | SAMPLER<br>INITIALS |
|                     | 0921             | A                | 0,(           |                                         | 60/10/  | (25                     | Zait                 | MB.                 |
| 1                   | 1923             | ß                | 20.0          | 20,2                                    | 1%      |                         |                      | )                   |
|                     | 0925             | C                | 100           | 99,3                                    | 21      |                         |                      |                     |
| glolic              | 1213             | Δ                | 0.)           | 0.11                                    | 10/0    | 405                     | cont                 | IN 17               |
|                     | 1214             | ß                | 20,0          | 2011                                    | LI      |                         | 1                    |                     |
|                     | 1215             | e                | 1100          | 99.7                                    | 01      |                         |                      |                     |
|                     | 7010             |                  | V             |                                         | _       |                         |                      | -1                  |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     | <u> </u>         |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |
|                     |                  |                  |               |                                         |         |                         |                      |                     |

DATE: 9/19/19 SITE: Pump Sta. # 3887 LOCATION: Orlando, FC., WELL LOCATION STRATEGY: TMW-4 DRILLING COMPANY: Groundwater Protection DRILLING METHOD / BORING DIAMETER: Geo Probe / 41' WELL DEPTH / SCREEN INTERVAL: 15' bls / 5-15' GROUNDWATER LEVEL: 7.74' BTOC TOP OF CASING ELEVATION: DEVELOPMENT PROCEDURE: Peristaltic Pump DISPOSITION OF INVESTIGATIVE DERIVED WASTES: Spread. REMARKS:



